MDSC team seminar

Qualitative modeling and dynamical analysis of Biological Regulatory Networks using Asynchronous Automata Networks

Maxime FOLSCHETTE

MDSC team / Bioinfo project / I3S laboratory / University of Nice–Sophia Antipolis
maxime.folschette@i3s.unice.fr
http://maxime.folschette.name/

2015/09/28
The Modeling/Analysis duality

Modeling a system is the first step towards its comprehension
The Modeling/Analysis duality

Modeling a system is the first step towards its comprehension

The required analysis has an impact on modeling
- The modeling tools must be adapted to the observed properties
The Modeling/Analysis duality

Modeling a system is the first step towards its comprehension

The required analysis has an impact on modeling
 • The modeling tools must be adapted to the observed properties

Modeling choices have an impact on the results of the analysis
 • The level of details changes the quantity of obtained info
 • The size of the model increases the analysis duration
The Modeling/Analysis duality

Modeling a system is the first step towards its comprehension

The required analysis has an impact on modeling
- The modeling tools must be adapted to the observed properties

Modeling choices have an impact on the results of the analysis
- The level of details changes the quantity of obtained info
- The size of the model increases the analysis duration

The modeling and analysis steps of a system are strongly linked
Abstracting biological models

- Abstraction of biological components
- Discrete, asynchronous and unitary representations
Abstracting biological models

- Abstraction of biological components
- Discrete, asynchronous and unitary representations

Examples of discrete models

- Discrete Networks (Thomas modeling)
- Asynchronous Automata Networks
- Other extensions of the Process Hitting formalism
Abstracting biological models

- Abstraction of biological components
- Discrete, asynchronous and unitary representations

Examples of discrete models

- Discrete Networks (Thomas modeling)
- Asynchronous Automata Networks
- Other extensions of the Process Hitting formalism

Analysis of the dynamics of discrete models

- Static analysis on the structure
- Abstract interpretation
- A μ-calculus approach
Abstractions of the Representation
Abstractions of the Representation
Abstractions of the Representation
Discretization and Asynchronism

Discretization and Asynchronism

[Richard, Advances in Applied Mathematics, 2010]
Discretization and Asynchronism

- Unknown real values of concentrations or continuous activity levels
 → Abstracted as thresholds or **discrete levels**
Qualitative modeling and dynamical analysis of BRNs using AANs

Introduction

Discretization and Asynchronism

[Richard, Advances in Applied Mathematics, 2010]

- Unknown real values of concentrations or continuous activity levels
 → Abstracted as thresholds or discrete levels
- Continuous variations of the real values
 → Unitary dynamics
Discretization and Asynchronism

[Richard, Advances in Applied Mathematics, 2010]

- Unknown real values of concentrations or continuous activity levels
 → Abstracted as thresholds or discrete levels
- Continuous variations of the real values
 → Unitary dynamics
- Simultaneous crossings of two thresholds never occurs
 → Asynchronous dynamics
Discrete Networks / Thomas Modeling

[Kauffman in *Journal of Theoretical Biology*, 1969]
[Thomas in *Journal of Theoretical Biology*, 1973]

- A set of components \(N = \{a, b, z\} \)
Discrete Networks / Thomas Modeling

[Kauffman in *Journal of Theoretical Biology*, 1969]
[Thomas in *Journal of Theoretical Biology*, 1973]

- A set of components \(N = \{a, b, z\} \)
- A set of discrete expression levels for each component \(a \in F^a = \{0; 2\} \)
- The set of global states \(F = F^a \times F^b \times F^z \)
Discrete Networks / Thomas Modeling

[Kauffman in *Journal of Theoretical Biology*, 1969]
[Thomas in *Journal of Theoretical Biology*, 1973]

- A set of components \(N = \{a, b, z\} \)
- A set of discrete expression levels for each component \(a \in F^a = [0; 2] \)
- The set of global states \(F = F^a \times F^b \times F^z \)
- An evolution function for each component \(f^z : F \rightarrow F^z \)

\[
\begin{array}{c|c}
 a & f^b(a) \\
 \hline
 0 & 0 \\
 1 & 1 \\
 2 & 1 \\
\end{array}
\quad
\begin{array}{c|c|c}
 z & b & f^a(z, b) \\
 \hline
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 1 \\
 1 & 1 & 2 \\
\end{array}
\quad
\begin{array}{c|c|c}
 a & b & f^z(a, b) \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 0 \\
 2 & 0 & 0 \\
 2 & 1 & 1 \\
\end{array}
\]
Discrete Networks / Thomas Modeling

- A set of components $N = \{a, b, z\}$
- A set of discrete expression levels for each component $a \in F^a = [0; 2]$
- The set of global states $F = F^a \times F^b \times F^z$
Qualitative modeling and dynamical analysis of BRNs using AANs

Discrete Networks / Thomas Modeling

[Kauffman in *Journal of Theoretical Biology*, 1969]
[Thomas in *Journal of Theoretical Biology*, 1973]

- A set of components \(N = \{a, b, z\} \)
- A set of discrete expression levels for each component \(a \in F^a = [0; 2] \)
- The set of global states \(F = F^a \times F^b \times F^z \)
- Signs on the edges \(a \rightarrow z \)
Discrete Networks / Thomas Modeling

[Kauffman in *Journal of Theoretical Biology*, 1969]
[Thomas in *Journal of Theoretical Biology*, 1973]

- A set of components $N = \{a, b, z\}$
- A set of discrete expression levels for each component $a \in F^a = [0; 2]$
- The set of global states $F = F^a \times F^b \times F^z$
- Signs on the edges $a \rightarrow z$ or signs $+$ thresholds $a \rightarrow z$

