Bioss-IA 2020 Workshop

GULA: Learning (From Any) Semantics of a Biological Regulatory Network

Maxime FOLSCHETTE http://maxime.folschette.name/ Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Tony RIBEIRO · http://www.tonyribeiro.fr/ Independent Researcher + Laboratoire des Sciences du Numérique de Nantes, 44321 Nantes, France + National Institute of Informatics, Tokyo 101-8430, Japan

Joint work with Morgan MAGNIN (ECN + LS2N + NII) and Katsumi INOUE (NII + SOKENDAI + Tokyo Tech)

2020-11-24

Introduction

Learn interaction rules from the dynamical transitions

- LFIT: synchronous semantics, deterministic (Boolean) [Inoue, Ribeiro, Sakama, Machine Learning Jour., 2014]
- LFkT: synchronous semantics, with memory (Boolean) [Ribeiro, Magnin, Inoue, Sakama, Frontiers in Bioeng. and Biotech., 2015]
- LUST: synchronous semantics, non-deterministic [Martinez, Ribeiro, Inoue, Alenya, Torras, ICLP, 2015.]
- ACEDIA: synchronous semantics, continuous domains [Ribeiro, Tourret, Folschette, +5, *ILP*, 2017]
- GULA: synchronous, asynchronous, general semantics [Ribeiro, Folschette, Magnin, Roux, Inoue, *ILP*, 2018]

Content of this presentation: improvements on GULA

- \rightarrow Define the scope of "learnable" semantics
- \rightarrow Learn the rules of the semantics itself
- \rightarrow ...and more!

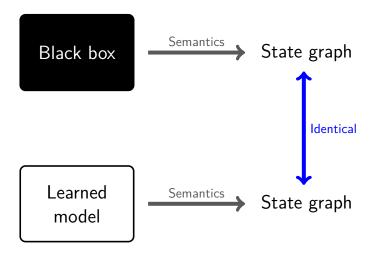
Maxime FOLSCHETTE, Tony RIBEIRO

GULA: Learning (From Any) Semantics of a BRN o Introduction

Introduction

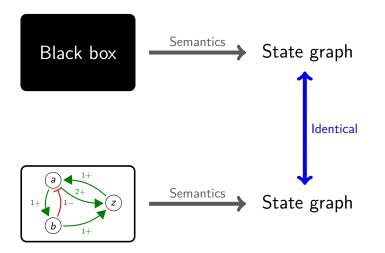
Maxime FOLSCHETTE, Tony RIBEIRO

Introduction



Maxime FOLSCHETTE, Tony RIBEIRO

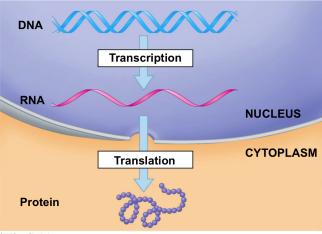
Introduction



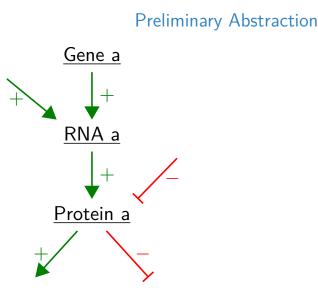
Discrete Networks

Maxime FOLSCHETTE, Tony RIBEIRO

Preliminary Abstraction

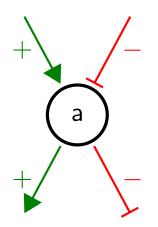


@ 2012 Pearson Education, Inc.

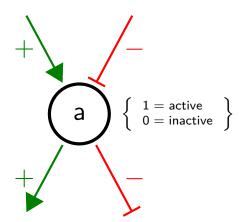


Maxime FOLSCHETTE, Tony RIBEIRO

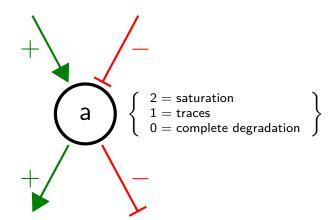
Preliminary Abstraction



Preliminary Abstraction



Preliminary Abstraction



Discrete Networks / Thomas Modeling

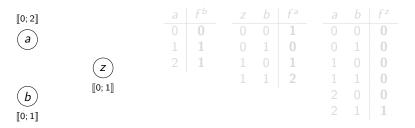
[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [0; 2]
- Discrete parameters / evolution functions $f^a: \mathcal{S} \to \mathsf{dom}(a)$
- Signs & thresholds on the edges (redundant) $a \xrightarrow{2+} z$

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

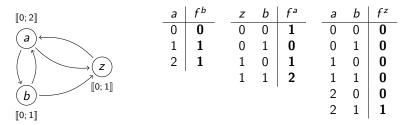
- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [0; 2]
- Discrete parameters / evolution functions $f^a: \mathcal{S} \to \mathsf{dom}(a)$
- Signs & thresholds on the edges (redundant) $a \xrightarrow{2+} z$



Discrete Networks / Thomas Modeling [Kauffman, Journal of Theoretical Biology, 1969]

[Thomas, Journal of Theoretical Biology, 1973]

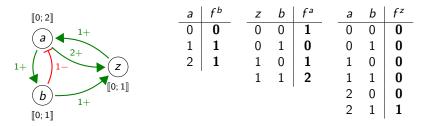
- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [0; 2]
- Discrete parameters / evolution functions $f^a: S \to dom(a)$
- Signs & thresholds on the edges (redundant) $a \stackrel{2+}{\longrightarrow} a$



Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

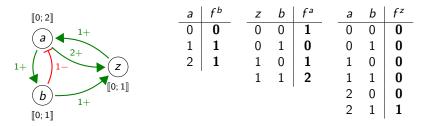
- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [0; 2]
- Discrete parameters / evolution functions $f^a: S \to dom(a)$
- Signs & thresholds on the edges (redundant) $a \xrightarrow{2+} z$



Discrete Networks / Thomas Modeling

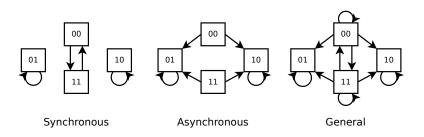
[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [0; 2]
- Discrete parameters / evolution functions $f^a: S \to dom(a)$
- Signs & thresholds on the edges (redundant) $a \xrightarrow{2+} z$



Semantics

State transitions differ according to the update semantics used



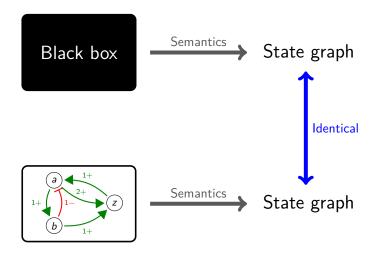
- Synchronous: all variables are updated
- Asynchronous: only one variable is updated
- General: any number of variables can be updated

Maxime FOLSCHETTE, Tony RIBEIRO

Logic Programs

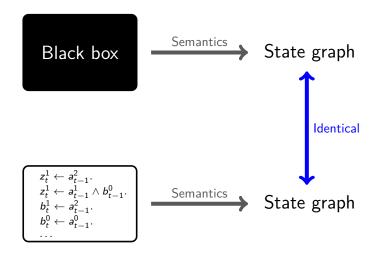
Maxime FOLSCHETTE, Tony RIBEIRO

Principle of the Learning

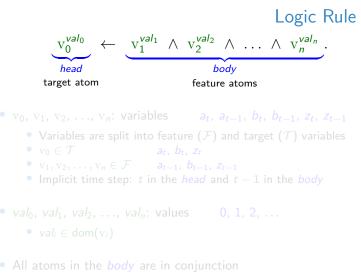


Maxime FOLSCHETTE, Tony RIBEIRO

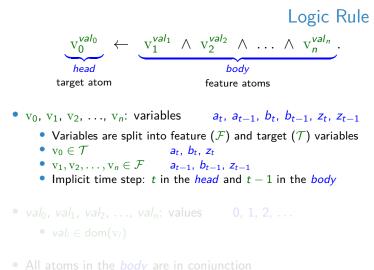
Principle of the Learning



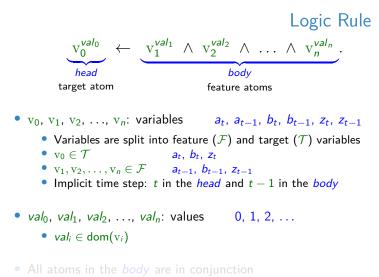
Maxime FOLSCHETTE, Tony RIBEIRO



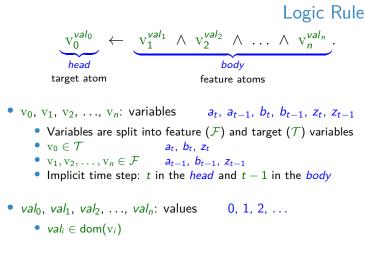
• \leftarrow is the (reverse) implication



