
Bioss-IA 2020 Workshop

GULA: Learning (From Any) Semantics of a
Biological Regulatory Network

Maxime FOLSCHETTE · http://maxime.folschette.name/
Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Tony RIBEIRO · http://www.tonyribeiro.fr/
Independent Researcher +

Laboratoire des Sciences du Numérique de Nantes, 44321 Nantes, France +
National Institute of Informatics, Tokyo 101-8430, Japan

Joint work with Morgan MAGNIN (ECN + LS2N + NII)
and Katsumi INOUE (NII + SOKENDAI + Tokyo Tech)

2020-11-24

http://maxime.folschette.name/
http://www.tonyribeiro.fr/

GULA: Learning (From Any) Semantics of a BRN ◦ Introduction

Introduction
Learn interaction rules from the dynamical transitions
• LFIT: synchronous semantics, deterministic (Boolean)

[Inoue, Ribeiro, Sakama, Machine Learning Jour., 2014]
• LFkT: synchronous semantics, with memory (Boolean)

[Ribeiro, Magnin, Inoue, Sakama, Frontiers in Bioeng. and Biotech., 2015]
• LUST: synchronous semantics, non-deterministic

[Martinez, Ribeiro, Inoue, Alenya, Torras, ICLP, 2015.]
• ACEDIA: synchronous semantics, continuous domains

[Ribeiro, Tourret, Folschette, +5, ILP, 2017]
• GULA: synchronous, asynchronous, general semantics

[Ribeiro, Folschette, Magnin, Roux, Inoue, ILP, 2018]

Content of this presentation: improvements on GULA
→ Define the scope of “learnable” semantics
→ Learn the rules of the semantics itself
→ ...and more!

Maxime FOLSCHETTE, Tony RIBEIRO 2/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Introduction

Introduction

Black box

Learned
model

Semantics

Semantics

State graph

State graph

Maxime FOLSCHETTE, Tony RIBEIRO 3/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Introduction

Introduction

Black box

Learned
model

Semantics

Semantics

State graph

State graph

Identical

Maxime FOLSCHETTE, Tony RIBEIRO 3/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Introduction

Introduction

Black box Semantics

Semantics

State graph

State graph

Identical

z

a

b

1+ 1−
2+

1+

1+

Maxime FOLSCHETTE, Tony RIBEIRO 3/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Discrete Networks

Discrete Networks

Maxime FOLSCHETTE, Tony RIBEIRO 4/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Discrete Networks

Preliminary Abstraction

Maxime FOLSCHETTE, Tony RIBEIRO 5/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Discrete Networks

Preliminary Abstraction

Gene a

RNA a

Protein a

++

+ −

+ −

Maxime FOLSCHETTE, Tony RIBEIRO 5/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Discrete Networks

Preliminary Abstraction

a

+ −

+ −

Maxime FOLSCHETTE, Tony RIBEIRO 5/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Discrete Networks

Preliminary Abstraction

a

+ −

+ −

{
1 = active
0 = inactive

}

Maxime FOLSCHETTE, Tony RIBEIRO 5/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Discrete Networks

Preliminary Abstraction

a

+ −

+ −

{
2 = saturation
1 = traces
0 = complete degradation

}

Maxime FOLSCHETTE, Tony RIBEIRO 5/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Discrete Networks

Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

• A set of components N = {a, b, z}
• A discrete domain for each component dom(a) = J0; 2K
• Discrete parameters / evolution functions f a : S → dom(a)
• Signs & thresholds on the edges (redundant) a 2+−−→ z

z

a

b

a f b

0 0
1 1
2 1

z b f a

0 0 1
0 1 0
1 0 1
1 1 2

a b f z

0 0 0
0 1 0
1 0 0
1 1 0
2 0 0
2 1 1

Semantics = From this information, what are the next possible state(s)?

Maxime FOLSCHETTE, Tony RIBEIRO 6/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Discrete Networks

Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

• A set of components N = {a, b, z}
• A discrete domain for each component dom(a) = J0; 2K
• Discrete parameters / evolution functions f a : S → dom(a)
• Signs & thresholds on the edges (redundant) a 2+−−→ z

z

a

b

J0; 2K

J0; 1K

J0; 1K

a f b

0 0
1 1
2 1

z b f a

0 0 1
0 1 0
1 0 1
1 1 2

a b f z

0 0 0
0 1 0
1 0 0
1 1 0
2 0 0
2 1 1

Semantics = From this information, what are the next possible state(s)?

Maxime FOLSCHETTE, Tony RIBEIRO 6/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Discrete Networks

Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

• A set of components N = {a, b, z}
• A discrete domain for each component dom(a) = J0; 2K
• Discrete parameters / evolution functions f a : S → dom(a)
• Signs & thresholds on the edges (redundant) a 2+−−→ z

z

a

b

J0; 2K

J0; 1K

J0; 1K

a f b

0 0
1 1
2 1

z b f a

0 0 1
0 1 0
1 0 1
1 1 2

a b f z

0 0 0
0 1 0
1 0 0
1 1 0
2 0 0
2 1 1

Semantics = From this information, what are the next possible state(s)?

Maxime FOLSCHETTE, Tony RIBEIRO 6/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Discrete Networks

Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

• A set of components N = {a, b, z}
• A discrete domain for each component dom(a) = J0; 2K
• Discrete parameters / evolution functions f a : S → dom(a)
• Signs & thresholds on the edges (redundant) a 2+−−→ z

z

a

b

J0; 2K

J0; 1K

J0; 1K

1+ 1−
2+

1+

1+

a f b

0 0
1 1
2 1

z b f a

0 0 1
0 1 0
1 0 1
1 1 2

a b f z

0 0 0
0 1 0
1 0 0
1 1 0
2 0 0
2 1 1

Semantics = From this information, what are the next possible state(s)?

Maxime FOLSCHETTE, Tony RIBEIRO 6/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Discrete Networks

Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

• A set of components N = {a, b, z}
• A discrete domain for each component dom(a) = J0; 2K
• Discrete parameters / evolution functions f a : S → dom(a)
• Signs & thresholds on the edges (redundant) a 2+−−→ z

z

a

b

J0; 2K

J0; 1K

J0; 1K

1+ 1−
2+

1+

1+

a f b

0 0
1 1
2 1

z b f a

0 0 1
0 1 0
1 0 1
1 1 2

a b f z

0 0 0
0 1 0
1 0 0
1 1 0
2 0 0
2 1 1

Semantics = From this information, what are the next possible state(s)?

Maxime FOLSCHETTE, Tony RIBEIRO 6/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Discrete Networks

Semantics
State transitions differ according to the update semantics used

a b f(a) := not b.
f(b) := not a.

Asynchronous General

00

01 10

11

00

01 10

11

Synchronous

00

01 10

11

• Synchronous: all variables are updated
• Asynchronous: only one variable is updated
• General: any number of variables can be updated

Maxime FOLSCHETTE, Tony RIBEIRO 7/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Logic Programs

Maxime FOLSCHETTE, Tony RIBEIRO 8/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Principle of the Learning

Black box Semantics

Semantics

State graph

State graph

Identical

z

a

b

1+ 1−
2+

1+

1+

Maxime FOLSCHETTE, Tony RIBEIRO 9/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Principle of the Learning

Black box Semantics

Semantics

State graph

State graph

Identical

z1t ← a2t−1.

z1t ← a1t−1 ∧ b0
t−1.

b1
t ← a2t−1.

b0
t ← a0t−1.