![Diagram](attachment:image.png)
Discrete Networks / Thomas Modeling

[Kauffman in *Journal of Theoretical Biology*, 1969]
[Thomas in *Journal of Theoretical Biology*, 1973]

- A set of components \(N = \{a, b, z\} \)
- A set of discrete expression levels for each component \(a \in F^a = [0; 2] \)
- The set of global states \(F = F^a \times F^b \times F^z \)
- Signs on the edges \(a \rightarrow z \) or signs + thresholds \(a \rightarrow^{2,+} z \)
- Discrete parameters / evolution functions \(f^a : F \rightarrow F^a \)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(f^b(a))</th>
<th>(z)</th>
<th>(b)</th>
<th>(f^a(z, b))</th>
<th>(a)</th>
<th>(b)</th>
<th>(f^z(a, b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Maxime FOLSCHEETTE 6/35 MDSC seminar — 2015/09/28
Several semantics exist regarding the updates:

- Synchronous (deterministic)
- **Asynchronous** (non-deterministic)
- Generalized (even more non-deterministic)

In every case, exponential size in the number of components
Qualitative modeling and dynamical analysis of BRNs using AANs

Classical Analysis of Discrete Networks

State-graph of a Discrete Network

Several semantics exist regarding the updates:

- Synchronous (deterministic)
- **Asynchronous** (non-deterministic)
- Generalized (even more non-deterministic)

In every case, exponential size in the number of components

```
abz
000 ← 010 ← 001 ← 011
|     |     |     |
|     | 110 |     | 111
| 100 |     | 101 |     | 200 |     | 201 |     | 210 |     | 211

Attractor = minimal set of states from which the dynamics cannot escape
= terminal strongly connected component

- Stable state (state with no successors)
- Complex attractor (loop or composition of loops)
```
Several semantics exist regarding the updates:

- Synchronous (deterministic)
- Asynchronous (non-deterministic)
- Generalized (even more non-deterministic)

In every case, exponential size in the number of components

Attractor = minimal set of states from which the dynamics cannot escape

= terminal strongly connected component
Several semantics exist regarding the updates:

- **Synchronous** (deterministic)
- **Asynchronous** (non-deterministic)
- **Generalized** (even more non-deterministic)

In every case, exponential size in the number of components

Attractor = minimal set of states from which the dynamics cannot escape

= terminal strongly connected component

- **Stable state** (state with no successors)
Several semantics exist regarding the updates:

- Synchronous (deterministic)
- **Asynchronous** (non-deterministic)
- Generalized (even more non-deterministic)

In every case, exponential size in the number of components

Attractor = minimal set of states from which the dynamics cannot escape
= terminal strongly connected component

- **Stable state** (state with no successors)
- **Complex attractor** (loop or composition of loops)
Static Analysis of Discrete Networks

Conjectures of René Thomas:

![Diagram](attachment:image.png)
Conjectures of René Thomas:

- Multiple **stable states** \Rightarrow positive cycle in the graph
Conjectures of René Thomas:

- Multiple **stable states** \Rightarrow positive cycle in the graph

\[a \xrightarrow{[0; 2]} b \xrightarrow{[0; 1]} z \xrightarrow{[0; 1]} a \]

Proofs:
- [Remy, Ruet, Thieffry in *Advances in Applied Mathematics*, 2008]
- [Richard, Comet in *Discrete Applied Mathematics*, 2007]

Other results:
- Lower & upper bounds of the number of attractors
- Functionality of the cycles
- Sufficient condition for no stable state / Topological stable states
Conjectures of René Thomas:

- Multiple **stable states** ⇒ positive cycle in the graph
- Sustained oscillations (**complex attractor**) ⇒ negative cycle in the graph
Qualitative modeling and dynamical analysis of BRNs using AANs

Classical Analysis of Discrete Networks

Static Analysis of Discrete Networks

Conjectures of René Thomas:

- Multiple **stable states** \Rightarrow positive cycle in the graph
- Sustained oscillations (**complex attractor**) \Rightarrow negative cycle in the graph

Proofs:

- [Remy, Ruet, Thieffry in *Advances in Applied Mathematics*, 2008]
- [Richard, Comet in *Discrete Applied Mathematics*, 2007]
Static Analysis of Discrete Networks

Conjectures of René Thomas:

- **Multiple stable states** ⇒ positive cycle in the graph
- **Sustained oscillations** (complex attractor) ⇒ negative cycle in the graph

Proofs:

[Remy, Ruet, Thieffry in *Advances in Applied Mathematics*, 2008]
[Richard, Comet in *Discrete Applied Mathematics*, 2007]

Other results:

- Lower & upper bounds of the number of attractors
- Functionality of the cycles
- Sufficient condition for no stable state / Topological stable states
Dynamic Analysis of Discrete Networks

- These static analysis results are not sufficient to predict the dynamics of independent components.

Examples that cannot be tackled:

1) From the initial state \((a, b, z) = (0, 0, 0)\), is it possible to reach \(z = 2\)?
2) Does \((0, 0, 0)\) belong to an attractor?
3) What is the set of attractors of the model?
Dynamic Analysis of Discrete Networks

- These static analysis results are not sufficient to predict the dynamics of independent components.

Examples that cannot be tackled:
1) From the initial state \((a, b, z) = (0, 0, 0)\), is it possible to reach \(z = 2\)?
2) Does \((0, 0, 0)\) belong to an attractor?
3) What is the set of attractors of the model?