• (is the (neverse) impliestion

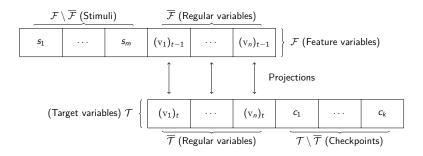


• \leftarrow is the (reverse) implication



- All atoms in the *body* are in conjunction
- \leftarrow is the (reverse) implication

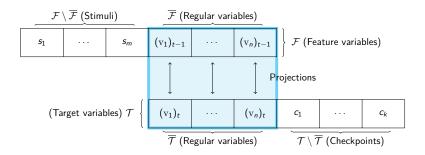
Feature & Target Variables



- Feature variables = causes
- Stimuli = known inputs

- **Target variables** = consequences
- Checkpoints = known outputs

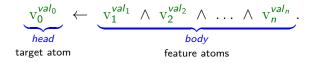
Feature & Target Variables



- Feature variables = causes
- Stimuli = known inputs

- **Target variables** = consequences
- Checkpoints = known outputs

Interpretation of a Logic Rule



Interpretation: When body is true, head is a potential outcome

$$\begin{array}{c} a_t^1 \leftarrow a_{t-1}^2 \wedge b_{t-1}^0 \wedge z_{t-1}^1. \\ \text{Examples:} \quad b_t^1 \leftarrow z_{t-1}^1. \\ z_t^0 \leftarrow \top. \end{array} \right\} \text{ all match } \langle a_{t-1}^2, b_{t-1}^0, z_{t-1}^1 \rangle$$

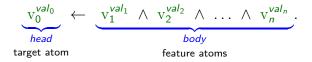
A rule *R* matches a state *s* iff $body \subseteq s$

Interpretation: When a state **matches** a rule, the rule's *head* becomes a **candidate** for the next state

Semantics = From this information, what are the next possible state(s)? (Similar to discrete networks)

Maxime FOLSCHETTE, Tony RIBEIRO

Interpretation of a Logic Rule



Interpretation: When *body* is true, *head* is a potential outcome

 $\begin{array}{c} a_t^1 \leftarrow a_{t-1}^2 \wedge b_{t-1}^0 \wedge z_{t-1}^1. \\ \text{Examples:} \quad b_t^1 \leftarrow z_{t-1}^1. \\ z_t^0 \leftarrow \top. \end{array} \right\} \text{ all match } \langle a_{t-1}^2, b_{t-1}^0, z_{t-1}^1 \rangle$

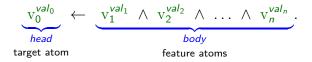
A rule *R* matches a state *s* iff $body \subseteq s$

Interpretation: When a state **matches** a rule, the rule's *head* becomes a **candidate** for the next state

Semantics = From this information, what are the next possible state(s)? (Similar to discrete networks)

Maxime FOLSCHETTE, Tony RIBEIRO

Interpretation of a Logic Rule



Interpretation: When *body* is true, *head* is a potential outcome

$$\left. \begin{array}{c} a_t^1 \leftarrow a_{t-1}^2 \wedge b_{t-1}^0 \wedge z_{t-1}^1. \\ \text{Examples:} \quad b_t^1 \leftarrow z_{t-1}^1. \\ z_t^0 \leftarrow \top. \end{array} \right\} \text{ all match } \langle a_{t-1}^2, b_{t-1}^0, z_{t-1}^1 \rangle$$

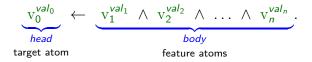
A rule *R* matches a state *s* iff $body \subseteq s$

Interpretation: When a state **matches** a rule, the rule's *head* becomes a **candidate** for the next state

Semantics = From this information, what are the next possible state(s)? (Similar to discrete networks)

Maxime FOLSCHETTE, Tony RIBEIRO

Interpretation of a Logic Rule



Interpretation: When *body* is true, *head* is a potential outcome

$$\left. \begin{array}{c} a_t^1 \leftarrow a_{t-1}^2 \wedge b_{t-1}^0 \wedge z_{t-1}^1. \\ \text{Examples:} \quad b_t^1 \leftarrow z_{t-1}^1. \\ z_t^0 \leftarrow \top. \end{array} \right\} \text{ all match } \langle a_{t-1}^2, b_{t-1}^0, z_{t-1}^1 \rangle$$

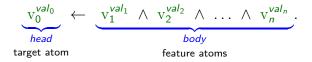
A rule *R* matches a state *s* iff $body \subseteq s$

Interpretation: When a state **matches** a rule, the rule's *head* becomes a **candidate** for the next state

Semantics = From this information, what are the next possible state(s)? (Similar to discrete networks)

Maxime FOLSCHETTE, Tony RIBEIRO

Interpretation of a Logic Rule



Interpretation: When *body* is true, *head* is a potential outcome

$$\begin{array}{c} \left. \begin{array}{c} a_t^1 \leftarrow a_{t-1}^2 \wedge b_{t-1}^0 \wedge z_{t-1}^1 \\ \\ \mathsf{Examples:} \quad b_t^1 \leftarrow z_{t-1}^1 \\ z_t^0 \leftarrow \top \end{array} \right\} \text{ all match } \left\langle a_{t-1}^2, b_{t-1}^0, z_{t-1}^1 \right\rangle$$

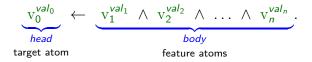
A rule *R* matches a state *s* iff $body \subseteq s$

Interpretation: When a state **matches** a rule, the rule's *head* becomes a **candidate** for the next state

Semantics = From this information, what are the next possible state(s)? (Similar to discrete networks)

Maxime FOLSCHETTE, Tony RIBEIRO

Interpretation of a Logic Rule



Interpretation: When *body* is true, *head* is a potential outcome

$$\begin{array}{c} \left. \begin{array}{c} a_t^1 \leftarrow a_{t-1}^2 \wedge b_{t-1}^0 \wedge z_{t-1}^1 \\ \\ \mathsf{Examples:} \quad b_t^1 \leftarrow z_{t-1}^1 \\ z_t^0 \leftarrow \top \end{array} \right\} \text{ all match } \left\langle a_{t-1}^2, b_{t-1}^0, z_{t-1}^1 \right\rangle$$

A rule *R* matches a state *s* iff $body \subseteq s$

Interpretation: When a state **matches** a rule, the rule's *head* becomes a **candidate** for the next state

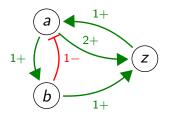
Semantics = From this information, what are the next possible state(s)? (Similar to discrete networks)

Maxime FOLSCHETTE, Tony RIBEIRO

Discrete Model as a Logic Program

Discrete model:

Logic program:



+ Discrete parameters or evolution functions

$$b_t^1 \leftarrow a_{t-1}^1.$$
$$b_t^1 \leftarrow a_{t-1}^2.$$
$$b_t^0 \leftarrow a_{t-1}^0.$$

$$\begin{aligned} z_t^1 &\leftarrow a_{t-1}^2 \wedge b_{t-1}^1 \\ z_t^0 &\leftarrow a_{t-1}^0 \\ z_t^0 &\leftarrow a_{t-1}^1 \\ z_t^0 &\leftarrow a_{t-1}^1 \\ z_t^0 &\leftarrow b_{t-1}^0 . \end{aligned}$$

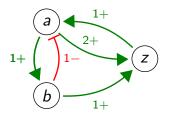
etc..