. . .

Maxime FOLSCHETTE, Tony RIBEIRO 9/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Logic Rule
vval0
0︸ ︷︷ ︸

head
target atom

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body
feature atoms

.

• v0, v1, v2, . . ., vn: variables at , at−1, bt , bt−1, zt , zt−1
• Variables are split into feature (F) and target (T) variables
• v0 ∈ T at , bt , zt
• v1, v2, . . . , vn ∈ F at−1, bt−1, zt−1
• Implicit time step: t in the head and t − 1 in the body

• val0, val1, val2, . . ., valn: values 0, 1, 2, . . .

• vali ∈ dom(vi)

• All atoms in the body are in conjunction
• ← is the (reverse) implication

Maxime FOLSCHETTE, Tony RIBEIRO 10/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Logic Rule
vval0
0︸ ︷︷ ︸

head
target atom

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body
feature atoms

.

• v0, v1, v2, . . ., vn: variables at , at−1, bt , bt−1, zt , zt−1
• Variables are split into feature (F) and target (T) variables
• v0 ∈ T at , bt , zt
• v1, v2, . . . , vn ∈ F at−1, bt−1, zt−1
• Implicit time step: t in the head and t − 1 in the body

• val0, val1, val2, . . ., valn: values 0, 1, 2, . . .

• vali ∈ dom(vi)

• All atoms in the body are in conjunction
• ← is the (reverse) implication

Maxime FOLSCHETTE, Tony RIBEIRO 10/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Logic Rule
vval0
0︸ ︷︷ ︸

head
target atom

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body
feature atoms

.

• v0, v1, v2, . . ., vn: variables at , at−1, bt , bt−1, zt , zt−1
• Variables are split into feature (F) and target (T) variables
• v0 ∈ T at , bt , zt
• v1, v2, . . . , vn ∈ F at−1, bt−1, zt−1
• Implicit time step: t in the head and t − 1 in the body

• val0, val1, val2, . . ., valn: values 0, 1, 2, . . .

• vali ∈ dom(vi)

• All atoms in the body are in conjunction
• ← is the (reverse) implication

Maxime FOLSCHETTE, Tony RIBEIRO 10/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Logic Rule
vval0
0︸ ︷︷ ︸

head
target atom

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body
feature atoms

.

• v0, v1, v2, . . ., vn: variables at , at−1, bt , bt−1, zt , zt−1
• Variables are split into feature (F) and target (T) variables
• v0 ∈ T at , bt , zt
• v1, v2, . . . , vn ∈ F at−1, bt−1, zt−1
• Implicit time step: t in the head and t − 1 in the body

• val0, val1, val2, . . ., valn: values 0, 1, 2, . . .

• vali ∈ dom(vi)

• All atoms in the body are in conjunction
• ← is the (reverse) implication

Maxime FOLSCHETTE, Tony RIBEIRO 10/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Feature & Target Variables

s1 . . . sm (v1)t−1 . . . (vn)t−1

F \ F (Stimuli) F (Regular variables)

F (Feature variables)

(v1)t . . . (vn)t c1 . . . ck

T (Regular variables) T \ T (Checkpoints)

(Target variables) T

Projections

• Feature variables = causes
• Stimuli = known inputs

• Target variables = consequences
• Checkpoints = known outputs

Maxime FOLSCHETTE, Tony RIBEIRO 11/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Feature & Target Variables

s1 . . . sm (v1)t−1 . . . (vn)t−1

F \ F (Stimuli) F (Regular variables)

F (Feature variables)

(v1)t . . . (vn)t c1 . . . ck

T (Regular variables) T \ T (Checkpoints)

(Target variables) T

Projections

• Feature variables = causes
• Stimuli = known inputs

• Target variables = consequences
• Checkpoints = known outputs

Maxime FOLSCHETTE, Tony RIBEIRO 11/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Interpretation of a Logic Rule

vval0
0︸ ︷︷ ︸

head
target atom

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body
feature atoms

.

Interpretation: When body is true, head is a potential outcome

Examples:
a1t ← a2t−1 ∧ b0

t−1 ∧ z1t−1.
b1

t ← z1t−1.
z0t ← >.

 all match 〈a2t−1, b0
t−1, z1t−1〉

A rule R matches a state s iff body ⊆ s

Interpretation: When a state matches a rule,
the rule’s head becomes a candidate for the next state

Semantics = From this information, what are the next possible state(s)?
(Similar to discrete networks)

Maxime FOLSCHETTE, Tony RIBEIRO 12/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Interpretation of a Logic Rule

vval0
0︸ ︷︷ ︸

head
target atom

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body
feature atoms

.

Interpretation: When body is true, head is a potential outcome

Examples:
a1t ← a2t−1 ∧ b0

t−1 ∧ z1t−1.
b1

t ← z1t−1.
z0t ← >.

 all match 〈a2t−1, b0
t−1, z1t−1〉

A rule R matches a state s iff body ⊆ s

Interpretation: When a state matches a rule,
the rule’s head becomes a candidate for the next state

Semantics = From this information, what are the next possible state(s)?
(Similar to discrete networks)

Maxime FOLSCHETTE, Tony RIBEIRO 12/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Interpretation of a Logic Rule

vval0
0︸ ︷︷ ︸

head
target atom

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body
feature atoms

.

Interpretation: When body is true, head is a potential outcome

Examples:
a1t ← a2t−1 ∧ b0

t−1 ∧ z1t−1.
b1

t ← z1t−1.
z0t ← >.

 all match 〈a2t−1, b0
t−1, z1t−1〉

A rule R matches a state s iff body ⊆ s

Interpretation: When a state matches a rule,
the rule’s head becomes a candidate for the next state

Semantics = From this information, what are the next possible state(s)?
(Similar to discrete networks)

Maxime FOLSCHETTE, Tony RIBEIRO 12/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Interpretation of a Logic Rule

vval0
0︸ ︷︷ ︸

head
target atom

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body
feature atoms

.

Interpretation: When body is true, head is a potential outcome

Examples:
a1t ← a2t−1 ∧ b0

t−1 ∧ z1t−1.
b1

t ← z1t−1.
z0t ← >.

 all match 〈a2t−1, b0
t−1, z1t−1〉

A rule R matches a state s iff body ⊆ s

Interpretation: When a state matches a rule,
the rule’s head becomes a candidate for the next state

Semantics = From this information, what are the next possible state(s)?
(Similar to discrete networks)

Maxime FOLSCHETTE, Tony RIBEIRO 12/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Interpretation of a Logic Rule

vval0
0︸ ︷︷ ︸

head
target atom

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body
feature atoms

.

Interpretation: When body is true, head is a potential outcome

Examples:
a1t ← a2t−1 ∧ b0

t−1 ∧ z1t−1.
b1

t ← z1t−1.
z0t ← >.

 all match 〈a2t−1, b0
t−1, z1t−1〉

A rule R matches a state s iff body ⊆ s

Interpretation: When a state matches a rule,
the rule’s head becomes a candidate for the next state

Semantics = From this information, what are the next possible state(s)?
(Similar to discrete networks)

Maxime FOLSCHETTE, Tony RIBEIRO 12/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Interpretation of a Logic Rule

vval0
0︸ ︷︷ ︸

head
target atom

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body
feature atoms

.