- Temporal logics (LTL, CTL, CTL*)

More precise but require to compute the whole state graph

Examples:
1) \((a = 0 \land b = 0 \land z = 0) \Rightarrow EF(z = 2)\)
2) \((a = 0 \land b = 0 \land z = 0) \Rightarrow AG(EF(a = 0 \land b = 0 \land z = 0))\)
3) ???
Dynamic Analysis of Discrete Networks

- These static analysis results are not sufficient to predict the dynamics of independent components.

Examples that cannot be tackled:
1) From the initial state \((a, b, z) = (0, 0, 0)\), is it possible to reach \(z = 2\)?
2) Does \((0, 0, 0)\) belong to an attractor?
3) What is the set of attractors of the model?

- Temporal logics (LTL, CTL, CTL*)

More precise but require to compute the whole state graph

Examples:
1) \((a = 0 \land b = 0 \land z = 0) \Rightarrow EF(z = 2)\)
2) \((a = 0 \land b = 0 \land z = 0) \Rightarrow AG(EF(a = 0 \land b = 0 \land z = 0))\)
3) ???

- Applications of CTL and LTL

Check a property on a given model: NuSMV, LibDDD, ...
Create a model for which a property holds: SMBioNet, SPuTNIk, ...
[Bernot, Comet, Richard, Guespin in *Journal of Theoretical Biology, 2004*]
The Enriched Process Hitting

Synchronized Automata Networks

- Process Hitting
- Discrete Networks (Thomas)
The Enriched Process Hitting

Synchronized Automata Networks

- Process Hitting
 - Abstract interpretation

- Discrete Networks (Thomas)
Qualitative modeling and dynamical analysis of BRNs using AANs

Analysis with Asynchronous Automata Networks

The Enriched Process Hitting

Synchronized Automata Networks

Asynchronous Automata Networks

Process Hitting

Discrete Networks (Thomas)

Abstract interpretation
The Enriched Process Hitting
Example of enriched Process Hitting Model
Model from [François et al. in Molecular Systems Biology, 2007]
Static analysis

- No conflict
- All leaves are \emptyset

![Diagram of AANs and BRNs](diagram.png)
Qualitative modeling and dynamical analysis of BRNs using AANs — Analysis with Asynchronous Automata Networks

Static analysis

- No conflict
- All leaves are \emptyset

$$\{c_0, f_1\} \rightarrow a_0 \Rightarrow a_1$$
Static analysis

- No conflict
- All leaves are \emptyset

\[
\begin{align*}
\{c_0, f_1\} &\rightarrow a_0 \rightarrow a_1 \\
\{c_0, f_1\} &\rightarrow c_0 \rightarrow c_0
\end{align*}
\]
Static analysis

- No conflict
- All leaves are \emptyset

\[\{c_0, f_1\} \rightarrow a_0 \rhd a_1 \]
Static analysis

- No conflict
- All leaves are \emptyset

\[\{c_0, f_1\} \rightarrow a_0 \rightarrow a_1 \]
Qualitative modeling and dynamical analysis of BRNs using AANs • Analysis with Asynchronous Automata Networks

Static analysis

- No conflict
- All leaves are \(\emptyset \)

\[\{ c_0, f_1 \} \rightarrow a_0 \xrightarrow{\sim} a_1 \]

\[f_1 \rightarrow f_1 \xrightarrow{\sim} f_1 \rightarrow \emptyset \]

\[c_0 \rightarrow c_0 \xrightarrow{\sim} c_0 \rightarrow \emptyset \]
Static analysis

- No conflict
- All leaves are \emptyset

\[
\begin{align*}
\{c_0, f_1\} &\rightarrow a_0 \rightarrow a_1 \\
c_0 &\rightarrow c_0 \\
f_1 &\rightarrow f_1 \\
\end{align*}
\]
Static analysis

- No conflict
- All leaves are \emptyset

\[
\begin{align*}
\{a_1, f_1\} & \rightarrow c_0 \triangleright c_1 \quad :: \quad \{c_1\} \rightarrow a_1 \triangleright a_0
\end{align*}
\]
Static analysis

- No conflict
- All leaves are \emptyset

\[
\begin{align*}
&\text{No conflict} \\
&\text{All leaves are } \emptyset
\end{align*}
\]
Qualitative modeling and dynamical analysis of BRNs using AANs

Analysis with Asynchronous Automata Networks

Static analysis

- No conflict
- All leaves are \emptyset

$$\{a_1, f_1\} \rightarrow c_0 \vdash c_1 :: \{c_1\} \rightarrow a_1 \uparrow a_0$$
Qualitative modeling and dynamical analysis of BRNs using AANs

Analysis with Asynchronous Automata Networks

Static analysis

- No conflict
- All leaves are \emptyset

$$\{a_0\} \rightarrow c_1 \triangleright c_0 :: \{c_0, f_1\} \rightarrow a_0 \triangleright a_1$$
Static analysis

- No conflict
- All leaves are \emptyset

\[\{a_0\} \rightarrow c_1 \uparrow c_0 :: \{c_0, f_1\} \rightarrow a_0 \uparrow a_1 \]
Qualitative modeling and dynamical analysis of BRNs using AANs • Analysis with Asynchronous Automata Networks

Static analysis

- No conflict
- All leaves are \emptyset

\[
\begin{align*}
\{a_0\} & \rightarrow c_1 \xrightarrow{\cdot} c_0 :: \{c_0, f_1\} & \rightarrow & a_0 \xrightarrow{\cdot} a_1
\end{align*}
\]
Qualitative modeling and dynamical analysis of BRNs using AANs • Analysis with Asynchronous Automata Networks

Static analysis

- No conflict
- All leaves are \emptyset

$$\{a_0\} \rightarrow c_1 \uparrow c_0 :: \{c_0, f_1\} \rightarrow a_0 \uparrow a_1$$
Implementation of the Static Analysis Into PINT