Maxime FOLSCHETTE, Tony RIBEIRO

Discrete Model as a Logic Program

Discrete model:

Logic program:



+ Discrete parameters or evolution functions

$$egin{aligned} b_t^1 &\leftarrow a_{t-1}^1.\ b_t^1 &\leftarrow a_{t-1}^2.\ b_t^0 &\leftarrow a_{t-1}^0. \end{aligned}$$

$$\begin{aligned} z_t^1 &\leftarrow a_{t-1}^2 \wedge b_{t-1}^1 \\ z_t^0 &\leftarrow a_{t-1}^0 \\ z_t^0 &\leftarrow a_{t-1}^1 \\ z_t^0 &\leftarrow b_{t-1}^1 . \end{aligned}$$

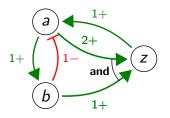
etc..

Maxime FOLSCHETTE, Tony RIBEIRO

Discrete Model as a Logic Program

Discrete model:

Logic program:



+ Discrete parameters or evolution functions

$$egin{aligned} b_t^1 &\leftarrow a_{t-1}^1.\ b_t^1 &\leftarrow a_{t-1}^2.\ b_t^0 &\leftarrow a_{t-1}^0. \end{aligned}$$

$$egin{aligned} & z_t^1 \leftarrow a_{t-1}^2 \wedge b_{t-1}^1, \ & z_t^0 \leftarrow a_{t-1}^0, \ & z_t^0 \leftarrow a_{t-1}^1, \ & z_t^0 \leftarrow a_{t-1}^1. \ & z_t^0 \leftarrow b_{t-1}^0. \end{aligned}$$

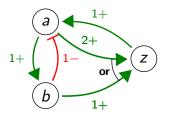
etc..

Maxime FOLSCHETTE, Tony RIBEIRO

Discrete Model as a Logic Program

Discrete model:

Logic program:



+ Discrete parameters or evolution functions

$$\begin{split} & z_t^1 \leftarrow a_{t-1}^2. \\ & z_t^1 \leftarrow b_{t-1}^1. \\ & z_t^0 \leftarrow a_{t-1}^1 \wedge b_{t-1}^0. \\ & z_t^0 \leftarrow a_{t-1}^0 \wedge b_{t-1}^0. \end{split}$$

etc..

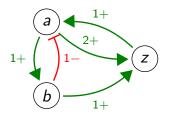
Maxime FOLSCHETTE, Tony RIBEIRO

GULA: Learning (From Any) Semantics of a BRN o Logic Programs

Discrete Model as a Logic Program

Discrete model:

Logic program:



+ Discrete parameters or evolution functions

$$\begin{split} & z_t^1 \leftarrow a_{t-1}^2. \\ & z_t^1 \leftarrow b_{t-1}^1. \\ & z_t^0 \leftarrow a_{t-1}^1 \wedge b_{t-1}^0. \\ & z_t^0 \leftarrow a_{t-1}^0 \wedge b_{t-1}^0. \end{split}$$

etc...

Maxime FOLSCHETTE, Tony RIBEIRO

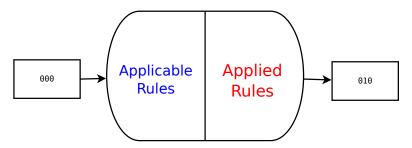
13/36

Learning

Maxime FOLSCHETTE, Tony RIBEIRO

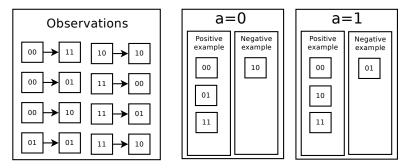
Semantics-Free Learning

Semantics = computing the next state by selecting, among applicable local rules, the ones that will be applied.



Learning Intuition: Classification Problem

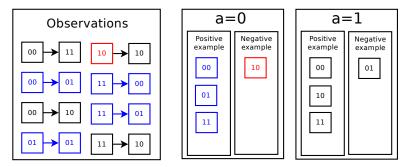
What is an applicable rule? The **conditions** so that a variable **can** take a certain value in next state.



Equivalent to a **classification problem**: for each variable value, what is a **typical state** where the variable **can** take this value in the next state ?

Learning Intuition: Classification Problem

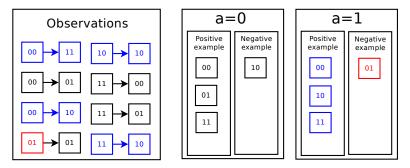
What is an applicable rule? The **conditions** so that a variable **can** take a certain value in next state.



Equivalent to a **classification problem**: for each variable value, what is a **typical state** where the variable **can** take this value in the next state ?

Learning Intuition: Classification Problem

What is an applicable rule? The **conditions** so that a variable **can** take a certain value in next state.



Equivalent to a **classification problem**: for each variable value, what is a **typical state** where the variable **can** take this value in the next state ?

GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions (feature \rightarrow target)

Output: a program that respects:

- Consistency: the program allows no negative examples
- Realization: the program covers all positive examples
- **Completeness**: the program covers all the state space
- **minimality** of the rules (most general bodies)

Method: start from most general rules and specialize iteratively.

Least Specialization

Ensure consistency of a rule: $\underbrace{v_0^{val_0}}_{head} \leftarrow \underbrace{v_1^{val_1} \land v_2^{val_2} \land \ldots \land v_n^{val_n}}_{body}.$

→ Used when a rule matches a negative example s: $body \subseteq s$. → Add **one** condition to body that prevents matching s.

Examples:

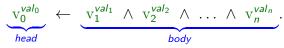
 $\begin{array}{c} a_t^1 \leftarrow \top \\ b_t^0 \leftarrow a_{t-1}^0, \\ ch^2 \leftarrow a_{t-1}^0 \wedge b_{t-1}^1 \wedge st^1. \end{array} \right) \quad \text{all match } \langle a_{t-1}^0, b_{t-1}^1, st^1 \rangle \\ \rightarrow \text{ how to specialize each one?} \end{array}$

Suppose dom $(a_{t-1}) = dom(b_{t-1}) = \{0,1\}$ and dom $(st) = \{0,1,2\}$.

The Least Specialization of $a_t^1 \leftarrow \top$. is: $\rightarrow \{ a_t^1 \leftarrow a_{t-1}^1, ; a_t^1 \leftarrow b_{t-1}^0, ; a_t^1 \leftarrow st^0, ; a_t^1 \leftarrow st^2, \}$

Least Specialization

Ensure consistency of a rule:



→ Used when a rule matches a negative example s: $body \subseteq s$. → Add **one** condition to body that prevents matching s.

Examples:

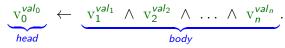
 $\begin{array}{c} a_t^1 \leftarrow \top, \\ b_t^0 \leftarrow a_{t-1}^0, \\ ch^2 \leftarrow a_{t-1}^0 \wedge b_{t-1}^1 \wedge st^1. \end{array} \right) \quad \text{all match } \langle a_{t-1}^0, b_{t-1}^1, st^1 \rangle \\ \rightarrow \text{ how to specialize each one?} \end{array}$

Suppose dom $(a_{t-1}) = dom(b_{t-1}) = \{0,1\}$ and dom $(st) = \{0,1,2\}$.

The Least Specialization of $a_t^1 \leftarrow \top$. is: $\rightarrow \{ a_t^1 \leftarrow a_{t-1}^1, ; a_t^1 \leftarrow b_{t-1}^0, ; a_t^1 \leftarrow st^0, ; a_t^1 \leftarrow st^2, \}$

Least Specialization

Ensure consistency of a rule:



→ Used when a rule matches a negative example *s*: $body \subseteq s$. → Add **one** condition to body that prevents matching *s*.

Examples:

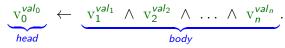
 $\left.\begin{array}{l} a_t^1 \leftarrow \top. \\ b_t^0 \leftarrow a_{t-1}^0. \\ ch^2 \leftarrow a_{t-1}^0 \wedge b_{t-1}^1 \wedge st^1. \end{array}\right\} \quad \text{all match } \langle a_{t-1}^0, b_{t-1}^1, st^1 \rangle \\ \rightarrow \text{ how to specialize each one?} \end{array}\right\}$

Suppose dom $(a_{t-1}) = dom(b_{t-1}) = \{0,1\}$ and dom $(st) = \{0,1,2\}$.