Interpretation: When body is true, head is a potential outcome

Examples:
a1t ← a2t−1 ∧ b0

t−1 ∧ z1t−1.
b1

t ← z1t−1.
z0t ← >.

 all match 〈a2t−1, b0
t−1, z1t−1〉

A rule R matches a state s iff body ⊆ s

Interpretation: When a state matches a rule,
the rule’s head becomes a candidate for the next state

Semantics = From this information, what are the next possible state(s)?
(Similar to discrete networks)

Maxime FOLSCHETTE, Tony RIBEIRO 12/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Discrete Model as a Logic Program

Discrete model:

z

a

b

1+ 1−
2+

1+

1+

+ Discrete parameters
or evolution functions

Logic program:

b1
t ← a1t−1.

b1
t ← a2t−1.

b0
t ← a0t−1.

z1t ← a2t−1 ∧ b1
t−1.

z0t ← a0t−1.
z0t ← a1t−1.
z0t ← b0

t−1.

etc...

Maxime FOLSCHETTE, Tony RIBEIRO 13/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Discrete Model as a Logic Program

Discrete model:

z

a

b

1+ 1−
2+

1+

1+

1+

+ Discrete parameters
or evolution functions

Logic program:

b1
t ← a1t−1.

b1
t ← a2t−1.

b0
t ← a0t−1.

z1t ← a2t−1 ∧ b1
t−1.

z0t ← a0t−1.
z0t ← a1t−1.
z0t ← b0

t−1.

etc...

Maxime FOLSCHETTE, Tony RIBEIRO 13/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Discrete Model as a Logic Program

Discrete model:

z

a

b

1+ 1−
2+

1+

1+

2+

1+

and

+ Discrete parameters
or evolution functions

Logic program:

b1
t ← a1t−1.

b1
t ← a2t−1.

b0
t ← a0t−1.

z1t ← a2t−1 ∧ b1
t−1.

z0t ← a0t−1.
z0t ← a1t−1.
z0t ← b0

t−1.

etc...

Maxime FOLSCHETTE, Tony RIBEIRO 13/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Discrete Model as a Logic Program

Discrete model:

z

a

b

1+ 1−
2+

1+

1+

2+

1+

or

+ Discrete parameters
or evolution functions

Logic program:

b1
t ← a1t−1.

b1
t ← a2t−1.

b0
t ← a0t−1.

z1t ← a2t−1.
z1t ← b1

t−1.

z0t ← a1t−1 ∧ b0
t−1.

z0t ← a0t−1 ∧ b0
t−1.

etc...

Maxime FOLSCHETTE, Tony RIBEIRO 13/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Logic Programs

Discrete Model as a Logic Program

Discrete model:

z

a

b

1+ 1−
2+

1+

1+

+ Discrete parameters
or evolution functions

Logic program:

b1
t ← a1t−1.

b1
t ← a2t−1.

b0
t ← a0t−1.

z1t ← a2t−1.
z1t ← b1

t−1.

z0t ← a1t−1 ∧ b0
t−1.

z0t ← a0t−1 ∧ b0
t−1.

etc...

Maxime FOLSCHETTE, Tony RIBEIRO 13/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Learning

Maxime FOLSCHETTE, Tony RIBEIRO 14/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Semantics-Free Learning

Semantics = computing the next state by selecting,
among applicable local rules, the ones that will be applied.

000 010
Applicable

Rules
Applied
Rules

Maxime FOLSCHETTE, Tony RIBEIRO 15/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Learning Intuition: Classification Problem

What is an applicable rule? The conditions so that a variable can take a
certain value in next state.

00 01

00 10

01 01

10 1000 11

Positive
example

Negative
example

a=0

00

11 01

11 10

11 00

01

10

11

Observations
Positive
example

Negative
example

a=1

00 01

10

11

Equivalent to a classification problem: for each variable value, what is
a typical state where the variable can take this value in the next state ?

Maxime FOLSCHETTE, Tony RIBEIRO 16/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Learning Intuition: Classification Problem

What is an applicable rule? The conditions so that a variable can take a
certain value in next state.

00 01

00 10

01 01

10 1000 11

Positive
example

Negative
example

a=0

00

11 01

11 10

11 00

01

10

11

Observations
Positive
example

Negative
example

a=1

00 01

10

11

Equivalent to a classification problem: for each variable value, what is
a typical state where the variable can take this value in the next state ?

Maxime FOLSCHETTE, Tony RIBEIRO 16/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Learning Intuition: Classification Problem

What is an applicable rule? The conditions so that a variable can take a
certain value in next state.

00 01

00 10

01 01

10 1000 11

Positive
example

Negative
example

a=0

00

11 01

11 10

11 00

01

10

11

Observations
Positive
example

Negative
example

a=1

00 01

10

11

Equivalent to a classification problem: for each variable value, what is
a typical state where the variable can take this value in the next state ?

Maxime FOLSCHETTE, Tony RIBEIRO 16/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions (feature → target)

Output: a program that respects:
• Consistency: the program allows no negative examples
• Realization: the program covers all positive examples
• Completeness: the program covers all the state space
• minimality of the rules (most general bodies)

Method: start from most general rules and specialize iteratively.

Maxime FOLSCHETTE, Tony RIBEIRO 17/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Least Specialization
Ensure consistency of a rule:

vval0
0︸ ︷︷ ︸

head

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body

.

→ Used when a rule matches a negative example s: body ⊆ s.
→ Add one condition to body that prevents matching s.

Examples:
a1t ← >.
b0

t ← a0t−1.
ch2 ← a0t−1 ∧ b1

t−1 ∧ st1.

 all match 〈a0t−1, b1
t−1, st1〉

→ how to specialize each one?

Suppose dom(at−1) = dom(bt−1) = {0, 1} and dom(st) = {0, 1, 2}.

The Least Specialization of a1t ← >. is:
→ { a1t ← a1t−1. ; a1t ← b0

t−1. ; a1t ← st0. ; a1t ← st2. }

Maxime FOLSCHETTE, Tony RIBEIRO 18/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Least Specialization
Ensure consistency of a rule:

vval0
0︸ ︷︷ ︸

head

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body

.

→ Used when a rule matches a negative example s: body ⊆ s.
→ Add one condition to body that prevents matching s.

Examples:
a1t ← >.
b0

t ← a0t−1.
ch2 ← a0t−1 ∧ b1

t−1 ∧ st1.

 all match 〈a0t−1, b1
t−1, st1〉

→ how to specialize each one?

Suppose dom(at−1) = dom(bt−1) = {0, 1} and dom(st) = {0, 1, 2}.

The Least Specialization of a1t ← >. is:
→ { a1t ← a1t−1. ; a1t ← b0

t−1. ; a1t ← st0. ; a1t ← st2. }

Maxime FOLSCHETTE, Tony RIBEIRO 18/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Least Specialization
Ensure consistency of a rule:

vval0
0︸ ︷︷ ︸

head

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body

.

→ Used when a rule matches a negative example s: body ⊆ s.
→ Add one condition to body that prevents matching s.

Examples:
a1t ← >.
b0

t ← a0t−1.
ch2 ← a0t−1 ∧ b1

t−1 ∧ st1.

 all match 〈a0t−1, b1
t−1, st1〉

→ how to specialize each one?