Complexity:

- Computation of the local causality graph:
 - Polynomial in the number of sorts
 - Exponential in the number of processes of each sort
- Analysis of the graph (sufficient condition):
 - Polynomial in the size of the graph
Implementation of the Static Analysis Into PINT

Complexity:

- Computation of the local causality graph:
 - Polynomial in the number of sorts
 - Exponential in the number of processes of each sort
- Analysis of the graph (sufficient condition):
 - Polynomial in the size of the graph

Makes the study of large networks tractable:

<table>
<thead>
<tr>
<th>Model</th>
<th>Automata</th>
<th>Actions</th>
<th>States</th>
<th>libddd1</th>
<th>GINsim2</th>
<th>PINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>egfr20</td>
<td>35</td>
<td>670</td>
<td>2^{64}</td>
<td><1s</td>
<td>0.02s</td>
<td></td>
</tr>
<tr>
<td>tcrsig40</td>
<td>54</td>
<td>301</td>
<td>2^{73}</td>
<td>∞</td>
<td>0.02s</td>
<td></td>
</tr>
<tr>
<td>tcrsig94</td>
<td>133</td>
<td>1124</td>
<td>2^{194}</td>
<td>(>1min – ∞)</td>
<td>0.03s</td>
<td></td>
</tr>
<tr>
<td>egfr104</td>
<td>193</td>
<td>2356</td>
<td>2^{320}</td>
<td>(>1min – ∞)</td>
<td>0.16s</td>
<td></td>
</tr>
</tbody>
</table>

1 LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]
2 TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]
tcrgsig40 : T-Cell Receptor (40 composants) [Klamt et al., 2006]
tcrgsig94 : T-Cell Receptor (94 composants) [Saez-Rodriguez et al., 2007]
Classes of priorities

[Folschette et al. in *Theoretical Computer Science*, 2015b]

- Each action is associated to a discrete priority
- An action is playable only if no other action with higher priority is playable

\[a \xrightarrow{1} b \xrightarrow{1} \quad \text{cannot be reached}\]
Classes of priorities

[Folschette et al. in *Theoretical Computer Science*, 2015b]

- Each action is associated to a discrete priority
- An action is playable only if no other action with higher priority is playable

\[a \xrightarrow{1} b \]

\[
\begin{array}{c}
1 & 2 & 3 & \cdots & n \\
\text{highest priority} & & & & \text{lowest priority}
\end{array}
\]

\[\rightarrow b_1 \text{ cannot be reached} \]
Temporal Simulation
[Paulevé (PhD thesis), 2011]

- Simulation with stochastic parameters:

\begin{align*}
\text{a} & = [0.742; 1.29] \text{ (mean 1)} \\
\text{c} & = [1.48; 2.59] \text{ (mean 2)} \\
\text{f} & = [23.9; 35.4] \text{ (mean 30)}
\end{align*}
Temporal Simulation
[Paulevé (PhD thesis), 2011]

- Simulation with stochastic parameters:

 \[
 a = [0.742; 1.29] \text{ (mean 1)}
 \]
 \[
 c = [1.48; 2.59] \text{ (mean 2)}
 \]
 \[
 f = [23.9; 35.4] \text{ (mean 30)}
 \]
Spatial Simulation

Paulevé (PhD thesis), 2011

Simulation with stochastic parameters:

\(a = [0.742; 1.29]\) (mean 1)
\(c = [1.48; 2.59]\) (mean 2)
\(f = [23.9; 35.4]\) (mean 30)

\(\Rightarrow a < c < f\)

Stochastic parameters:
Temporal Simulation
[Paulevé (PhD thesis), 2011]

- Simulation with stochastic parameters:

\begin{align*}
\text{Stochastic parameters:} \\
\bullet \ a &= [0.742; 1.29] \text{ (mean 1)} \\
\bullet \ c &= [1.48; 2.59] \text{ (mean 2)} \\
\bullet \ f &= [23.9; 35.4] \text{ (mean 30)} \Rightarrow a < c < f
\end{align*}
Example with Classes of Priorities
Example with Classes of Priorities
Neutralizing Edges

- Integration of temporal data about relative reaction speeds
- Atomistic preemptions between actions similar to “atomistic priorities”

\[c_0 \rightarrow d_0 \uparrow d_1 \text{ cannot be plays while } a_0 \rightarrow b_0 \uparrow b_1 \text{ is playable} \]

\[\rightarrow d_1 \text{ is always reached after } b_1 \]
Neutralizing Edges

- Integration of temporal data about relative reaction speeds
- Atomistic preemptions between actions similar to "atomistic priorities"

$c_0 \rightarrow d_0 \uparrow d_1$ cannot be plays while $a_0 \rightarrow b_0 \uparrow b_1$ is playable

$\rightarrow d_1$ is always reached after b_1
Neutralizing Edges

- Integration of temporal data about relative reaction speeds
- Atomistic preemptions between actions similar to “atomistic priorities”

\[c_0 \rightarrow d_0 \uparrow d_1 \text{ cannot be plays while } a_0 \rightarrow b_0 \uparrow b_1 \text{ is playable} \]

\[\rightarrow d_1 \text{ is always reached after } b_1 \]
Example with Neutralizing Edges
Equivalence Between Process Hitting Extensions

- Synchronous Automata Networks
- Asynchronous Automata Networks
- Process Hitting with neutralizing edges
- Process Hitting with classes of priority
- Standard Process Hitting

All developed enrichments have the same expressivity

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation
Equivalence Between Process Hitting Extensions

