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GULA: Learning (From Any) Semantics of a BRN ◦ Introduction

Introduction
Learn interaction rules from the dynamical transitions
• LFIT: synchronous semantics, deterministic (Boolean)

[Inoue, Ribeiro, Sakama, Machine Learning Jour., 2014]
• LFkT: synchronous semantics, with memory (Boolean)

[Ribeiro, Magnin, Inoue, Sakama, Frontiers in Bioeng. and Biotech., 2015]
• LUST: synchronous semantics, non-deterministic

[Martinez, Ribeiro, Inoue, Alenya, Torras, ICLP, 2015.]
• ACEDIA: synchronous semantics, continuous domains

[Ribeiro, Tourret, Folschette, +5, ILP, 2017]
• GULA: synchronous, asynchronous, general semantics

[Ribeiro, Folschette, Magnin, Roux, Inoue, ILP, 2018]

Content of this presentation: improvements on GULA
→ Define the scope of “learnable” semantics
→ Learn the rules of the semantics itself
→ ...and more!
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Preliminary Abstraction
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Preliminary Abstraction

a

+ −

+ −

{
2 = saturation
1 = traces
0 = complete degradation

}
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Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

• A set of components N = {a, b, z}
• A discrete domain for each component dom(a) = J0; 2K
• Discrete parameters / evolution functions f a : S → dom(a)
• Signs & thresholds on the edges (redundant) a 2+−−→ z

z

a

b

a f b

0 0
1 1
2 1

z b f a

0 0 1
0 1 0
1 0 1
1 1 2

a b f z

0 0 0
0 1 0
1 0 0
1 1 0
2 0 0
2 1 1

Semantics = From this information, what are the next possible state(s)?
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Semantics
State transitions differ according to the update semantics used

a b f(a) := not b.
f(b) := not a.

Asynchronous General

00

01 10

11

00

01 10

11

Synchronous

00

01 10

11

• Synchronous: all variables are updated
• Asynchronous: only one variable is updated
• General: any number of variables can be updated
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Logic Programs
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Principle of the Learning

Black box Semantics

Semantics

State graph

State graph

Identical

z1t ← a2t−1.

z1t ← a1t−1 ∧ b0
t−1.

b1
t ← a2t−1.

b0
t ← a0t−1.

. . .
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Logic Rule
vval0
0︸ ︷︷ ︸

head
target atom

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body
feature atoms

.

• v0, v1, v2, . . ., vn: variables at , at−1, bt , bt−1, zt , zt−1
• Variables are split into feature (F) and target (T ) variables
• v0 ∈ T at , bt , zt
• v1, v2, . . . , vn ∈ F at−1, bt−1, zt−1
• Implicit time step: t in the head and t − 1 in the body

• val0, val1, val2, . . ., valn: values 0, 1, 2, . . .

• vali ∈ dom(vi )

• All atoms in the body are in conjunction
• ← is the (reverse) implication
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Feature & Target Variables

s1 . . . sm (v1)t−1 . . . (vn)t−1

F \ F (Stimuli) F (Regular variables)

F (Feature variables)

(v1)t . . . (vn)t c1 . . . ck

T (Regular variables) T \ T (Checkpoints)

(Target variables) T

Projections

• Feature variables = causes
• Stimuli = known inputs

• Target variables = consequences
• Checkpoints = known outputs
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Interpretation of a Logic Rule

vval0
0︸ ︷︷ ︸

head
target atom

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body
feature atoms

.

Interpretation: When body is true, head is a potential outcome

Examples:
a1t ← a2t−1 ∧ b0

t−1 ∧ z1t−1.
b1

t ← z1t−1.
z0t ← >.

 all match 〈a2t−1, b0
t−1, z1t−1〉

A rule R matches a state s iff body ⊆ s

Interpretation: When a state matches a rule,
the rule’s head becomes a candidate for the next state

Semantics = From this information, what are the next possible state(s)?
(Similar to discrete networks)
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Discrete Model as a Logic Program

Discrete model:

z

a

b

1+ 1−
2+

1+

1+

+ Discrete parameters
or evolution functions

Logic program:

b1
t ← a1t−1.

b1
t ← a2t−1.

b0
t ← a0t−1.

z1t ← a2t−1 ∧ b1
t−1.

z0t ← a0t−1.
z0t ← a1t−1.
z0t ← b0

t−1.

etc...
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Learning
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Semantics-Free Learning

Semantics = computing the next state by selecting,
among applicable local rules, the ones that will be applied.

000 010
Applicable

Rules
Applied
Rules
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Learning Intuition: Classification Problem

What is an applicable rule? The conditions so that a variable can take a
certain value in next state.