Suppose dom(at−1) = dom(bt−1) = {0, 1} and dom(st) = {0, 1, 2}.

The Least Specialization of a1t ← >. is:
→ { a1t ← a1t−1. ; a1t ← b0

t−1. ; a1t ← st0. ; a1t ← st2. }

Maxime FOLSCHETTE, Tony RIBEIRO 18/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Least Specialization
Ensure consistency of a rule:

vval0
0︸ ︷︷ ︸

head

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body

.

→ Used when a rule matches a negative example s: body ⊆ s.
→ Add one condition to body that prevents matching s.

Examples:
a1t ← >.
b0

t ← a0t−1.
ch2 ← a0t−1 ∧ b1

t−1 ∧ st1.

 all match 〈a0t−1, b1
t−1, st1〉

→ how to specialize each one?

Suppose dom(at−1) = dom(bt−1) = {0, 1} and dom(st) = {0, 1, 2}.

The Least Specialization of a1t ← >. is:
→ { a1t ← a1t−1. ; a1t ← b0

t−1. ; a1t ← st0. ; a1t ← st2. }

Maxime FOLSCHETTE, Tony RIBEIRO 18/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Least Specialization
Ensure consistency of a rule:

vval0
0︸ ︷︷ ︸

head

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body

.

→ Used when a rule matches a negative example s: body ⊆ s.
→ Add one condition to body that prevents matching s.

Examples:
a1t ← >.
b0

t ← a0t−1.
ch2 ← a0t−1 ∧ b1

t−1 ∧ st1.

 all match 〈a0t−1, b1
t−1, st1〉

→ how to specialize each one?

Suppose dom(at−1) = dom(bt−1) = {0, 1} and dom(st) = {0, 1, 2}.

The Least Specialization of b0
t ← a0t−1. is:

→ { b0
t ← a0t−1 ∧ b0

t−1. ; b0
t ← a0t−1 ∧ st0. ; b0

t ← a0t−1 ∧ st2. }

Maxime FOLSCHETTE, Tony RIBEIRO 18/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Least Specialization
Ensure consistency of a rule:

vval0
0︸ ︷︷ ︸

head

← vval1
1 ∧ vval2

2 ∧ . . . ∧ vvaln
n︸ ︷︷ ︸

body

.

→ Used when a rule matches a negative example s: body ⊆ s.
→ Add one condition to body that prevents matching s.

Examples:
a1t ← >.
b0

t ← a0t−1.
ch2 ← a0t−1 ∧ b1

t−1 ∧ st1.

 all match 〈a0t−1, b1
t−1, st1〉

→ how to specialize each one?

Suppose dom(at−1) = dom(bt−1) = {0, 1} and dom(st) = {0, 1, 2}.

The Least Specialization of ch2 ← a0t−1 ∧ b1
t−1, st1. is:

→ ∅

Maxime FOLSCHETTE, Tony RIBEIRO 18/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA: General Usage LFIT Algorithm
GULA: INPUT: a set of transitions T .
Initialize P = ∅
For each existing target atom vval

• Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}

• Initialize Pvval := {vval ← >.}
• For each state s ∈ Negvval

• Replace each rule that matches s by its least specializations
• Remove all dominated rules, that is, that are not the most general:

head(R) = head(R ′) and body(R) ⊆ body(R ′)
• P := P ∪ Pvval

OUTPUT: PO(T) := P the optimal program of T .

Formally proved: Compatible with transitions generated in synchronous,
asynchronous and general semantics.

Also proved: Compatible with a wider class of “learnable” semantics.

Maxime FOLSCHETTE, Tony RIBEIRO 19/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA: General Usage LFIT Algorithm
GULA: INPUT: a set of transitions T .
Initialize P = ∅
For each existing target atom vval

• Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}

• Initialize Pvval := {vval ← >.}
• For each state s ∈ Negvval

• Replace each rule that matches s by its least specializations
• Remove all dominated rules, that is, that are not the most general:

head(R) = head(R ′) and body(R) ⊆ body(R ′)
• P := P ∪ Pvval

OUTPUT: PO(T) := P the optimal program of T .

Formally proved: Compatible with transitions generated in synchronous,
asynchronous and general semantics.

Also proved: Compatible with a wider class of “learnable” semantics.

Maxime FOLSCHETTE, Tony RIBEIRO 19/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA: General Usage LFIT Algorithm
GULA: INPUT: a set of transitions T .
Initialize P = ∅
For each existing target atom vval

• Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}

00 01

00 10

01 01

10 1000 11

Positive
example

Negative
example

a=0

00

11 01

11 10

11 00

01

10

11

Observations
Positive
example

Negative
example

a=1

00 01

10

11

Maxime FOLSCHETTE, Tony RIBEIRO 19/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA: General Usage LFIT Algorithm
GULA: INPUT: a set of transitions T .
Initialize P = ∅
For each existing target atom vval

• Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}

• Initialize Pvval := {vval ← >.}
• For each state s ∈ Negvval

• Replace each rule that matches s by its least specializations
• Remove all dominated rules, that is, that are not the most general:

head(R) = head(R ′) and body(R) ⊆ body(R ′)
• P := P ∪ Pvval

OUTPUT: PO(T) := P the optimal program of T .

Formally proved: Compatible with transitions generated in synchronous,
asynchronous and general semantics.

Also proved: Compatible with a wider class of “learnable” semantics.

Maxime FOLSCHETTE, Tony RIBEIRO 19/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA: General Usage LFIT Algorithm
GULA: INPUT: a set of transitions T .
Initialize P = ∅
For each existing target atom vval

• Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}

• Initialize Pvval := {vval ← >.}
• For each state s ∈ Negvval

• Replace each rule that matches s by its least specializations
• Remove all dominated rules, that is, that are not the most general:

head(R) = head(R ′) and body(R) ⊆ body(R ′)
• P := P ∪ Pvval

OUTPUT: PO(T) := P the optimal program of T .

Formally proved: Compatible with transitions generated in synchronous,
asynchronous and general semantics.

Also proved: Compatible with a wider class of “learnable” semantics.

Maxime FOLSCHETTE, Tony RIBEIRO 19/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA: General Usage LFIT Algorithm
GULA: INPUT: a set of transitions T .
Initialize P = ∅
For each existing target atom vval

• Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}

• Initialize Pvval := {vval ← >.}
• For each state s ∈ Negvval

• Replace each rule that matches s by its least specializations
• Remove all dominated rules, that is, that are not the most general:

head(R) = head(R ′) and body(R) ⊆ body(R ′)
• P := P ∪ Pvval

OUTPUT: PO(T) := P the optimal program of T .

Formally proved: Compatible with transitions generated in synchronous,
asynchronous and general semantics.

Also proved: Compatible with a wider class of “learnable” semantics.

Maxime FOLSCHETTE, Tony RIBEIRO 19/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA: General Usage LFIT Algorithm
GULA: INPUT: a set of transitions T .
Initialize P = ∅
For each existing target atom vval

• Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}

• Initialize Pvval := {vval ← >.}
• For each state s ∈ Negvval

• Replace each rule that matches s by its least specializations
• Remove all dominated rules, that is, that are not the most general:

head(R) = head(R ′) and body(R) ⊆ body(R ′)
• P := P ∪ Pvval

OUTPUT: PO(T) := P the optimal program of T .