- Synchronous Automata Networks
- Asynchronous Automata Networks
- Process Hitting with neutralizing edges
- Process Hitting with classes of priority
- Standard Process Hitting

All developed enrichments have the same expressivity

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation
Equivalence Between Process Hitting Extensions

Synchronous Automata Networks

Asynchronous Automata Networks

Process Hitting with neutralizing edges

Process Hitting with classes of priority

Standard Process Hitting

All developed enrichments have the same expressivity

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation
Equivalence Between Process Hitting Extensions

All developed enrichments have the same expressivity

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation
Equivalence Between Process Hitting Extensions

Synchronous Automata Networks

Asynchronous Automata Networks

Process Hitting with neutralizing edges

Process Hitting with classes of priority

Standard Process Hitting

All developed enrichments have the same expressivity

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation
Translation From and To Other Discrete Models

- Equivalence with Discrete Networks / Thomas modeling
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham
Translation From and To Other Discrete Models

- Equivalence with Discrete Networks / Thomas modeling
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham
Translation From and To Other Discrete Models

- Equivalence with Discrete Networks / Thomas modeling
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham
Translation From and To Other Discrete Models

- Equivalence with Discrete Networks / Thomas modeling
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham
Inferring a BRN with Thomas’ parameters

\[
\begin{align*}
\omega & \quad | \quad k_{z,\omega} \\
- & \quad + & \quad 1 \\
- & \quad - & \quad 0 \\
+ & \quad + & \quad 2 \\
+ & \quad - & \quad 1
\end{align*}
\]
Inferring a BRN with Thomas’ parameters

\begin{align*}
 a & \rightarrow b \\
 b & \rightarrow c \\
 c & \rightarrow a
\end{align*}
Inferring a BRN with Thomas’ parameters

\[
\begin{array}{c|c|c}
\omega & k_{z,\omega} \\
\hline
a & b \\
- & + & 1 \\
- & - & 0 \\
+ & + & 2 \\
+ & - & 1 \\
\end{array}
\]
Inferring the Interaction Graph

[Folschette et al. in *Theoretical Computer Science*, 2015a]
Inferring the Interaction Graph

[Folschette et al. in Theoretical Computer Science, 2015a]
Inferring the Interaction Graph

[Folschette et al. in Theoretical Computer Science, 2015a]

→ Exhaustive search in all possible configurations
Inferring the Interaction Graph

[Folschette et al. in *Theoretical Computer Science*, 2015a]

→ Exhaustive search in all possible configurations

1. Pick one regulator \([a]\), and choose an active process for all the others \([b_0]\).
Inferring the Interaction Graph

[Folschette et al. in Theoretical Computer Science, 2015a]

→ Exhaustive search in all possible configurations

1. Pick one regulator $[a]$, and choose an active process for all the others $[b_0]$.
2. Change the active process of the regulator $[a_0, a_1]$ and watch the evolution.
Inferring the Interaction Graph

[Folschette et al. in Theoretical Computer Science, 2015a]

→ Exhaustive search in all possible configurations

1. Pick one regulator \([a]\), and choose an active process for all the others \([b_0]\).
2. Change the active process of the regulator \([a_0, a_1]\) and watch the evolution.
Inferring the Interaction Graph

[Folschette et al. in *Theoretical Computer Science*, 2015a]

→ Exhaustive search in all possible configurations

1. Pick one regulator \([a]\), and choose an active process for all the others \([b_0]\).
2. Change the active process of the regulator \([a_0, a_1]\) and watch the evolution.
Inferring the Interaction Graph

[Fiolchette et al. in *Theoretical Computer Science*, 2015a]

→ Exhaustive search in all possible configurations

1. Pick one regulator \([a]\), and choose an active process for all the others \([b_0]\).
2. Change the active process of the regulator \([a_0, a_1]\) and watch the evolution.
Inferring the Interaction Graph

[Folschette et al. in *Theoretical Computer Science*, 2015a]

→ **Exhaustive search in all possible configurations**

1. Pick one regulator \([a]\), and choose an active process for all the others \([b_0]\).
2. Change the active process of the regulator \([a_0, a_1]\) and watch the evolution.
3. Conclude locally: \((a_0 \uparrow a_1 \Rightarrow z_0 \uparrow z_2) \Rightarrow \text{activation (\(\uparrow\)) & threshold } = 1\).
⇒ Exhaustive search in all possible configurations

1. Pick one regulator \([a]\), and choose an active process for all the others \([b_0]\).
2. Change the active process of the regulator \([a_0, a_1]\) and watch the evolution.
3. Conclude locally: \((a_0 \rightarrow a_1 \Rightarrow z_0 \rightarrow z_2) \Rightarrow\) activation (\(+\)) & threshold = 1.
4. Iterate
Qualitative modeling and dynamical analysis of BRNs using AANs

Links with Other formalisms

Inferring the Interaction Graph

[Folschette et al. in *Theoretical Computer Science*, 2015a]

→ Exhaustive search in all possible configurations

1. Pick one regulator \([a]\), and choose an active process for all the others \([b_0]\).
2. Change the active process of the regulator \([a_0, a_1]\) and watch the evolution.
3. Conclude locally: \((a_0 \uparrow a_1 \Rightarrow z_0 \uparrow z_2) \Rightarrow\) activation (+) & threshold = 1.
4. Iterate
Inferring the Interaction Graph

[Folschette et al. in Theoretical Computer Science, 2015a]

→ Exhaustive search in all possible configurations

1. Pick one regulator \([a]\), and choose an active process for all the others \([b_0]\).
2. Change the active process of the regulator \([a_0, a_1]\) and watch the evolution.
3. Conclude locally: \((a_0 \uparrow a_1 \Rightarrow z_0 \uparrow z_2) \Rightarrow \) activation (+) & threshold = 1.
4. Iterate