00 01

00 10

01 01

10 1000 11

Positive
example

Negative
example

a=0

00

11 01

11 10

11 00

01

10

11

Observations
Positive
example

Negative
example

a=1

00 01

10

11

Equivalent to a classification problem: for each variable value, what is
a typical state where the variable can take this value in the next state ?
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GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions (feature → target)

Output: a program that respects:
• Consistency: the program allows no negative examples
• Realization: the program covers all positive examples
• Completeness: the program covers all the state space
• minimality of the rules (most general bodies)

Method: start from most general rules and specialize iteratively.
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GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Least Specialization
Ensure consistency of a rule:

vval0
0︸ ︷︷ ︸

head

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body

.

→ Used when a rule matches a negative example s: body ⊆ s.
→ Add one condition to body that prevents matching s.

Examples:
a1t ← >.
b0

t ← a0t−1.
ch2 ← a0t−1 ∧ b1

t−1 ∧ st1.

 all match 〈a0t−1, b1
t−1, st1〉

→ how to specialize each one?

Suppose dom(at−1) = dom(bt−1) = {0, 1} and dom(st) = {0, 1, 2}.

The Least Specialization of a1t ← >. is:
→ { a1t ← a1t−1. ; a1t ← b0

t−1. ; a1t ← st0. ; a1t ← st2. }
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→ how to specialize each one?

Suppose dom(at−1) = dom(bt−1) = {0, 1} and dom(st) = {0, 1, 2}.

The Least Specialization of ch2 ← a0t−1 ∧ b1
t−1, st1. is:

→ ∅

Maxime FOLSCHETTE, Tony RIBEIRO 18/36 Bioss-IA 2020 — 2020-11-24



GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA: General Usage LFIT Algorithm
GULA: INPUT: a set of transitions T .
Initialize P = ∅
For each existing target atom vval

• Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}

• Initialize Pvval := {vval ← >.}
• For each state s ∈ Negvval

• Replace each rule that matches s by its least specializations
• Remove all dominated rules, that is, that are not the most general:

head(R) = head(R ′) and body(R) ⊆ body(R ′)
• P := P ∪ Pvval

OUTPUT: PO(T ) := P the optimal program of T .

Formally proved: Compatible with transitions generated in synchronous,
asynchronous and general semantics.

Also proved: Compatible with a wider class of “learnable” semantics.
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GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Learnable Semantics: Pseudo-Idempotent
→ Consider a function DS that maps a feature state and a set of target
atoms to a set of target states
→ Such that given the same state and the union of its output, it
produces the same result (pseudo-indempotent)

010 a^0,a^1,b^1,c^0,c^2 012 002 102

a^0,a^1,b^0,b^1, c^2010

s

s

D

D'

DS

Set of atomsFeature state

Set of target states

Semantics
+

Union

+

Semantics DS

→ A program gives possible target values (D)
→ A semantics gives which combinations are possible (DS(s, D))
→ If the semantics produces the same states given those local values,
then GULA learns a programs equivalent to the original one under this
semantics:

DS(s, D) = DS(s, D′) =⇒ DS(P) = DS(GULA(DS(P))
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GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Learning Semantics
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GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

What if we don’t know the semantics?
Three examples of arbitrary semantics:

a b f(a) := not b.
f(b) := not a.

Degradation Inverse all valuesAll or nothing change

00

01 10

11

00

01 10

11

00

01 10

11

How can we learn a program able to reproduce such behavior?
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GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

What is impossible?
If we use the program learned by GULA with the synchronous semantics,
we observe spurious transitions, which were not in the observations:

a b f(a) := not b.
f(b) := not a.

Degradation Inverse all valuesAll or nothing change

00

01 10

11

00

01 10

11

00

01 10

11

How to prevent these impossible transitions?
We need “impossibility rules”: constraints!
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Classification Modeling of Impossibility

Degradation Inverse all valuesAll or nothing change
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Classification Modeling of Impossibility

Degradation Inverse all valuesAll or nothing change
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Negative examples

Constraints

0011 0101

1010

Observations

1100

11 1100 00 0000 1111

01 01 11 00

00 11 10 10
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Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.

a b f(a) := not b.
f(b) := not a.