Formally proved: Compatible with transitions generated in synchronous,
asynchronous and general semantics.

Also proved: Compatible with a wider class of “learnable” semantics.

Maxime FOLSCHETTE, Tony RIBEIRO 19/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA: General Usage LFIT Algorithm
GULA: INPUT: a set of transitions T .
Initialize P = ∅
For each existing target atom vval

• Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}

• Initialize Pvval := {vval ← >.}
• For each state s ∈ Negvval

• Replace each rule that matches s by its least specializations
• Remove all dominated rules, that is, that are not the most general:

head(R) = head(R ′) and body(R) ⊆ body(R ′)
• P := P ∪ Pvval

OUTPUT: PO(T) := P the optimal program of T .

Formally proved: Compatible with transitions generated in synchronous,
asynchronous and general semantics.

Also proved: Compatible with a wider class of “learnable” semantics.

Maxime FOLSCHETTE, Tony RIBEIRO 19/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA: General Usage LFIT Algorithm
GULA: INPUT: a set of transitions T .
Initialize P = ∅
For each existing target atom vval

• Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}

• Initialize Pvval := {vval ← >.}
• For each state s ∈ Negvval

• Replace each rule that matches s by its least specializations
• Remove all dominated rules, that is, that are not the most general:

head(R) = head(R ′) and body(R) ⊆ body(R ′)
• P := P ∪ Pvval

OUTPUT: PO(T) := P the optimal program of T .

Formally proved: Compatible with transitions generated in synchronous,
asynchronous and general semantics.

Also proved: Compatible with a wider class of “learnable” semantics.

Maxime FOLSCHETTE, Tony RIBEIRO 19/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

GULA: General Usage LFIT Algorithm
GULA: INPUT: a set of transitions T .
Initialize P = ∅
For each existing target atom vval

• Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}

• Initialize Pvval := {vval ← >.}
• For each state s ∈ Negvval

• Replace each rule that matches s by its least specializations
• Remove all dominated rules, that is, that are not the most general:

head(R) = head(R ′) and body(R) ⊆ body(R ′)
• P := P ∪ Pvval

OUTPUT: PO(T) := P the optimal program of T .

Formally proved: Compatible with transitions generated in synchronous,
asynchronous and general semantics.

Also proved: Compatible with a wider class of “learnable” semantics.

Maxime FOLSCHETTE, Tony RIBEIRO 19/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Learnable Semantics: Pseudo-Idempotent
→ Consider a function DS that maps a feature state and a set of target
atoms to a set of target states
→ Such that given the same state and the union of its output, it
produces the same result (pseudo-indempotent)

010 a^0,a^1,b^1,c^0,c^2 012 002 102

a^0,a^1,b^0,b^1, c^2010

s

s

D

D'

DS

Set of atomsFeature state

Set of target states

Semantics
+

Union

+

Semantics DS

→ A program gives possible target values (D)
→ A semantics gives which combinations are possible (DS(s, D))
→ If the semantics produces the same states given those local values,
then GULA learns a programs equivalent to the original one under this
semantics:

DS(s, D) = DS(s, D′) =⇒ DS(P) = DS(GULA(DS(P))
Maxime FOLSCHETTE, Tony RIBEIRO 20/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Learnable Semantics: Pseudo-Idempotent
→ Consider a function DS that maps a feature state and a set of target
atoms to a set of target states
→ Such that given the same state and the union of its output, it
produces the same result (pseudo-indempotent)

010 a^0,a^1,b^1,c^0,c^2 012 002 102

a^0,a^1,b^0,b^1, c^2010

s

s

D

D'

DS

Set of atomsFeature state

Set of target states

Semantics
+

Union

+

Semantics DS

→ A program gives possible target values (D)
→ A semantics gives which combinations are possible (DS(s, D))
→ If the semantics produces the same states given those local values,
then GULA learns a programs equivalent to the original one under this
semantics:

DS(s, D) = DS(s, D′) =⇒ DS(P) = DS(GULA(DS(P))
Maxime FOLSCHETTE, Tony RIBEIRO 20/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Learnable Semantics: Pseudo-Idempotent
→ Consider a function DS that maps a feature state and a set of target
atoms to a set of target states
→ Such that given the same state and the union of its output, it
produces the same result (pseudo-indempotent)

010 a^0,a^1,b^1,c^0,c^2 012 002 102

a^0,a^1,b^0,b^1, c^2010

s

s

D

D'

DS

Set of atomsFeature state

Set of target states

Semantics
+

Union

+

Semantics DS

→ A program gives possible target values (D)
→ A semantics gives which combinations are possible (DS(s, D))
→ If the semantics produces the same states given those local values,
then GULA learns a programs equivalent to the original one under this
semantics:

DS(s, D) = DS(s, D′) =⇒ DS(P) = DS(GULA(DS(P))
Maxime FOLSCHETTE, Tony RIBEIRO 20/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning

Learnable Semantics: Pseudo-Idempotent
→ Consider a function DS that maps a feature state and a set of target
atoms to a set of target states
→ Such that given the same state and the union of its output, it
produces the same result (pseudo-indempotent)

010 a^0,a^1,b^1,c^0,c^2 012 002 102

a^0,a^1,b^0,b^1, c^2010

s

s

D

D'

DS

Set of atomsFeature state

Set of target states

Semantics
+

Union

+

Semantics DS

→ A program gives possible target values (D)
→ A semantics gives which combinations are possible (DS(s, D))
→ If the semantics produces the same states given those local values,
then GULA learns a programs equivalent to the original one under this
semantics:

DS(s, D) = DS(s, D′) =⇒ DS(P) = DS(GULA(DS(P))
Maxime FOLSCHETTE, Tony RIBEIRO 20/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Learning Semantics

Maxime FOLSCHETTE, Tony RIBEIRO 21/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

What if we don’t know the semantics?
Three examples of arbitrary semantics:

a b f(a) := not b.
f(b) := not a.

Degradation Inverse all valuesAll or nothing change

00

01 10

11

00

01 10

11

00

01 10

11

How can we learn a program able to reproduce such behavior?

Maxime FOLSCHETTE, Tony RIBEIRO 22/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

What is impossible?
If we use the program learned by GULA with the synchronous semantics,
we observe spurious transitions, which were not in the observations:

a b f(a) := not b.
f(b) := not a.

Degradation Inverse all valuesAll or nothing change

00

01 10

11

00

01 10

11

00

01 10

11

How to prevent these impossible transitions?
We need “impossibility rules”: constraints!

Maxime FOLSCHETTE, Tony RIBEIRO 23/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

What is impossible?
If we use the program learned by GULA with the synchronous semantics,
we observe spurious transitions, which were not in the observations:

a b f(a) := not b.
f(b) := not a.

Degradation Inverse all valuesAll or nothing change

00

01 10

11

00

01 10

11

00

01 10

11

How to prevent these impossible transitions?
We need “impossibility rules”: constraints!

Maxime FOLSCHETTE, Tony RIBEIRO 23/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Classification Modeling of Impossibility

Degradation Inverse all valuesAll or nothing change

00

01 10

11

00

01 10

11

00

01 10

11

Maxime FOLSCHETTE, Tony RIBEIRO 24/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Classification Modeling of Impossibility

Degradation Inverse all valuesAll or nothing change

00

01 10

11

00

01 10

11

00

01 10

11

Negative examples

Constraints

0011 0101

1010

Observations

1100

11 1100 00 0000 1111

01 01 11 00

00 11 10 10

Maxime FOLSCHETTE, Tony RIBEIRO 24/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.

a b f(a) := not b.
f(b) := not a.