\{b = 1\} \Rightarrow \sim
\{b = 0\} \Rightarrow 1+
Inferring the Interaction Graph

[Folschette et al. in Theoretical Computer Science, 2015a]

→ Exhaustive search in all possible configurations

1. Pick one regulator \([a]\), and choose an active process for all the others \([b_0]\).
2. Change the active process of the regulator \([a_0, a_1]\) and watch the evolution.
3. Conclude locally: \((a_0 \uparrow a_1 \Rightarrow z_0 \uparrow z_2) \Rightarrow \text{activation (\(+) \& threshold = 1.}\)
4. Iterate and conclude globally.
Inferring the Interaction Graph

[Folschette et al. in Theoretical Computer Science, 2015a]

→ Exhaustive search in all possible configurations

1. Pick one regulator \([a]\), and choose an active process for all the others \([b_0]\).
2. Change the active process of the regulator \([a_0, a_1]\) and watch the evolution.
3. Conclude locally: \((a_0 \uparrow a_1 \Rightarrow z_0 \uparrow z_2) \Rightarrow \text{activation (+) & threshold = 1}\).
4. Iterate and conclude globally.

Problematic cases:
→ No focal processes (cycle)
→ Opposite influences (\(+ & -\)) \(\Rightarrow\) Unsigned edge
Inferring Parameters

[Folschette et al. in *Theoretical Computer Science, 2015a*]
Inferring Parameters

[Folschette et al. in *Theoretical Computer Science*, 2015a]

1. For each configuration of resources \(\omega = \{a^+, b^-\} \)
Inferring Parameters

[Folschette et al. in Theoretical Computer Science, 2015a]

1. For each configuration of resources find the focal processes.

\[\omega = \{ a^+, b^- \} \]
Inferring Parameters

[Folschette et al. in *Theoretical Computer Science, 2015a*]

1. For each configuration of resources \(\omega = \{a^+, b^-\} \)
find the **focal processes**. If possible, conclude. \(k_z, \{a^+, b^-\} = 1 \)
Inferring Parameters

[Folschette et al. in *Theoretical Computer Science*, 2015a]

1. For each configuration of resources $\omega = \{a^+, b^-\}$ find the focal processes. If possible, conclude. $[k_{z,\omega}, \{a^+, b^-\} = 1]$

Inconclusive cases:
- Behavior cannot be represented as a BRN
- Lack of cooperation (no focal processes)
1. For each configuration of resources $[\omega = \{a^+, b^-\}]$ find the **focal processes**. If possible, conclude. $[k_z,\{a^+, b^-\} = 1]$

Inconclusive cases:
- Behavior cannot be represented as a BRN
- Lack of cooperation (no focal processes)

2. If some parameters could not be inferred, enumerate all admissible parametrizations, regarding:
 - Biological constraints [Bernot et al. in *Concurrent Models in Molecular Biology*, 2007]
 - The dynamics of the Process Hitting

 $[k_z,\{a^+, b^-\} \in \{0; 1; 2\}; k_z,\{a^-, b^+\} \in \{0; 1; 2\}]$
Translation to Thomas Modeling

[Folschette et al. in *Theoretical Computer Science*, 2015a]

- Two successive inferences: 1) interaction graph; 2) parameters
- Exhaustive analysis of the local dynamics for each regulator
- Enumeration of all parametrizations compatible with the dynamics

Complexity:
- Linear in the number of genes,
- Exponential in the number of regulators of one component
Qualitative modeling and dynamical analysis of BRNs using AANs

Links with Other formalisms

Translation to Thomas Modeling

[Folschette et al. in Theoretical Computer Science, 2015a]

- Two successive inferences: 1) interaction graph; 2) parameters
- Exhaustive analysis of the local dynamics for each regulator
- Enumeration of all parametrizations compatible with the dynamics

Complexity:
Linear in the number of genes,
Exponential in the number of regulators of one component

<table>
<thead>
<tr>
<th>Models</th>
<th>Inference the IG</th>
<th>Inference of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Sorts</td>
<td>Processes</td>
</tr>
<tr>
<td>egfr20</td>
<td>42</td>
<td>152</td>
</tr>
<tr>
<td>tcrsig40</td>
<td>54</td>
<td>156</td>
</tr>
<tr>
<td>tcrsig94</td>
<td>133</td>
<td>448</td>
</tr>
<tr>
<td>egfr104</td>
<td>193</td>
<td>744</td>
</tr>
</tbody>
</table>

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]
tcrsig40 : T-Cell Receptor (40 composants) [Klamt et al., 2006]
tcrsig94 : T-Cell Receptor (94 composants) [Saez-Rodriguez et al., 2007]
Qualitative modeling and dynamical analysis of BRNs using AANs ▪ Analysis with μ-calculus

The Modal μ-calculus

LTL: Example of the “Until” operator

\[p U q \equiv \text{“Either q, or } p \text{ and the next state also verifies } p U q” \]

⇒ Implicit fixed point

(Modal) μ-calculus makes such fixed points explicit

\[\varphi = p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \diamond \varphi \mid \Box \varphi \mid \mu X.\varphi \mid \nu X.\varphi \mid X \]

• Basic property: \(p \) (“\(p \) is verified in this node”)
• Modal operators: \(\Box \) (“for all successors”), \(\diamond \) (“there exists a successor”)
• Fixed points: \(\mu \) (least fixed point), \(\nu \) (greatest fixed point)