Degradation Inverse all valuesAll or nothing change
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Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)

Positive
example

Negative
example

a=0

00
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11
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example

Negative
example
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11

Observations

11 1100 00
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00 11 10 10
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GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)

a := not b
a(0,T) :- b(1,T-1).
a(1,T) :- b(0,T-1).

b := not a
b(0,T) :- a(1,T-1).
b(1,T) :- a(0,T-1).
Conservation rules
a(0,T) :- a(0,T-1).
a(1,T) :- a(1,T-1).
b(0,T) :- b(0,T-1).
b(1,T) :- b(1,T-1).
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Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)
• Encode T into negative examples of constraint matching

Degradation Inverse all valuesAll or nothing change
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Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)
• Encode T into negative examples of constraint matching

Negative examples

Constraints

0011 0101

1010

Observations

1100

11 1100 00 0000 1111

01 01 11 00

00 11 10 10
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Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)
• Encode T into negative examples of constraint matching
• Learn a program P ′ using GULA from this encoding: P ′ contains all
minimal constraints covering impossible transitions

Constraints
:- a(0,T), b(1,T), b(0,T-1).
:- a(1,T), b(0,T), a(0,T-1).
:- a(1,T), b(0,T), b(1,T-1).
:- a(0,T), b(1,T), a(1,T-1).

...
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Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)
• Encode T into negative examples of constraint matching
• Learn a program P ′ using GULA from this encoding: P ′ contains all
minimal constraints covering impossible transitions

• Discard in P ′ inapplicable constraints according to P
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Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)
• Encode T into negative examples of constraint matching
• Learn a program P ′ using GULA from this encoding: P ′ contains all
minimal constraints covering impossible transitions

• Discard in P ′ inapplicable constraints according to P
• OUTPUT: P ∪ P ′ which exactly reproduces T , under the
constrained synchronous semantics
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Examples of learned programs

Degradation Inverse all valuesAll or nothing change
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a := not b
a(0,T) :- b(1,T-1).
a(1,T) :- b(0,T-1).
b := not a
b(0,T) :- a(1,T-1).
b(1,T) :- a(0,T-1).
Conservation rules
a(0,T) :- a(0,T-1).
a(1,T) :- a(1,T-1).
b(0,T) :- b(0,T-1).
b(1,T) :- b(1,T-1).
Constraints
:- a(0,T), b(1,T), b(0,T-1).
:- a(1,T), b(0,T), a(0,T-1).
:- a(1,T), b(0,T), b(1,T-1).
:- a(0,T), b(1,T), a(1,T-1).

a := not b
a(0,T) :- b(1,T-1).
a(1,T) :- b(0,T-1).
b := not a
b(0,T) :- a(1,T-1).
b(1,T) :- a(0,T-1).
Conservation rules
a(1,T) :- a(1,T-1).
b(1,T) :- b(1,T-1).
Degradation
a(0,T) :- a(1,T-1).
b(0,T) :- b(1,T-1).
Constraints
:- a(1,T), b(1,T), a(1,T-1).

a := not b
a(0,T) :- b(1,T-1).
a(1,T) :- b(0,T-1).
b := not a
b(0,T) :- a(1,T-1).
b(1,T) :- a(0,T-1).
Inverse value
a(0,T) :- a(1,T-1).
a(1,T) :- a(0,T-1).
b(0,T) :- b(1,T-1).
b(1,T) :- b(0,T-1).
Constraints
:- a(1,T), b(1,T), a(1,T-1).
:- a(0,T), b(0,T), a(0,T-1).
:- a(1,T), b(1,T), b(1,T-1).
:- a(0,T), b(0,T), b(0,T-1).
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Learning Time Series
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Potential Usage

Black box Semantics

Semantics

State graph

State graphz

a

b

1+ 1−
2+

1+

1+
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Potential Usage

Behavior
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Potential Usage

Behavior

Semantics State graph
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Scalability of GULA

Run time of GULA for 9 to 18 nodes Boolean networks for the three
semantics: run time in seconds for 25%/50%/75%/100% of the
transitions as input, and total number of transitions.