The Least Specialization of $a_t^1 \leftarrow \top$. is: $\rightarrow \{ a_t^1 \leftarrow a_{t-1}^1, ; a_t^1 \leftarrow b_{t-1}^0, ; a_t^1 \leftarrow st^0, ; a_t^1 \leftarrow st^2, \}$

Least Specialization

Ensure consistency of a rule:



- \rightarrow Used when a rule matches a negative example s: $body \subseteq s$.
- \rightarrow Add **one** condition to *body* that prevents matching *s*.

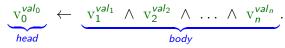
Examples:

$$\left. \begin{array}{l} a_t^1 \leftarrow \top .\\ b_t^0 \leftarrow a_{t-1}^0 .\\ ch^2 \leftarrow a_{t-1}^0 \wedge b_{t-1}^1 \wedge st^1 . \end{array} \right\} \quad \text{all match } \langle a_{t-1}^0, b_{t-1}^1, st^1 \rangle \\ \rightarrow \text{ how to specialize each one?} \end{array} \right\}$$

Suppose dom $(a_{t-1}) = dom(b_{t-1}) = \{0,1\}$ and dom $(st) = \{0,1,2\}$.

Least Specialization

Ensure consistency of a rule:



- \rightarrow Used when a rule matches a negative example s: body \subseteq s.
- \rightarrow Add **one** condition to *body* that prevents matching *s*.

Examples:

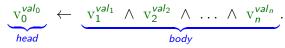
$$\left.\begin{array}{l} a_t^1 \leftarrow \top .\\ b_t^0 \leftarrow a_{t-1}^0 .\\ ch^2 \leftarrow a_{t-1}^0 \wedge b_{t-1}^1 \wedge st^1 . \end{array}\right\} \quad \text{all match } \langle a_{t-1}^0, b_{t-1}^1, st^1 \rangle \\ \rightarrow \text{ how to specialize each one?} \end{array}\right\}$$

Suppose dom $(a_{t-1}) = dom(b_{t-1}) = \{0,1\}$ and dom $(st) = \{0,1,2\}$.

The Least Specialization of $b_t^0 \leftarrow a_{t-1}^0$. is: $\rightarrow \{ b_t^0 \leftarrow a_{t-1}^0 \land b_{t-1}^0, ; b_t^0 \leftarrow a_{t-1}^0 \land st^0, ; b_t^0 \leftarrow a_{t-1}^0 \land st^2. \}$

Least Specialization

Ensure consistency of a rule:



- \rightarrow Used when a rule matches a negative example s: $body \subseteq s$.
- \rightarrow Add **one** condition to *body* that prevents matching *s*.

Examples:

$$\left. \begin{array}{l} a_t^1 \leftarrow \top. \\ b_t^0 \leftarrow a_{t-1}^0. \\ ch^2 \leftarrow a_{t-1}^0 \wedge b_{t-1}^1 \wedge st^1. \end{array} \right\} \quad \text{all match } \langle a_{t-1}^0, b_{t-1}^1, st^1 \rangle \\ \rightarrow \text{ how to specialize each one?} \end{array} \right\}$$

Suppose dom $(a_{t-1}) = dom(b_{t-1}) = \{0,1\}$ and dom $(st) = \{0,1,2\}$.

The Least Specialization of $ch^2 \leftarrow a^0_{t-1} \wedge b^1_{t-1}, st^1$. is: $\rightarrow \quad \emptyset$

GULA: General Usage LFIT Algorithm

<u>GULA:</u> INPUT: a set of transitions *T*. Initialize $P = \emptyset$ For each existing target atom v^{val}

- Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$
- Initialize $P_{\mathbf{v}^{\textit{val}}} := \{ \mathbf{v}^{\textit{val}} \leftarrow \top . \}$
- For each state $s \in \mathit{Neg}_{v^{val}}$
 - Replace each rule that matches s by its least specializations
 - Remove all dominated rules, that is, that are not the most general: head(R) = head(R') and body(R) ⊆ body(R')

•
$$P := P \cup P_{v^{val}}$$

OUTPUT: $P_{\mathcal{O}}(T) := P$ the optimal program of T.

Formally proved: Compatible with transitions generated in **synchronous**, **asynchronous** and **general** semantics.

Also proved: Compatible with a wider class of "learnable" semantics.

<u>GULA</u>: INPUT: a set of transitions T. Initialize $P = \emptyset$

For each existing target atom v^{va}

- Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$
- Initialize $P_{\mathbf{v}^{\textit{val}}} := \{ \mathbf{v}^{\textit{val}} \leftarrow \top . \}$
- For each state $s \in \mathit{Neg}_{v^{val}}$
 - Replace each rule that matches *s* by its least specializations
 - Remove all dominated rules, that is, that are not the most general: head(R) = head(R') and $body(R) \subseteq body(R')$

•
$$P := P \cup P_{v^{val}}$$

OUTPUT: $P_{\mathcal{O}}(T) := P$ the optimal program of T.

Formally proved: Compatible with transitions generated in **synchronous**, **asynchronous** and **general** semantics.

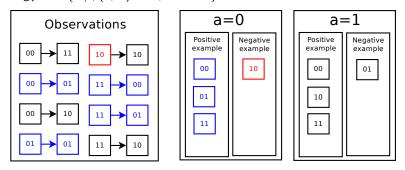
Also proved: Compatible with a wider class of "learnable" semantics.

<u>GULA:</u> INPUT: a set of transitions *T*.

Initialize $P = \emptyset$

For each existing target atom v^{val}

 Extract all states from which no transition to v^{val} exist: Neg_{v^{val}} := {s | ∄(s, s') ∈ T, v^{val} ∈ s'}



<u>GULA:</u> INPUT: a set of transitions *T*.

Initialize $P = \emptyset$

For each existing target atom v^{val}

- Extract all states from which no transition to v^{val} exist: Neg_{v^{val}} := {s | ∄(s, s') ∈ T, v^{val} ∈ s'}
- Initialize $P_{\mathbf{v}^{\textit{val}}} := \{ \mathbf{v}^{\textit{val}} \leftarrow \top . \}$
- For each state $s \in \mathit{Neg}_{v^{val}}$
 - Replace each rule that matches *s* by its least specializations
 - Remove all dominated rules, that is, that are not the most general: head(R) = head(R') and $body(R) \subseteq body(R')$

•
$$P := P \cup P_{v^{val}}$$

OUTPUT: $P_{\mathcal{O}}(T) := P$ the optimal program of T.

Formally proved: Compatible with transitions generated in **synchronous**, **asynchronous** and **general** semantics.

Also proved: Compatible with a wider class of "learnable" semantics.

<u>GULA:</u> INPUT: a set of transitions *T*.

Initialize $P = \emptyset$

For each existing target atom v^{val}

- Extract all states from which no transition to v^{val} exist: Neg_{v^{val}} := {s | ∄(s, s') ∈ T, v^{val} ∈ s'}
- Initialize $P_{\mathbf{v}^{\textit{val}}} := \{ \mathbf{v}^{\textit{val}} \leftarrow \top . \}$
- For each state $s \in \mathit{Neg}_{v^{val}}$
 - Replace each rule that matches s by its least specializations
 - Remove all dominated rules, that is, that are not the most general: head(R) = head(R') and $body(R) \subseteq body(R')$
- $P := P \cup P_{v^{val}}$

OUTPUT: $P_{\mathcal{O}}(T) := P$ the optimal program of T.

Formally proved: Compatible with transitions generated in **synchronous**, **asynchronous** and **general** semantics.

Also proved: Compatible with a wider class of "learnable" semantics.

<u>GULA:</u> INPUT: a set of transitions *T*.

Initialize $P = \emptyset$

For each existing target atom v^{val}

- Extract all states from which no transition to v^{val} exist: Neg_{v^{val}} := {s | ∄(s, s') ∈ T, v^{val} ∈ s'}
- Initialize $P_{\mathbf{v}^{\textit{val}}} := \{ \mathbf{v}^{\textit{val}} \leftarrow \top . \}$
- For each state $s \in \mathit{Neg}_{v^{val}}$
 - Replace each rule that matches s by its least specializations
 - Remove all dominated rules, that is, that are not the most general: head(R) = head(R') and $body(R) \subseteq body(R')$
- $P := P \cup P_{v^{val}}$

OUTPUT: $P_{\mathcal{O}}(T) := P$ the optimal program of T.