Polyadic (modal) μ-calculus allows to manipulate several tokens in parallel

\[\varphi = p_i \mid i \leftarrow j \mid i = j \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \diamond_i \varphi \mid \Box_i \varphi \mid \mu X.\varphi \mid \nu X.\varphi \mid X \]

• Token manipulation:
 \(i = j \) (“tokens \(i \) and \(j \) point to the same node”)
 \(i \leftarrow j \) (“move token \(i \) to the position of token \(j \)”)

Maxime FOLSCHE TTE 27/35 MDSC seminar — 2015/09/28
Qualitative modeling and dynamical analysis of BRNs using AANs ○ Analysis with \(\mu \)-calculus

The Modal \(\mu \)-calculus

LTL: Example of the “Until” operator

\[p \ U \ q \equiv \text{“Either } q, \text{ or } p \text{ and the next state also verifies } p \ U \ q” \]

⇒ Implicit fixed point

(Modal) \(\mu \)-calculus makes such fixed points explicit

\[\varphi = p \ | \ \neg \varphi \ | \ \varphi \land \varphi \ | \ \varphi \lor \varphi \ | \ \Diamond \varphi \ | \ \Box \varphi \ | \ \mu X.\varphi \ | \ \nu X.\varphi \ | \ X \]

- **Basic property:** \(p \) (“\(p \) is verified in this node”)
- **Modal operators:** \(\Box \) (“for all successors”), \(\Diamond \) (“there exists a successor”)
- **Fixed points:** \(\mu \) (least fixed point), \(\nu \) (greatest fixed point)

Polyadic (modal) \(\mu \)-calculus allows to manipulate several tokens in parallel

\[\varphi = p_i \ | \ i \leftarrow j \ | \ i = j \ | \ \neg \varphi \ | \ \varphi \land \varphi \ | \ \varphi \lor \varphi \ | \ \Diamond_i \varphi \ | \ \Box_i \varphi \ | \ \mu X.\varphi \ | \ \nu X.\varphi \ | \ X \]

- **Token manipulation:**
 - \(i = j \) (“tokens \(i \) and \(j \) point to the same node”)
 - \(i \leftarrow j \) (“move token \(i \) to the position of token \(j \)”)
The Modal μ-calculus

LTL: Example of the “Until” operator

$$p \ U \ q \equiv \text{“Either } q, \text{ or } p \text{ and the next state also verifies } p \ U \ q\text{”}$$

\Rightarrow Implicit fixed point

(Modal) μ-calculus makes such fixed points explicit

$$\varphi = p \ | \ \neg \varphi \ | \ \varphi \land \varphi \ | \ \varphi \lor \varphi \ | \ \Diamond \varphi \ | \ \Box \varphi \ | \ \mu X . \varphi \ | \ \nu X . \varphi \ | \ X$$

- Basic property: p (“p is verified in this node”)
- Modal operators: \Box (“for all successors”), \Diamond (“there exists a successor”)
- Fixed points: μ (least fixed point), ν (greatest fixed point)

Polyadic (modal) μ-calculus allows to manipulate several tokens in parallel

$$\varphi = p_i \ | \ i \leftarrow j \ | \ i = j \ | \ \neg \varphi \ | \ \varphi \land \varphi \ | \ \varphi \lor \varphi \ | \ \Diamond_i \varphi \ | \ \Box_i \varphi \ | \ \mu X . \varphi \ | \ \nu X . \varphi \ | \ X$$

- Token manipulation:
 - $i = j$ (“tokens i and j point to the same node”)
 - $i \leftarrow j$ (“move token i to the position of token j”)

Polyadic (modal) μ-calculus allows to manipulate several tokens in parallel
Examples with Modal μ-calculus

No tokens: only one evolution is studied

Atomic property (p, q, r)

\[
\begin{align*}
[p] &= \{p\} \\
[q \lor r] &= \{q; r\}
\end{align*}
\]

Possible future ("may")

\[
\Box q = \{p\}
\]

Necessary future ("must")

\[
\begin{align*}
\Box q &= \emptyset \\
\Box p &= \{q; r\}
\end{align*}
\]
Examples with Modal μ-calculus

No tokens: only one evolution is studied

Atomic property (p, q, r)

$$[p] = \{p\}$$
$$[q \lor r] = \{q; r\}$$

Possible future ("may")

$$[\Diamond q] = \{p\}$$

Necessary future ("must")

$$[\Box q] = \emptyset$$
$$[\Box p] = \{q; r\}$$
No tokens: only one evolution is studied

Atomic property \((p, q, r)\)
\[
[p] = \{p\} \\
[q \lor r] = \{q; r\}
\]

Possible future (“may”)
\[
[\Diamond q] = \{p\}
\]

Necessary future (“must”)
\[
[\Box q] = \emptyset \\
[\Box p] = \{q; r\}
\]
Examples with Modal μ-calculus

No tokens: only one evolution is studied

Atomic property (p, q, r)

\[
\llbracket p \rrbracket = \{p\} \\
\llbracket q \lor r \rrbracket = \{q; r\}
\]

Possible future ("may")

\[
\llbracket \Diamond q \rrbracket = \{p\}
\]

Necessary future ("must")

\[
\llbracket \Box q \rrbracket = \emptyset \\
\llbracket \Box p \rrbracket = \{q; r\}
\]
Examples with Modal \(\mu \)-calculus

No tokens: only one evolution is studied

Atomic property \((p, q, r)\)
\[
\begin{align*}
[p] &= \{p\} \\
[q \lor r] &= \{q; r\}
\end{align*}
\]

Possible future ("may")
\[
[\Diamond q] = \{p\}
\]