Degradation Inverse all valuesAll or nothing change

00

01 10

11

00

01 10

11

00

01 10

11

Maxime FOLSCHETTE, Tony RIBEIRO 25/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)

Positive
example

Negative
example

a=0

00

01

10

11

Positive
example

Negative
example

a=1

00 01

10

11

Observations

11 1100 00

01 01 11 10

00 10 11 01

00 01 11 00

00 11 10 10

Maxime FOLSCHETTE, Tony RIBEIRO 25/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)

a := not b
a(0,T) :- b(1,T-1).
a(1,T) :- b(0,T-1).

b := not a
b(0,T) :- a(1,T-1).
b(1,T) :- a(0,T-1).
Conservation rules
a(0,T) :- a(0,T-1).
a(1,T) :- a(1,T-1).
b(0,T) :- b(0,T-1).
b(1,T) :- b(1,T-1).

Maxime FOLSCHETTE, Tony RIBEIRO 25/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)
• Encode T into negative examples of constraint matching

Degradation Inverse all valuesAll or nothing change

00

01 10

11

00

01 10

11

00

01 10

11

Maxime FOLSCHETTE, Tony RIBEIRO 25/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)
• Encode T into negative examples of constraint matching

Negative examples

Constraints

0011 0101

1010

Observations

1100

11 1100 00 0000 1111

01 01 11 00

00 11 10 10

Maxime FOLSCHETTE, Tony RIBEIRO 25/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)
• Encode T into negative examples of constraint matching
• Learn a program P ′ using GULA from this encoding: P ′ contains all
minimal constraints covering impossible transitions

Constraints
:- a(0,T), b(1,T), b(0,T-1).
:- a(1,T), b(0,T), a(0,T-1).
:- a(1,T), b(0,T), b(1,T-1).
:- a(0,T), b(1,T), a(1,T-1).

...

Maxime FOLSCHETTE, Tony RIBEIRO 25/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)
• Encode T into negative examples of constraint matching
• Learn a program P ′ using GULA from this encoding: P ′ contains all
minimal constraints covering impossible transitions

• Discard in P ′ inapplicable constraints according to P

Maxime FOLSCHETTE, Tony RIBEIRO 25/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Learning Any Semantics Dynamics
• INPUT: T , a set of transitions produced using any semantics.
• From T , learn a program P using GULA: gives local influences and

possible values of each variables (including spurious transitions)
• Encode T into negative examples of constraint matching
• Learn a program P ′ using GULA from this encoding: P ′ contains all
minimal constraints covering impossible transitions

• Discard in P ′ inapplicable constraints according to P
• OUTPUT: P ∪ P ′ which exactly reproduces T , under the
constrained synchronous semantics

Maxime FOLSCHETTE, Tony RIBEIRO 25/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Semantics

Examples of learned programs

Degradation Inverse all valuesAll or nothing change

00

01 10

11

00

01 10

11

00

01 10

11

a := not b
a(0,T) :- b(1,T-1).
a(1,T) :- b(0,T-1).
b := not a
b(0,T) :- a(1,T-1).
b(1,T) :- a(0,T-1).
Conservation rules
a(0,T) :- a(0,T-1).
a(1,T) :- a(1,T-1).
b(0,T) :- b(0,T-1).
b(1,T) :- b(1,T-1).
Constraints
:- a(0,T), b(1,T), b(0,T-1).
:- a(1,T), b(0,T), a(0,T-1).
:- a(1,T), b(0,T), b(1,T-1).
:- a(0,T), b(1,T), a(1,T-1).

a := not b
a(0,T) :- b(1,T-1).
a(1,T) :- b(0,T-1).
b := not a
b(0,T) :- a(1,T-1).
b(1,T) :- a(0,T-1).
Conservation rules
a(1,T) :- a(1,T-1).
b(1,T) :- b(1,T-1).
Degradation
a(0,T) :- a(1,T-1).
b(0,T) :- b(1,T-1).
Constraints
:- a(1,T), b(1,T), a(1,T-1).

a := not b
a(0,T) :- b(1,T-1).
a(1,T) :- b(0,T-1).
b := not a
b(0,T) :- a(1,T-1).
b(1,T) :- a(0,T-1).
Inverse value
a(0,T) :- a(1,T-1).
a(1,T) :- a(0,T-1).
b(0,T) :- b(1,T-1).
b(1,T) :- b(0,T-1).
Constraints
:- a(1,T), b(1,T), a(1,T-1).
:- a(0,T), b(0,T), a(0,T-1).
:- a(1,T), b(1,T), b(1,T-1).
:- a(0,T), b(0,T), b(0,T-1).

Maxime FOLSCHETTE, Tony RIBEIRO 26/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Learning Time Series

Maxime FOLSCHETTE, Tony RIBEIRO 27/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Potential Usage

Black box Semantics

Semantics

State graph

State graphz

a

b

1+ 1−
2+

1+

1+

Maxime FOLSCHETTE, Tony RIBEIRO 28/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Potential Usage

Semantics

Semantics

State graph

State graph

Biological
system

z

a

b

1+ 1−
2+

1+

1+

Maxime FOLSCHETTE, Tony RIBEIRO 28/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Potential Usage

Behavior

Semantics State graph

Biological
system

z

a

b

1+ 1−
2+

1+

1+

Maxime FOLSCHETTE, Tony RIBEIRO 28/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Potential Usage

Behavior

Semantics State graph

Discretization

Biological
system

z

a

b

1+ 1−
2+

1+

1+

Maxime FOLSCHETTE, Tony RIBEIRO 28/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Scalability of GULA

Run time of GULA for 9 to 18 nodes Boolean networks for the three
semantics: run time in seconds for 25%/50%/75%/100% of the
transitions as input, and total number of transitions.

Benchmark size synchronous asynchronous general
arellano_rootstem 9 2s/1.8s/0.9s/0.3s/512 2.4s/1.4s/1.1s/0.2s/1,940 1.1s/0.5s/0.3s/0.3s/11K
davidich_yeast 10 16s/10s/4s/0.6s/1,024 12s/6s/4s/0.5s/4,364 3s/1.5s/1s/0.9s/39K
faure_cellcycle 10 15s/10s/4s/0.8s/1,024 12s/5.6s/4.7s/0.6s/4,273 4s/1.2s/0.9s/0.9s/31K
fission_yeast 10 16s/10s/4.8s/0.8s/1,024 12s/5.8s/4.6s/0.4s/4,157 3.6s/1.2s/1s/0.8s/34K
mammalian 10 14.8s/11s/4.8s/0.8s/1,024 12s/5.7s/3.4s/0.6s/4,273 3.4s/1.4s/1s/0.9s/31K
budding_yeast 12 564s/194s/61s/3.7s/4,096 216s/107s/85s/2.6s/20K 51s/14s/5.9s/4.1s/260K
n12c5 12 468s/200s/64s/2.8s/4,096 213s/103s/144s/1.3s/30K 4.7s/6s/8.6s/11s/1,122K
tournier_apoptosis 12 369s/164s/54s/2.7s/4,096 199s/98s/94s/2s/22K 26s/6.7s/4.6s/4.6s/358K
dinwoodie_stomatal 13 -/748s/221s/6.1s/8,192 -/548s/628s/4s/53K 70s/18s/15s/18s/1.5M
multivalued 13 -/-/406s/6s/8,192 -/565s/765s/4.9s/49K 61s/18s/13s/13s/1M
saadatpour_guardcell 13 -/757s/219s/6s/8,192 -/575s/638s/4.2s/53K 68s/17s/15s/18s/1.5M
arabidopsis 15 -/-/-/53s/32K -/-/-/50s/213K -/352s/123s/103s/7M
dinwoodie_life 15 -/-/-/37s/32K -/-/-/30s/245K -/352s/240s/256s/20M
randomnet_n15k3 15 -/-/-/51s/32K -/-/-/31s/262K 731s/219s/226s/280s/22M
irons_yeast 18 -/-/-/653s/262K -/-/-/324s/2M memory out

Exponential w.r.t variables/values but faster if more observations.
Runtime is not a problem with PRIDE, a polynomial approximation.