Formally proved: Compatible with transitions generated in **synchronous**, **asynchronous** and **general** semantics.

Also proved: Compatible with a wider class of "learnable" semantics.

<u>GULA:</u> INPUT: a set of transitions *T*.

Initialize $P = \emptyset$

For each existing target atom v^{val}

- Extract all states from which no transition to v^{val} exist: Neg_{v^{val}} := {s | ∄(s, s') ∈ T, v^{val} ∈ s'}
- Initialize $P_{\mathbf{v}^{\textit{val}}} := \{ \mathbf{v}^{\textit{val}} \leftarrow \top . \}$
- For each state $s \in \mathit{Neg}_{v^{val}}$
 - Replace each rule that matches s by its least specializations
 - Remove all dominated rules, that is, that are not the most general: head(R) = head(R') and $body(R) \subseteq body(R')$
- $P := P \cup P_{v^{val}}$

OUTPUT: $P_{\mathcal{O}}(T) := P$ the optimal program of T.

Formally proved: Compatible with transitions generated in **synchronous**, **asynchronous** and **general** semantics.

Also proved: Compatible with a wider class of "learnable" semantics.

<u>GULA:</u> INPUT: a set of transitions *T*.

Initialize $P = \emptyset$

For each existing target atom v^{val}

- Extract all states from which no transition to v^{val} exist: Neg_{v^{val}} := {s | ∄(s, s') ∈ T, v^{val} ∈ s'}
- Initialize $P_{\mathbf{v}^{\textit{val}}} := \{ \mathbf{v}^{\textit{val}} \leftarrow \top . \}$
- For each state $s \in \mathit{Neg}_{v^{val}}$
 - Replace each rule that matches s by its least specializations
 - Remove all dominated rules, that is, that are not the most general: head(R) = head(R') and $body(R) \subseteq body(R')$
- $P := P \cup P_{v^{val}}$

OUTPUT: $P_{\mathcal{O}}(T) := P$ the optimal program of T.

Formally proved: Compatible with transitions generated in **synchronous**, **asynchronous** and **general** semantics.

Also proved: Compatible with a wider class of "learnable" semantics.

<u>GULA:</u> INPUT: a set of transitions *T*.

Initialize $P = \emptyset$

For each existing target atom v^{val}

- Extract all states from which no transition to v^{val} exist: Neg_{v^{val}} := {s | ∄(s, s') ∈ T, v^{val} ∈ s'}
- Initialize $P_{\mathbf{v}^{\textit{val}}} := \{ \mathbf{v}^{\textit{val}} \leftarrow \top . \}$
- For each state $s \in \mathit{Neg}_{v^{val}}$
 - Replace each rule that matches s by its least specializations
 - Remove all dominated rules, that is, that are not the most general: head(R) = head(R') and $body(R) \subseteq body(R')$

•
$$P := P \cup P_{v^{val}}$$

OUTPUT: $P_{\mathcal{O}}(T) := P$ the optimal program of T.

Formally proved: Compatible with transitions generated in **synchronous**, **asynchronous** and **general** semantics.

Also proved: Compatible with a wider class of "learnable" semantics.

<u>GULA:</u> INPUT: a set of transitions *T*.

Initialize $P = \emptyset$

For each existing target atom v^{val}

- Extract all states from which no transition to v^{val} exist: Neg_{v^{val}} := {s | ∄(s, s') ∈ T, v^{val} ∈ s'}
- Initialize $P_{\mathbf{v}^{\textit{val}}} := \{ \mathbf{v}^{\textit{val}} \leftarrow \top . \}$
- For each state $s \in \mathit{Neg}_{v^{val}}$
 - Replace each rule that matches s by its least specializations
 - Remove all dominated rules, that is, that are not the most general: head(R) = head(R') and $body(R) \subseteq body(R')$

•
$$P := P \cup P_{v^{val}}$$

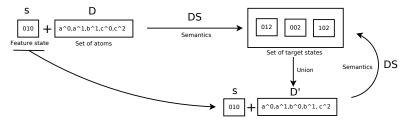
OUTPUT: $P_{\mathcal{O}}(T) := P$ the optimal program of T.

Formally proved: Compatible with transitions generated in **synchronous**, **asynchronous** and **general** semantics.

Also proved: Compatible with a wider class of "learnable" semantics.

 \rightarrow Consider a function DS that maps a feature state and a set of target atoms to a set of target states

 \rightarrow Such that given the same state and the union of its output, it produces the same result (pseudo-indempotent)



ightarrow A program gives possible target values (D

ightarrow A semantics gives which combinations are possible (DS(s,D))

 \rightarrow If the semantics produces the same states given those local values, then **GULA** learns a programs equivalent to the original one under this semantics:

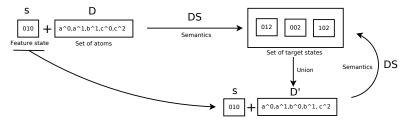
$DS(s, D) = DS(s, D') \implies DS(P) = DS(GULA(DS(P)))$

Maxime FOLSCHETTE, Tony RIBEIRO

20/36

 \rightarrow Consider a function DS that maps a feature state and a set of target atoms to a set of target states

 \rightarrow Such that given the same state and the union of its output, it produces the same result (pseudo-indempotent)



 \rightarrow A program gives possible target values (D)

 \rightarrow A semantics gives which combinations are possible (DS(s, D)) \rightarrow If the semantics produces the same states given those local value

then **GULA** learns a programs equivalent to the original one under this semantics:

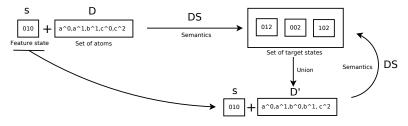
$DS(s, D) = DS(s, D') \implies DS(P) = DS(GULA(DS(P)))$

Maxime FOLSCHETTE, Tony RIBEIRO

20/36

 \rightarrow Consider a function DS that maps a feature state and a set of target atoms to a set of target states

 \rightarrow Such that given the same state and the union of its output, it produces the same result (pseudo-indempotent)



 \rightarrow A program gives possible target values (D)

 \rightarrow A semantics gives which combinations are possible (DS(s, D))

 \rightarrow If the semantics produces the same states given those local values, then **GULA** learns a programs equivalent to the original one under this semantics:

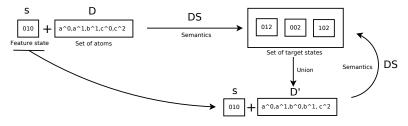
$DS(s,D) = DS(s,D') \implies DS(P) = DS(GULA(DS(P)))$

Maxime FOLSCHETTE, Tony RIBEIRO

20/36

 \rightarrow Consider a function DS that maps a feature state and a set of target atoms to a set of target states

 \rightarrow Such that given the same state and the union of its output, it produces the same result (pseudo-indempotent)



- \rightarrow A program gives possible target values (D)
- \rightarrow A semantics gives which combinations are possible (DS(s, D))

 \rightarrow If the semantics produces the same states given those local values, then GULA learns a programs equivalent to the original one under this semantics:

$$DS(s,D) = DS(s,D') \implies DS(P) = DS(GULA(DS(P)))$$

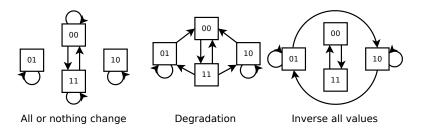
Maxime FOLSCHETTE, Tony RIBEIRO

Learning Semantics

Maxime FOLSCHETTE, Tony RIBEIRO

What if we don't know the semantics?

Three examples of arbitrary semantics:

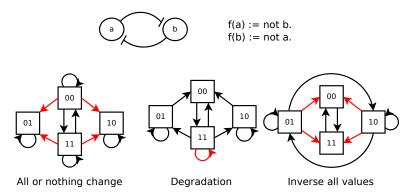


How can we learn a program able to reproduce such behavior?

Maxime FOLSCHETTE, Tony RIBEIRO

What is impossible?

If we use the program learned by **GULA** with the synchronous semantics, we observe spurious transitions, which were not in the observations:



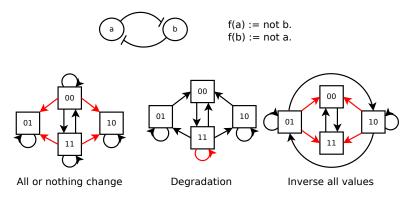
How to prevent these impossible transitions?