Benchmark size synchronous asynchronous general
arellano_rootstem 9 2s/1.8s/0.9s/0.3s/512 2.4s/1.4s/1.1s/0.2s/1,940 1.1s/0.5s/0.3s/0.3s/11K
davidich_yeast 10 16s/10s/4s/0.6s/1,024 12s/6s/4s/0.5s/4,364 3s/1.5s/1s/0.9s/39K
faure_cellcycle 10 15s/10s/4s/0.8s/1,024 12s/5.6s/4.7s/0.6s/4,273 4s/1.2s/0.9s/0.9s/31K
fission_yeast 10 16s/10s/4.8s/0.8s/1,024 12s/5.8s/4.6s/0.4s/4,157 3.6s/1.2s/1s/0.8s/34K
mammalian 10 14.8s/11s/4.8s/0.8s/1,024 12s/5.7s/3.4s/0.6s/4,273 3.4s/1.4s/1s/0.9s/31K
budding_yeast 12 564s/194s/61s/3.7s/4,096 216s/107s/85s/2.6s/20K 51s/14s/5.9s/4.1s/260K
n12c5 12 468s/200s/64s/2.8s/4,096 213s/103s/144s/1.3s/30K 4.7s/6s/8.6s/11s/1,122K
tournier_apoptosis 12 369s/164s/54s/2.7s/4,096 199s/98s/94s/2s/22K 26s/6.7s/4.6s/4.6s/358K
dinwoodie_stomatal 13 -/748s/221s/6.1s/8,192 -/548s/628s/4s/53K 70s/18s/15s/18s/1.5M
multivalued 13 -/-/406s/6s/8,192 -/565s/765s/4.9s/49K 61s/18s/13s/13s/1M
saadatpour_guardcell 13 -/757s/219s/6s/8,192 -/575s/638s/4.2s/53K 68s/17s/15s/18s/1.5M
arabidopsis 15 -/-/-/53s/32K -/-/-/50s/213K -/352s/123s/103s/7M
dinwoodie_life 15 -/-/-/37s/32K -/-/-/30s/245K -/352s/240s/256s/20M
randomnet_n15k3 15 -/-/-/51s/32K -/-/-/31s/262K 731s/219s/226s/280s/22M
irons_yeast 18 -/-/-/653s/262K -/-/-/324s/2M memory out

Exponential w.r.t variables/values but faster if more observations.
Runtime is not a problem with PRIDE, a polynomial approximation.
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Polynomial Approximation: PRIDE

PRIDE = Polynomial Relational Inference of Discrete Events

Input: a set of transitions (feature → target)

Output: a program that respects:
• Consistency: The program allows no negative examples
• Realization: The program covers all positive examples
• Completeness: The program covers all the state space
• Minimality of the rules (most general bodies)

Method:
→ Keep only one specialization according to a non-matched positive
example.
→ Use greedy search to minimize rules.
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Learning Semantics is exponential

Run time of Synchronizer for 6 to 10 nodes Boolean networks for the
three semantics: run time in seconds for 25%/50%/75%/100% of the
transitions as input, and total number of transitions.

Benchmark size synchronous asynchronous general
n6s1c2 6 0.2s/0.3s/0.2s/0.1s/64 2.5s/4.4s/3.6s/1s/230 9s/6s/2.9s/0.5s/1,039
n7s3 7 1.6s/3.1s/2.5s/0.3s/128 32s/35s/26s/5s/451 139s/68s/21s/6s/2,243
randomnet_n7k3 7 5.9s/16s/19s/6.6s/128 25s/47s/32s/5.4s/394 133s/93s/45s/9.9s/1,580
xiao_wnt5a 7 0.96s/1.4s/1s/0.2s/128 11s/21s/12s/3s/324 25s/14s/7s/1.1s/972
arellano_rootstem 9 86s/83s/40s/2.6s/512 -/-/-/145s/1,940 -/-/-/41s/11,472
davidich_yeast 10 -/796s/363s/28s/1,024 -/-/-/622s/4,364 -/-/-/-/38,720
faure_cellcycle 10 -/-/558s/31s/1,024 -/-/-/865s/4,273 -/-/-/-/30,971
fission_yeast 10 -/-/478s/36s/1,024 -/-/-/662s/4,157 -/-/-/-/33,727
mammalian 10 -/-/598s/33s/1,024 -/-/-/841s/4,273 -/-/-/-/30,971
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Prediction Power of GULA/PRIDE
Evaluate quality of rules:
→ Prediction of each variable possible value
→ Learn from partial observations (group by initial state / random)
→ Prediction from unseen states (train ∩ test = ∅)

Method:
→ Use GULA/PRIDE to learn two programs: P and P
→ P: classic program that say when a target atom is possible
→ P: a kind of anti-program that say when a target atom is not possible
→ Rules are weighted by the number of observations they match
→ Probabilities can be obtain from the most matching rule/anti-rule

Predicting probabilities of a0t from 〈a1t−1, b1
t−1, c1t−1, st1〉

P:
(105) : a0t ← b0

t−1.
(42) : a0t ← b1

t−1 ∧ c1t−1.
(12) : a0t ← c1t−1 ∧ st1.

P:
(81) : a0t ← b0

t−1.
(61) : a0t ← a1t−1 ∧ c0t−1.
(30) : a0t ← a1t−1 ∧ st1.