Maxime FOLSCHETTE, Tony RIBEIRO 29/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Polynomial Approximation: PRIDE

PRIDE = Polynomial Relational Inference of Discrete Events

Input: a set of transitions (feature → target)

Output: a program that respects:
• Consistency: The program allows no negative examples
• Realization: The program covers all positive examples
• Completeness: The program covers all the state space
• Minimality of the rules (most general bodies)

Method:
→ Keep only one specialization according to a non-matched positive
example.
→ Use greedy search to minimize rules.

Maxime FOLSCHETTE, Tony RIBEIRO 30/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Learning Semantics is exponential

Run time of Synchronizer for 6 to 10 nodes Boolean networks for the
three semantics: run time in seconds for 25%/50%/75%/100% of the
transitions as input, and total number of transitions.

Benchmark size synchronous asynchronous general
n6s1c2 6 0.2s/0.3s/0.2s/0.1s/64 2.5s/4.4s/3.6s/1s/230 9s/6s/2.9s/0.5s/1,039
n7s3 7 1.6s/3.1s/2.5s/0.3s/128 32s/35s/26s/5s/451 139s/68s/21s/6s/2,243
randomnet_n7k3 7 5.9s/16s/19s/6.6s/128 25s/47s/32s/5.4s/394 133s/93s/45s/9.9s/1,580
xiao_wnt5a 7 0.96s/1.4s/1s/0.2s/128 11s/21s/12s/3s/324 25s/14s/7s/1.1s/972
arellano_rootstem 9 86s/83s/40s/2.6s/512 -/-/-/145s/1,940 -/-/-/41s/11,472
davidich_yeast 10 -/796s/363s/28s/1,024 -/-/-/622s/4,364 -/-/-/-/38,720
faure_cellcycle 10 -/-/558s/31s/1,024 -/-/-/865s/4,273 -/-/-/-/30,971
fission_yeast 10 -/-/478s/36s/1,024 -/-/-/662s/4,157 -/-/-/-/33,727
mammalian 10 -/-/598s/33s/1,024 -/-/-/841s/4,273 -/-/-/-/30,971

Maxime FOLSCHETTE, Tony RIBEIRO 31/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Prediction Power of GULA/PRIDE
Evaluate quality of rules:
→ Prediction of each variable possible value
→ Learn from partial observations (group by initial state / random)
→ Prediction from unseen states (train ∩ test = ∅)

Method:
→ Use GULA/PRIDE to learn two programs: P and P
→ P: classic program that say when a target atom is possible
→ P: a kind of anti-program that say when a target atom is not possible
→ Rules are weighted by the number of observations they match
→ Probabilities can be obtain from the most matching rule/anti-rule

Predicting probabilities of a0t from 〈a1t−1, b1
t−1, c1t−1, st1〉

P:
(105) : a0t ← b0

t−1.
(42) : a0t ← b1

t−1 ∧ c1t−1.
(12) : a0t ← c1t−1 ∧ st1.

P:
(81) : a0t ← b0

t−1.
(61) : a0t ← a1t−1 ∧ c0t−1.
(30) : a0t ← a1t−1 ∧ st1.

Prediction: 0.5 + 0.5× 42−30
42+30 = 0.58

Accuracy: mean absolute error VS Ground truth: 0 : 0.58, 1 : 0.42
Maxime FOLSCHETTE, Tony RIBEIRO 32/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Prediction power

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
cc

ur
a

cy

Percentage of training data

n3s1c1a (3)

n3s1c1b (3)

raf (3)

n5s3 (5)

n6s1c2 (6)

n7s3 (7)

randomnet_n7k3 (7)

xiao_wnt5a (7)

arellano_rootstem (9)

davidich_yeast (10)

faure_cellcycle (10)

fission_yeast (10)

mammalian (10)

budding_yeast (12)

n12c5 (12)

tournier_apoptosis (12)

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
cc

ur
a

cy

Percentage of training data

n3s1c1a (3)

n3s1c1b (3)

raf (3)

n5s3 (5)

n6s1c2 (6)

n7s3 (7)

randomnet_n7k3 (7)

xiao_wnt5a (7)

arellano_rootstem (9)

davidich_yeast (10)

faure_cellcycle (10)

fission_yeast (10)

mammalian (10)

budding_yeast (12)

n12c5 (12)

tournier_apoptosis (12)

Partial initial states Partial transitions

Figure: Accuracy of the models learned by GULA when predicting possible
target variable values from unseen states: (left) experiment 1, with a complete
set of input transitions from a partial number of initial states; and (right)
experiment 2, with a potentially incomplete set of input transitions from an
incomplete set of initial states.

Maxime FOLSCHETTE, Tony RIBEIRO 33/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Outlook: GULA/PRIDE Workflow

Neural Network
Predictor

Neural Network
Discretizator

Artificial
Transitions

Variables
Tresholds

Discrete
Transitions

Raw
time series

+ Logic
Program

Raw
Predictions

Explained
Predictions

Explained
Observations

Formal
Analysis

First order
generalization

PRIDE

GULA

→ Pre-process: Use statistical ML for data augmentation/noise tolerance
→ Pre-process: Automatic discretization using hand-made NN layer
→ Post-process: Weight rules for predictions
→ Post-process: First order generalization to simplify explanations

Maxime FOLSCHETTE, Tony RIBEIRO 34/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Outlook: GULA/PRIDE Workflow

Neural Network
Predictor

Neural Network
Discretizator

Artificial
Transitions

Variables
Tresholds

Discrete
Transitions

Raw
time series

+ Logic
Program

Raw
Predictions

Explained
Predictions

Explained
Observations

Formal
Analysis

First order
generalization

PRIDE

GULA

→ Pre-process: Use statistical ML for data augmentation/noise tolerance
→ Pre-process: Automatic discretization using hand-made NN layer
→ Post-process: Weight rules for predictions
→ Post-process: First order generalization to simplify explanations

Maxime FOLSCHETTE, Tony RIBEIRO 34/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Outlook: GULA/PRIDE Workflow

Neural Network
Predictor

Neural Network
Discretizator

Artificial
Transitions

Variables
Tresholds

Discrete
Transitions

Raw
time series

+ Logic
Program

Raw
Predictions

Explained
Predictions

Explained
Observations

Formal
Analysis

First order
generalization

PRIDE

GULA

→ Pre-process: Use statistical ML for data augmentation/noise tolerance
→ Pre-process: Automatic discretization using hand-made NN layer
→ Post-process: Weight rules for predictions
→ Post-process: First order generalization to simplify explanations

