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Motivations

We use the polyadic μ-calculus [1], a generalization of modal μ-calculus
and CTL*, in order to study biological models. The modal μ-calculus features
atomic properties on nodes (p), the universal (2) and existential (3) modal
operators to access immediate futures, and the least (µ) and greatest (ν) fixed
point operators to express explicit iterative computations. Its polyadic
extension introduces the notion of tokens, that are dynamic pointers to
nodes in the considered model. Considering several tokens allows dynamical
relations between nodes to be studied. Properties on nodes (pi) as well as
modal operators (2i, 3i) get indexed by a token identifier i, specifying which
token is being accessed by this operator.

Here, we apply the polyadic μ-calculus to biological regulatory networks
in a way that does not require the computation of the state-transition graph
beforehand. The logic is directly interpreted using the “compact” form that
most biological models come into. We focus here on a range of models called
Asynchronous Automata Networks (AANs) [4] that consist of
Synchronous Automata Networks in which each transition changes the active
local state of exactly one automaton. This class of models especially
encompasses the widespread formalism of René Thomas. For this, the
semantics of 2i and 3i is adapted to match the semantics of the considered
class of models; in other words, a token can move along an edge only if the
semantics of the model allows it.
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Example 1

p
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r

Atomic property (p, q, r)
Jp1 ∧ r2K = {(p, r)}
Jp1K = {(p, p); (p, q); (p, r)}

Token affectation (i← j)
J{2← 1} p1 ∧ p2K = {(p, p); (p, q); (p, r)}

Token comparison (i = j)
J1 = 2K = {(p, p); (q, q); (r, r)}

Possible future (“may”)
J31 qK = {(p, p); (p, q); (p, r)}

Necessary future (“must”)
J21 qK = ∅

Example 2

a1 b1

a2 b2

... ...

an bm
Least fixed point (µ)
φ = µX.(21⊥ ∧22⊥) ∨3132X

Iterations:
JφK0 = ∅
JφK1 = {(a1, b1)}
JφK2 = {(a1, b1); (a2, b2)}
JφK3 = {(a1, b1); (a2, b2); (a3, b3)}

...
Generalization:

JφK = {(ai, bi) | i ∈ [1; min(m,n)]}

Model checking the polyadic μ-calculus

The problem of checking whether an AAN with n components, each of size at most k, satisfies a formula ϕ is
decidable in time O((kcn · |ϕ|)ad(ϕ)+1) where c is the number of tokens used in each component and ad(ϕ) is the
nesting depth of alternating fixed point operators in ϕ. This is low for typical properties of interest: reachability
properties for instance can be formalized with depth 0, some properties of repeated reachability require alternation
depth 1. Equally, c will also be low, typically at most 3, and k often equals 2 in biological networks.
Conceptually, the model checking problem is reduced to that of the modal μ-calculus over the state-transition
graph of the AAN [5]. On-the-fly techniques [3] then avoid the construction of the whole graph in general.
Symbolic model checking using BDDs [2] is also possible.

Conclusion

A model-checking tool is currently under development. Finding optimizations for specific formulas or models may help
reduce the complexity of the model checking in some cases.
Further work also includes the formalization of more interesting properties on biological systems into polyadic
μ-calculus.
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= belongs to
an attractor

List all states belonging to an attractor:

ϕa = {y ← x}νW.
(∧n

i=1 2xiW
)
∧

µZ. (x = y) ∨
(∨n

j=1 3xjZ
)

All finite paths starting from x never prevent to loop
back to x.

I JϕaK = {(s; s) | ∀t, s→ t⇒ t→ s}

= bisimilar states

Bisimulation of two models on observable components:

ϕb = νX.(
∧
p∈P

∧
(i;j)∈C pi⇔ pj)∧ (2∗

O
2O3∗

O′
3O′X)

for two given sets of observables O and O′ and a correspondence
relation C. Ensures that the two models are bisimilar when consid-
ering only observables.

a

= switch

List the switches that prevent reaching a given state a:

ϕs(a) =
(
µX.(x = a) ∨

(∨n
i=1 3xiX

))
∧∨n

i=1 3xi{1← 2}
(
νZ.¬(y = a) ∧

(∧n
j=1 2yjZ

))
Computes all couples of successive states where a switch in the reachability
of a occurs.
I Jϕs(a)K = {(s; t) ∈ L × L | s→ t ∧ s→ a ∧ ¬t→ a}

State space

AAN |= ϕ
?