Prediction: 0.5 + 0.5× 42−30
42+30 = 0.58

Accuracy: mean absolute error VS Ground truth: 0 : 0.58, 1 : 0.42
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Prediction power

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
cc

ur
a

cy

Percentage of training data

n3s1c1a (3)

n3s1c1b (3)

raf (3)

n5s3 (5)

n6s1c2 (6)

n7s3 (7)

randomnet_n7k3 (7)

xiao_wnt5a (7)

arellano_rootstem (9)

davidich_yeast (10)

faure_cellcycle  (10)

fission_yeast  (10)

mammalian (10)

budding_yeast (12)

n12c5 (12)

tournier_apoptosis (12)

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
cc

ur
a

cy

Percentage of training data

n3s1c1a (3)

n3s1c1b (3)

raf (3)

n5s3 (5)

n6s1c2 (6)

n7s3 (7)

randomnet_n7k3 (7)

xiao_wnt5a (7)

arellano_rootstem (9)

davidich_yeast (10)

faure_cellcycle  (10)

fission_yeast  (10)

mammalian (10)

budding_yeast (12)

n12c5 (12)

tournier_apoptosis (12)

Partial initial states Partial transitions

Figure: Accuracy of the models learned by GULA when predicting possible
target variable values from unseen states: (left) experiment 1, with a complete
set of input transitions from a partial number of initial states; and (right)
experiment 2, with a potentially incomplete set of input transitions from an
incomplete set of initial states.
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Outlook: GULA/PRIDE Workflow
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PRIDE

GULA

→ Pre-process: Use statistical ML for data augmentation/noise tolerance
→ Pre-process: Automatic discretization using hand-made NN layer
→ Post-process: Weight rules for predictions
→ Post-process: First order generalization to simplify explanations
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Conclusion

Logic rules ⇔ networks interactions ⇔ automata transitions

Learning of the structure of a model
1-step learning algorithm by successive refinements

Independent of the semantics
Proved for pseudo-idempotent semantics
→ Includes synchronous, asynchronous, general semantics

Outlooks
• Automatic learning of time series data (noise, discretization, ...)
• Learning probabilistic models
• Improve explainability (first order, post-processing)
• Optimizations (parallelization, approximations)
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Thank you

All algorithms are open-source at:
https://github.com/Tony-sama/pylfit

Our questions:
• How to automatically and meaningfully discretize?
• Do you know a metrics to evaluate prediction on sets of states?
• Do you have datasets to apply GULA/PRIDE on?

Your questions?
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Characterization of Classical Semantics
The three semantics can be detected by checking the following properties.

a b f(a) := not b.
f(b) := not a.

Asynchronous General

00

01 10

11

00

01 10

11

Synchronous

00

01 10

11

Synchronous:
∀(s, s1), (s, s2) ∈ T ,∀s3 ∈ ST , s3 ⊆ s1 ∪ s2 =⇒ (s, s3) ∈ T .
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Characterization of Classical Semantics
The three semantics can be detected by checking the following properties.

a b f(a) := not b.
f(b) := not a.

Asynchronous General
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Asynchronous: ∀(s, s ′) ∈ T , spF→T (s) 6⊆
s ′,
(
(s, s ′′) ∈ T , spF→T (s) ⊆ s ′′ =⇒ (s, s ′) /∈ T

)
∧
(
(s, s ′) ∈ T =⇒

|spF→T (s) \ s ′| = 1
)
.
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Characterization of Classical Semantics
The three semantics can be detected by checking the following properties.

a b f(a) := not b.
f(b) := not a.

Asynchronous General
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Synchronous
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General:
∀(s, s1), (s, s2) ∈ T ,∀s3 ∈ ST , s3 ⊆ spF→T (s) ∪ s1 ∪ s2 =⇒ (s, s3) ∈ T .
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Pseudo-Idempotent Semantics
Definitions:
• AT = all feature atoms
• SF = all states on feature atoms
• ST = all states with target atoms
• Ccl(s, P) = set of heads of rules in P that match s
• PO(P) = optimal program (learned by GULA)

Theorem 2 (Pseudo-idempotent Semantics and Optimal DMVLP)
Let DS be a dynamical semantics.
For all P a DMVLP, if:
∃pick ∈ (SF × ℘(AT )→ ℘(ST ) \ {∅}) so that

1 ∀s ∈ SF ,∀D ⊆ AT , pick(s,
⋃

s′∈pick(s,D)
s ′) = pick(s, D) and

2 ∀s ∈ SF ,
(
DS(P)

)
(s) = pick(s,Ccl(s, P)),

then: for all P a DMVLP, DS(PO(DS(P)))) = DS(P).
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