Maxime FOLSCHETTE, Tony RIBEIRO 34/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Outlook: GULA/PRIDE Workflow

Neural Network
Predictor

Neural Network
Discretizator

Artificial
Transitions

Variables
Tresholds

Discrete
Transitions

Raw
time series

+ Logic
Program

Raw
Predictions

Explained
Predictions

Explained
Observations

Formal
Analysis

First order
generalization

PRIDE

GULA

→ Pre-process: Use statistical ML for data augmentation/noise tolerance
→ Pre-process: Automatic discretization using hand-made NN layer
→ Post-process: Weight rules for predictions
→ Post-process: First order generalization to simplify explanations

Maxime FOLSCHETTE, Tony RIBEIRO 34/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Learning Time Series

Outlook: GULA/PRIDE Workflow

Neural Network
Predictor

Neural Network
Discretizator

Artificial
Transitions

Variables
Tresholds

Discrete
Transitions

Raw
time series

+ Logic
Program

Raw
Predictions

Explained
Predictions

Explained
Observations

Formal
Analysis

First order
generalization

PRIDE

GULA

→ Pre-process: Use statistical ML for data augmentation/noise tolerance
→ Pre-process: Automatic discretization using hand-made NN layer
→ Post-process: Weight rules for predictions
→ Post-process: First order generalization to simplify explanations

Maxime FOLSCHETTE, Tony RIBEIRO 34/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Summary & Conclusion

Conclusion

Logic rules ⇔ networks interactions ⇔ automata transitions

Learning of the structure of a model
1-step learning algorithm by successive refinements

Independent of the semantics
Proved for pseudo-idempotent semantics
→ Includes synchronous, asynchronous, general semantics

Outlooks
• Automatic learning of time series data (noise, discretization, ...)
• Learning probabilistic models
• Improve explainability (first order, post-processing)
• Optimizations (parallelization, approximations)

Maxime FOLSCHETTE, Tony RIBEIRO 35/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Summary & Conclusion

Thank you

All algorithms are open-source at:
https://github.com/Tony-sama/pylfit

Our questions:
• How to automatically and meaningfully discretize?
• Do you know a metrics to evaluate prediction on sets of states?
• Do you have datasets to apply GULA/PRIDE on?

Your questions?

Maxime FOLSCHETTE, Tony RIBEIRO 36/36 Bioss-IA 2020 — 2020-11-24

https://github.com/Tony-sama/pylfit

GULA: Learning (From Any) Semantics of a BRN ◦ Bibliography

References
• Stuart A. Kauffman. Metabolic stability and epigenesis in randomly constructed

genetic nets. Journal of Theoretical Biology, volume 22, n. 3, pages 437–467, 1969.

• René Thomas. Boolean formalization of genetic control circuits. Journal of
Theoretical Biology, volume 42, n. 3, pages 563–85, 1973.

• Katsumi Inoue, Tony Ribeiro, and Chiaki Sakama. Learning from interpretation
transition. Machine Learning Journal, volume 94, issue 1, pages 51–79, 2014.

• Tony Ribeiro, Morgan Magnin, Katsumi Inoue, Chiaki Sakama. Learning delayed
influences of biological systems. Frontiers in Bioengineering and Biotechnology,
volume 2, issue 81, 2015.

• David Martinez, Tony Ribeiro, Katsumi Inoue, Guillem Alenya, Carme Torras.
Learning probabilistic action models from interpretation transitions. The 31st
International Conference on Logic Programming (ICLP), Cork, Ireland, 2015.

• Tony Ribeiro, Sophie Tourret, Maxime Folschette, Morgan Magnin, Domenico
Borzacchiello, Francisco Chinesta, Olivier Roux, Katsumi Inoue. Inductive Learning
from State Transitions over Continuous Domains. The 27th International Conference
on Inductive Logic Programming (ILP), Orléans, France, 2017.

• Tony Ribeiro, Maxime Folschette, Morgan Magnin, Olivier Roux, Katsumi Inoue.
Learning Dynamics with Synchronous, Asynchronous and General Semantics. The 27th
International Conference on Inductive Logic Programming (ILP), Ferrara, Italy, 2018.

Maxime FOLSCHETTE, Tony RIBEIRO 37/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Appendix

Characterization of Classical Semantics
The three semantics can be detected by checking the following properties.

a b f(a) := not b.
f(b) := not a.

Asynchronous General

00

01 10

11

00

01 10

11

Synchronous

00

01 10

11

Synchronous:
∀(s, s1), (s, s2) ∈ T ,∀s3 ∈ ST , s3 ⊆ s1 ∪ s2 =⇒ (s, s3) ∈ T .

Maxime FOLSCHETTE, Tony RIBEIRO 38/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Appendix

Characterization of Classical Semantics
The three semantics can be detected by checking the following properties.

a b f(a) := not b.
f(b) := not a.

Asynchronous General

00

01 10

11

00

01 10

11

Synchronous

00

01 10

11

Asynchronous: ∀(s, s ′) ∈ T , spF→T (s) 6⊆
s ′,
(
(s, s ′′) ∈ T , spF→T (s) ⊆ s ′′ =⇒ (s, s ′) /∈ T

)
∧
(
(s, s ′) ∈ T =⇒

|spF→T (s) \ s ′| = 1
)
.

Maxime FOLSCHETTE, Tony RIBEIRO 38/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Appendix

Characterization of Classical Semantics
The three semantics can be detected by checking the following properties.

a b f(a) := not b.
f(b) := not a.

Asynchronous General

00

01 10

11

00

01 10

11

Synchronous

00

01 10

11

General:
∀(s, s1), (s, s2) ∈ T ,∀s3 ∈ ST , s3 ⊆ spF→T (s) ∪ s1 ∪ s2 =⇒ (s, s3) ∈ T .

Maxime FOLSCHETTE, Tony RIBEIRO 38/36 Bioss-IA 2020 — 2020-11-24

GULA: Learning (From Any) Semantics of a BRN ◦ Appendix

Pseudo-Idempotent Semantics
Definitions:
• AT = all feature atoms
• SF = all states on feature atoms
• ST = all states with target atoms
• Ccl(s, P) = set of heads of rules in P that match s
• PO(P) = optimal program (learned by GULA)

Theorem 2 (Pseudo-idempotent Semantics and Optimal DMVLP)
Let DS be a dynamical semantics.
For all P a DMVLP, if:
∃pick ∈ (SF × ℘(AT)→ ℘(ST) \ {∅}) so that

1 ∀s ∈ SF ,∀D ⊆ AT , pick(s,
⋃

s′∈pick(s,D)
s ′) = pick(s, D) and

2 ∀s ∈ SF ,
(
DS(P)

)
(s) = pick(s,Ccl(s, P)),

then: for all P a DMVLP, DS(PO(DS(P)))) = DS(P).

Maxime FOLSCHETTE, Tony RIBEIRO 39/36 Bioss-IA 2020 — 2020-11-24

	Introduction
	Discrete Networks
	Logic Programs
	Learning
	Learning Semantics
	Learning Time Series
	Summary & Conclusion
	Appendix
	Bibliography
	Appendix