We need "impossibility rules": constraints!

Maxime FOLSCHETTE, Tony RIBEIRO

What is impossible?

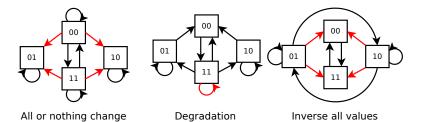
If we use the program learned by **GULA** with the synchronous semantics, we observe spurious transitions, which were not in the observations:



How to prevent these impossible transitions? We need "impossibility rules": constraints!

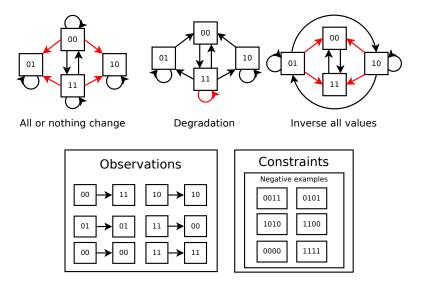
Maxime FOLSCHETTE, Tony RIBEIRO

Classification Modeling of Impossibility



Maxime FOLSCHETTE, Tony RIBEIRO

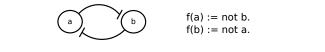
Classification Modeling of Impossibility

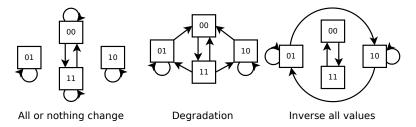


Maxime FOLSCHETTE, Tony RIBEIRO

Learning Any Semantics Dynamics

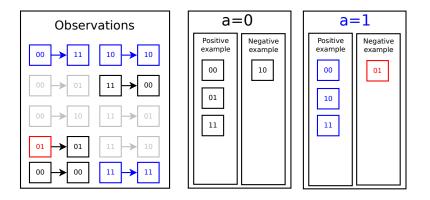
• INPUT: T, a set of transitions produced using any semantics.





Learning Any Semantics Dynamics

- **INPUT:** *T*, a set of transitions produced using **any semantics**.
- From *T*, learn a program *P* using GULA: gives local influences and possible values of each variables (including spurious transitions)

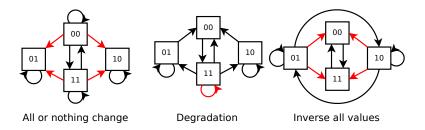


Learning Any Semantics Dynamics

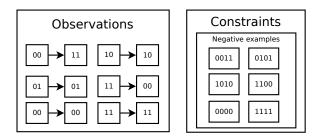
- INPUT: T, a set of transitions produced using any semantics.
- From *T*, learn a program *P* using GULA: gives local influences and possible values of each variables (including spurious transitions)

```
\begin{array}{l} a := not \ b \\ a(0,T) := b(1,T-1). \\ a(1,T) := b(0,T-1). \\ b := not \ a \\ b(0,T) := a(1,T-1). \\ b(1,T) := a(0,T-1). \\ Conservation rules \\ a(0,T) := a(0,T-1). \\ a(1,T) := a(1,T-1). \\ b(0,T) := b(0,T-1). \\ b(1,T) := b(1,T-1). \end{array}
```

- **INPUT:** *T*, a set of transitions produced using **any semantics**.
- From *T*, learn a program *P* using GULA: gives local influences and possible values of each variables (including spurious transitions)
- Encode T into negative examples of constraint matching



- **INPUT:** *T*, a set of transitions produced using **any semantics**.
- From *T*, learn a program *P* using GULA: gives local influences and possible values of each variables (including spurious transitions)
- Encode T into negative examples of constraint matching

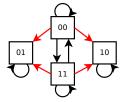


- **INPUT:** *T*, a set of transitions produced using **any semantics**.
- From *T*, learn a program *P* using GULA: gives local influences and possible values of each variables (including spurious transitions)
- Encode T into negative examples of constraint matching
- Learn a program *P'* using GULA from this encoding: *P'* contains all minimal constraints covering impossible transitions

- **INPUT:** *T*, a set of transitions produced using **any semantics**.
- From *T*, learn a program *P* using GULA: gives local influences and possible values of each variables (including spurious transitions)
- Encode *T* into negative examples of constraint matching
- Learn a program *P'* using GULA from this encoding: *P'* contains all minimal constraints covering impossible transitions
- Discard in P' inapplicable constraints according to P

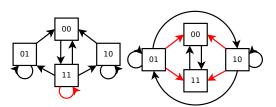
- **INPUT:** *T*, a set of transitions produced using **any semantics**.
- From *T*, learn a program *P* using GULA: gives local influences and possible values of each variables (including spurious transitions)
- Encode T into negative examples of constraint matching
- Learn a program *P'* using GULA from this encoding: *P'* contains all minimal constraints covering impossible transitions
- Discard in P' inapplicable constraints according to P
- **OUTPUT:** *P* ∪ *P*′ which exactly reproduces *T*, under the constrained synchronous semantics

Examples of learned programs



All or nothing change

a := not ba(0,T) := b(1,T-1).a(1,T) := b(0,T-1).b := not ab(0,T) := a(1,T-1).b(1,T) := a(0,T-1).Conservation rules a(0,T) :- a(0,T-1). a(1,T) := a(1,T-1).b(0,T) := b(0,T-1).b(1,T) := b(1,T-1).Constraints :- a(0,T), b(1,T), b(0,T-1). :- a(1,T), b(0,T), a(0,T-1). :- a(1,T), b(0,T), b(1,T-1). :- a(0,T), b(1,T), a(1,T-1).



Degradation

```
\begin{array}{l} a := not \ b \\ a(0,T) := b(1,T-1). \\ a(1,T) := b(0,T-1). \\ b := not \ a \\ b(0,T) := a(1,T-1). \\ b(1,T) := a(0,T-1). \\ Conservation rules \\ a(1,T) := a(1,T-1). \\ b(1,T) := b(1,T-1). \\ b(1,T) := b(1,T-1). \\ b(0,T) := a(1,T-1). \\ b(0,T) := b(1,T-1). \\ b(0,T) := b(1,T-1). \\ Constraints \\ := a(1,T), b(1,T), a(1,T-1). \end{array}
```

Inverse all values

```
a := not b
a(0,T) := b(1,T-1).
a(1,T) := b(0,T-1).
b := not a
b(0,T) := a(1,T-1).
b(1,T) := a(0,T-1).
Inverse value
a(0,T) := a(1,T-1).
a(1,T) := a(0,T-1).
b(0,T) := b(1,T-1).
b(1,T) := b(0,T-1).
Constraints
:- a(1,T), b(1,T), a(1,T-1).
:- a(0,T), b(0,T), a(0,T-1).
:- a(1,T), b(1,T), b(1,T-1).
:- a(0,T), b(0,T), b(0,T-1).
  Bioss-IA 2020 — 2020-11-24
```

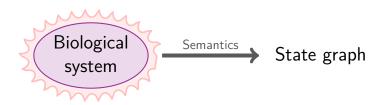
Learning Time Series

Maxime FOLSCHETTE, Tony RIBEIRO

Potential Usage

Maxime FOLSCHETTE, Tony RIBEIRO

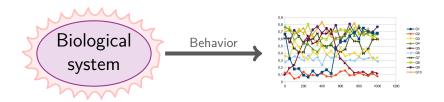
Potential Usage



Maxime FOLSCHETTE, Tony RIBEIRO

GULA: Learning (From Any) Semantics of a BRN o Learning Time Series

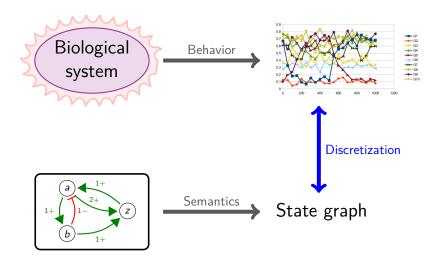
Potential Usage



Maxime FOLSCHETTE, Tony RIBEIRO

GULA: Learning (From Any) Semantics of a BRN o Learning Time Series

Potential Usage



Maxime FOLSCHETTE, Tony RIBEIRO

Scalability of GULA

Run time of **GULA** for 9 to 18 nodes Boolean networks for the three semantics: run time in seconds for 25%/50%/75%/100% of the transitions as input, and total number of transitions.

Benchmark	size	synchronous	asynchronous	general
arellano_rootstem	9	2s/1.8s/0.9s/0.3s/512	2.4s/1.4s/1.1s/0.2s/1,940	1.1s/0.5s/0.3s/0.3s/11K
davidich_yeast	10	16s/10s/4s/0.6s/1,024	12s/6s/4s/0.5s/4,364	3s/1.5s/1s/0.9s/39K
faure_cellcycle	10	15s/10s/4s/0.8s/1,024	12s/5.6s/4.7s/0.6s/4,273	4s/1.2s/0.9s/0.9s/31K
fission_yeast	10	16s/10s/4.8s/0.8s/1,024	12s/5.8s/4.6s/0.4s/4,157	3.6s/1.2s/1s/0.8s/34K
mammalian	10	14.8s/11s/4.8s/0.8s/1,024	12s/5.7s/3.4s/0.6s/4,273	3.4s/1.4s/1s/0.9s/31K
budding_yeast	12	564s/194s/61s/3.7s/4,096	216s/107s/85s/2.6s/20K	51s/14s/5.9s/4.1s/260K
n12c5	12	468s/200s/64s/2.8s/4,096	213s/103s/144s/1.3s/30K	4.7s/6s/8.6s/11s/1,122K
tournier_apoptosis	12	369s/164s/54s/2.7s/4,096	199s/98s/94s/2s/22K	26s/6.7s/4.6s/4.6s/358K
dinwoodie_stomatal	13	-/748s/221s/6.1s/8,192	-/548s/628s/4s/53K	70s/18s/15s/18s/1.5M
multivalued	13	-/-/406s/6s/8,192	-/565s/765s/4.9s/49K	61s/18s/13s/13s/1M
saadatpour_guardcell	13	-/757s/219s/6s/8,192	-/575s/638s/4.2s/53K	68s/17s/15s/18s/1.5M
arabidopsis	15	-/-/-/53s/32K	-/-/-/50s/213K	-/352s/123s/103s/7M
dinwoodie_life	15	-/-/-/37s/32K	-/-/-/30s/245K	-/352s/240s/256s/20M
randomnet_n15k3	15	-/-/-/51s/32K	-/-/-/31s/262K	731s/219s/226s/280s/22M
irons_yeast	18	-/-/-/653s/262K	-/-//324s/2M	memory out

Exponential w.r.t variables/values but faster if more observations. Runtime is not a problem with **PRIDE**, a polynomial approximation.

Maxime FOLSCHETTE, Tony RIBEIRO

Polynomial Approximation: PRIDE

 $\label{eq:product} \textbf{PRIDE} = \textbf{Polynomial Relational Inference of Discrete Events}$

Input: a set of transitions (feature \rightarrow target)

Output: a program that respects:

- Consistency: The program allows no negative examples
- Realization: The program covers all positive examples
- Completeness: The program covers all the state space
- **Minimality** of the rules (most general bodies)

Method:

 \rightarrow Keep only one specialization according to a non-matched positive example.

 \rightarrow Use greedy search to minimize rules.

Learning Semantics is exponential

Run time of **Synchronizer** for 6 to 10 nodes Boolean networks for the three semantics: run time in seconds for 25%/50%/75%/100% of the transitions as input, and total number of transitions.

Benchmark	size	synchronous	asynchronous	general
n6s1c2	6	0.2s/0.3s/0.2s/0.1s/64	2.5s/4.4s/3.6s/1s/230	9s/6s/2.9s/0.5s/1,039
n7s3	7	1.6s/3.1s/2.5s/0.3s/128	32s/35s/26s/5s/451	139s/68s/21s/6s/2,243
randomnet_n7k3	7	5.9s/16s/19s/6.6s/128	25s/47s/32s/5.4s/394	133s/93s/45s/9.9s/1,580
xiao_wnt5a	7	0.96s/1.4s/1s/0.2s/128	11s/21s/12s/3s/324	25s/14s/7s/1.1s/972
arellano_rootstem	9	86s/83s/40s/2.6s/512	-/-/-/145s/1,940	-/-/-/41s/11,472
davidich_yeast	10	-/796s/363s/28s/1,024	-/-/-/622s/4,364	-/-/-/38,720
faure_cellcycle	10	-/-/558s/31s/1,024	-/-/-/865s/4,273	-/-/-/30,971
fission_yeast	10	-/-/478s/36s/1,024	-/-/-/662s/4,157	-/-/-/33,727
mammalian	10	-/-/598s/33s/1,024	-/-/-/841s/4,273	-/-/-/30,971

Prediction Power of GULA/PRIDE

Evaluate quality of rules:

- \rightarrow Prediction of each variable possible value
- \rightarrow Learn from partial observations (group by initial state / random)
- \rightarrow Prediction from unseen states (*train* \cap *test* = \emptyset)

Method:

- ightarrow Use **GULA/PRIDE** to learn two programs: *P* and \overline{P}
- ightarrow P: classic program that say when a target atom is possible
- $\rightarrow \overline{P}$: a kind of anti-program that say when a target atom is not possible
- \rightarrow Rules are weighted by the number of observations they match
- \rightarrow Probabilities can be obtain from the most matching rule/anti-rule

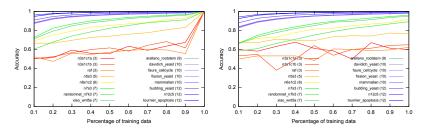
Predicting probabilities of a_t^0 from $\langle a_{t-1}^1, b_{t-1}^1, c_{t-1}^1, st^1 \rangle$

 $\begin{array}{ll} P: & \overline{P}: & \\ (105): a_t^0 \leftarrow b_{t-1}^0. & \\ (42): a_t^0 \leftarrow b_{t-1}^1 \wedge c_{t-1}^1. & \\ (12): a_t^0 \leftarrow c_{t-1}^1 \wedge st^1. & \\ \end{array} \tag{81}: a_t^0 \leftarrow b_{t-1}^0. & \\ (61): a_t^0 \leftarrow a_{t-1}^1 \wedge c_{t-1}^0. & \\ (30): a_t^0 \leftarrow a_{t-1}^1 \wedge st^1. & \\ \end{array}$ Prediction: $0.5 + 0.5 \times \frac{42 - 30}{42 + 30} = 0.58$

Accuracy: mean absolute error VS Ground truth: 0:0.58,1:0.42

Maxime FOLSCHETTE, Tony RIBEIRO

Prediction power

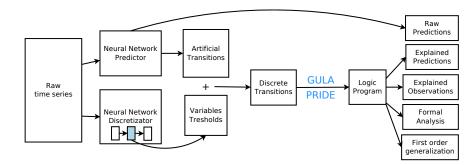


Partial initial states

Partial transitions

Figure: Accuracy of the models learned by **GULA** when predicting possible target variable values from unseen states: (left) experiment 1, with a complete set of input transitions from a partial number of initial states; and (right) experiment 2, with a potentially incomplete set of input transitions from an incomplete set of initial states.

Outlook: GULA/PRIDE Workflow

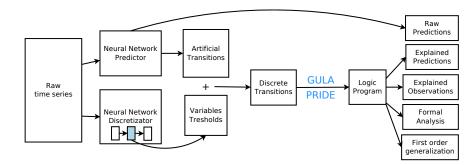


ightarrow Pre-process: Use statistical ML for data augmentation/noise tolerance

- ightarrow Pre-process: Automatic discretization using hand-made NN layer
- ightarrow Post-process: Weight rules for predictions
- ightarrow Post-process: First order generalization to simplify explanations

Maxime FOLSCHETTE, Tony RIBEIRO

Outlook: GULA/PRIDE Workflow

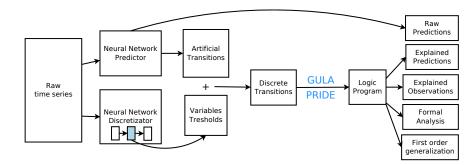


 \rightarrow Pre-process: Use statistical ML for data augmentation/noise tolerance

- ightarrow Pre-process: Automatic discretization using hand-made NN layer
- \rightarrow Post-process: Weight rules for predictions
- ightarrow Post-process: First order generalization to simplify explanations

Maxime FOLSCHETTE, Tony RIBEIRO

Outlook: GULA/PRIDE Workflow

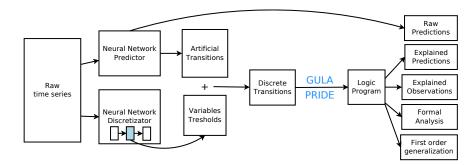


 \rightarrow Pre-process: Use statistical ML for data augmentation/noise tolerance

- \rightarrow Pre-process: Automatic discretization using hand-made NN layer
- ightarrow Post-process: Weight rules for predictions
- ightarrow Post-process: First order generalization to simplify explanations

Maxime FOLSCHETTE, Tony RIBEIRO

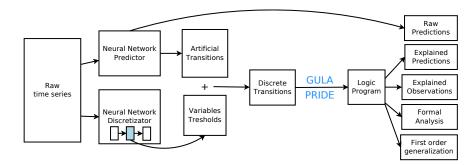
Outlook: GULA/PRIDE Workflow



- \rightarrow Pre-process: Use statistical ML for data augmentation/noise tolerance
- \rightarrow Pre-process: Automatic discretization using hand-made NN layer
- \rightarrow Post-process: Weight rules for predictions
- \rightarrow Post-process: First order generalization to simplify explanations

Maxime FOLSCHETTE, Tony RIBEIRO

Outlook: GULA/PRIDE Workflow



- \rightarrow Pre-process: Use statistical ML for data augmentation/noise tolerance
- \rightarrow Pre-process: Automatic discretization using hand-made NN layer
- \rightarrow Post-process: Weight rules for predictions
- \rightarrow Post-process: First order generalization to simplify explanations

Conclusion

 $\mathsf{Logic}\ \mathsf{rules}\ \Leftrightarrow\ \mathsf{networks}\ \mathsf{interactions}\ \Leftrightarrow\ \mathsf{automata}\ \mathsf{transitions}$

Learning of the structure of a model

1-step learning algorithm by successive refinements

Independent of the semantics

Proved for pseudo-idempotent semantics

 \rightarrow Includes synchronous, asynchronous, general semantics

Outlooks

- Automatic learning of time series data (noise, discretization, ...)
- Learning probabilistic models
- Improve explainability (first order, post-processing)
- Optimizations (parallelization, approximations)

Thank you

All algorithms are open-source at:

```
https://github.com/Tony-sama/pylfit
```

Our questions:

- How to automatically and meaningfully discretize?
- Do you know a metrics to evaluate prediction on sets of states?
- Do you have datasets to apply GULA/PRIDE on?

Your questions?

GULA: Learning (From Any) Semantics of a BRN o Bibliography

References

• Stuart A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. *Journal of Theoretical Biology*, volume 22, n. 3, pages 437–467, 1969.

• René Thomas. Boolean formalization of genetic control circuits. *Journal of Theoretical Biology*, volume 42, n. 3, pages 563–85, 1973.

• Katsumi Inoue, Tony Ribeiro, and Chiaki Sakama. Learning from interpretation transition. *Machine Learning Journal*, volume 94, issue 1, pages 51–79, 2014.

• Tony Ribeiro, Morgan Magnin, Katsumi Inoue, Chiaki Sakama. Learning delayed influences of biological systems. *Frontiers in Bioengineering and Biotechnology*, volume 2, issue 81, 2015.

• David Martinez, Tony Ribeiro, Katsumi Inoue, Guillem Alenya, Carme Torras. Learning probabilistic action models from interpretation transitions. *The 31st International Conference on Logic Programming (ICLP)*, Cork, Ireland, 2015.

• Tony Ribeiro, Sophie Tourret, Maxime Folschette, Morgan Magnin, Domenico Borzacchiello, Francisco Chinesta, Olivier Roux, Katsumi Inoue. Inductive Learning from State Transitions over Continuous Domains. *The 27th International Conference on Inductive Logic Programming (ILP)*, Orléans, France, 2017.

• Tony Ribeiro, Maxime Folschette, Morgan Magnin, Olivier Roux, Katsumi Inoue. Learning Dynamics with Synchronous, Asynchronous and General Semantics. *The 27th International Conference on Inductive Logic Programming (ILP)*, Ferrara, Italy, 2018.

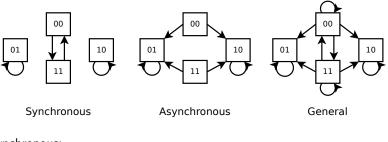
Maxime FOLSCHETTE, Tony RIBEIRO

GULA: Learning (From Any) Semantics of a BRN o Appendix

Characterization of Classical Semantics

The three semantics can be detected by checking the following properties.

f(a) := not b.f(b) := not a.



Synchronous: $\forall (s, s_1), (s, s_2) \in T, \forall s_3 \in S^T, s_3 \subseteq s_1 \cup s_2 \implies (s, s_3) \in T.$

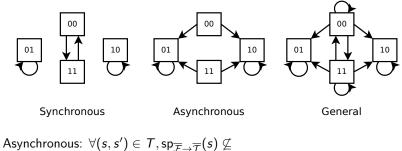
Maxime FOLSCHETTE, Tony RIBEIRO

GULA: Learning (From Any) Semantics of a BRN o Appendix

Characterization of Classical Semantics

The three semantics can be detected by checking the following properties.

f(a) := not b.f(b) := not a.



Asynchronous: $\forall (s, s') \in I$, $sp_{\overline{\mathcal{F}} \to \overline{\mathcal{T}}}(s) \nsubseteq s'$, $((s, s'') \in T$, $sp_{\overline{\mathcal{F}} \to \overline{\mathcal{T}}}(s) \subseteq s'' \Longrightarrow (s, s') \notin T) \land ((s, s') \in T \Longrightarrow |sp_{\overline{\mathcal{F}} \to \overline{\mathcal{T}}}(s) \setminus s'| = 1)$.

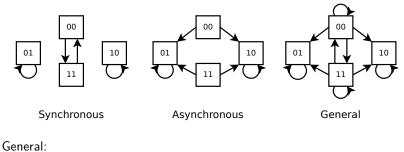
Maxime FOLSCHETTE, Tony RIBEIRO

GULA: Learning (From Any) Semantics of a BRN o Appendix

Characterization of Classical Semantics

The three semantics can be detected by checking the following properties.

f(a) := not b.f(b) := not a.



 $\forall (s, s_1), (s, s_2) \in \mathcal{T}, \forall s_3 \in \mathcal{S}^{\mathcal{T}}, s_3 \subseteq \mathsf{sp}_{\overline{\mathcal{F}} \to \overline{\mathcal{T}}}(s) \cup s_1 \cup s_2 \implies (s, s_3) \in \mathcal{T}.$

Maxime FOLSCHETTE, Tony RIBEIRO

Pseudo-Idempotent Semantics

Definitions:

- $\mathcal{A}_{\mathcal{T}} = \mathsf{all}$ feature atoms
- $\mathcal{S}^{\mathcal{F}} = \mathsf{all}$ states on feature atoms
- $\mathcal{S}^{\mathcal{T}} = \mathsf{all}$ states with target atoms
- Ccl(s, P) = set of heads of rules in P that match s
- $P_{\mathcal{O}}(P) = \text{optimal program (learned by GULA)}$

Theorem 2 (Pseudo-idempotent Semantics and Optimal \mathcal{DMVLP}) Let DS be a dynamical semantics. For all $P \neq \mathcal{DMVLP}$, if: $\exists pick \in (S^{\mathcal{F}} \times \wp(\mathcal{A}_{\mathcal{T}}) \to \wp(S^{\mathcal{T}}) \setminus \{\emptyset\})$ so that **1** $\forall s \in S^{\mathcal{F}}, \forall D \subseteq \mathcal{A}_{\mathcal{T}}, pick(s, \bigcup s') = pick(s, D)$ and $s' \in pick(s, D)$ **2** $\forall s \in S^{\mathcal{F}}, (DS(P))(s) = pick(s, Ccl(s, P)),$ then: for all $P \neq \mathcal{DMVLP}, DS(P_{\mathcal{O}}(DS(P)))) = DS(P).$