Necessary future ("must")
\[
\begin{align*}
[\Box q] &= \emptyset \\
[\Box p] &= \{q; r\}
\end{align*}
\]
Qualitative modeling and dynamical analysis of BRNs using AANs

Analysis with μ-calculus

Examples with Polyadic μ-calculus

Atomic property (p, q, r)

\[
[p_1 \land r_2] = \{(p, r)\} \\
[p_1] = \{(p, p); (p, q); (p, r)\}
\]

Token affectation $(i \leftarrow j)$

\[
\{2 \leftarrow 1\} p_1 \land p_2 = \{(p, p); (p, q); (p, r)\}
\]

Token comparison $(i = j)$

\[
[1 = 2] = \{(p, p); (q, q); (r, r)\}
\]

Possible future (“may”)

\[
[\Diamond_1 q] = \{(p, p); (p, q); (p, r)\}
\]

Necessary future (“must”)

\[
[\Box_1 q] = \emptyset
\]
Examples with Polyadic μ-calculus

Atomic property (p, q, r)
\[
\begin{align*}
[p_1 \land r_2] &= \{(p, r)\} \\
[p_1] &= \{(p, p); (p, q); (p, r)\}
\end{align*}
\]

Token affectation $(i \leftarrow j)$
\[
\begin{align*}
[\{2 \leftarrow 1\} \ p_1 \land p_2] &= \{(p, p); (p, q); (p, r)\}
\end{align*}
\]

Token comparison $(i = j)$
\[
\begin{align*}
[1 = 2] &= \{(p, p); (q, q); (r, r)\}
\end{align*}
\]

Possible future (“may”)
\[
\begin{align*}
[\Diamond_1 q] &= \{(p, p); (p, q); (p, r)\}
\end{align*}
\]

Necessary future (“must”)
\[
\begin{align*}
[\Box_1 q] &= \emptyset
\end{align*}
\]
Examples with Polyadic μ-calculus

Atomic property (p, q, r)
\[
[p_1 \land r_2] = \{(p, r)\}
\]
\[
[p_1] = \{(p, p); (p, q); (p, r)\}
\]

Token affectation $(i \leftarrow j)$
\[
[\{2 \leftarrow 1\} p_1 \land p_2] = \{(p, p); (p, q); (p, r)\}
\]

Token comparison $(i = j)$
\[
[1 = 2] = \{(p, p); (q, q); (r, r)\}
\]

Possible future ("may")
\[
[\Diamond_1 q] = \{(p, p); (p, q); (p, r)\}
\]

Necessary future ("must")
\[
[\Box_1 q] = \emptyset
\]
Examples with Polyadic μ-calculus

Atomic property (p, q, r)
\[
[\mu p_1 \land r_2] = \{(p, r)\} \\
[\mu p_1] = \{(p, p); (p, q); (p, r)\}
\]

Token affectation $(i \leftarrow j)$
\[
[\{2 \leftarrow 1\} \mu p_1 \land p_2] = \{(p, p); (p, q); (p, r)\}
\]

Token comparison $(i = j)$
\[
[1 = 2] = \{(p, p); (q, q); (r, r)\}
\]

Possible future (“may”)
\[
[\Diamond_1 q] = \{(p, p); (p, q); (p, r)\}
\]

Necessary future (“must”)
\[
[\Box_1 q] = \emptyset
\]
Examples with Polyadic μ-calculus

Atomic property (p, q, r)
\[
[p_1 \land r_2] = \{(p, r)\}
\]
\[
[p_1] = \{(p, p); (p, q); (p, r)\}
\]

Token affectation $(i \leftarrow j)$
\[
[\{2 \leftarrow 1\} p_1 \land p_2] = \{(p, p); (p, q); (p, r)\}
\]

Token comparison $(i = j)$
\[
[1 = 2] = \{(p, p); (q, q); (r, r)\}
\]

Possible future (“may”)
\[
[\Diamond_1 q] = \{(p, p); (p, q); (p, r)\}
\]

Necessary future (“must”)
\[
[\Box_1 q] = \emptyset
\]
Examples with Polyadic μ-calculus

Least fixed point (μ)

$$\phi = \mu X.(\Box_1 \bot \land \Box_2 \bot) \lor \Diamond_1 \Diamond_2 X$$

Iterations:

$$\begin{align*}
[\phi]_0 &= \emptyset \\
[\phi]_1 &= \{(a_1, b_1)\} \\
[\phi]_2 &= \{(a_1, b_1); (a_2, b_2)\} \\
[\phi]_3 &= \{(a_1, b_1); (a_2, b_2); (a_3, b_3)\} \\
&\vdots
\end{align*}$$

Generalization:

$$[\phi] = \{(a_i, b_i) \mid i \in [1; \min(m, n)]\}$$

Idea: use one (or n) token per automata
Examples with Polyadic μ-calculus

Least fixed point (μ)

$$\phi = \mu X.(\Box_1 \bot \land \Box_2 \bot) \lor \Diamond_1 \Diamond_2 X$$

Iterations:

$$\begin{align*}
[\phi]_0 &= \emptyset \\
[\phi]_1 &= \{(a_1, b_1)\} \\
[\phi]_2 &= \{(a_1, b_1); (a_2, b_2)\} \\
[\phi]_3 &= \{(a_1, b_1); (a_2, b_2); (a_3, b_3)\} \\
&\vdots
\end{align*}$$

Generalization:

$$[\phi] = \{(a_i, b_i) | i \in [1; \min(m, n)]\}$$

Idea: use one (or n) token per automata
Examples with Polyadic μ-calculus

Least fixed point (μ)

$$\phi = \mu X.(\square_1 \perp \land \square_2 \perp) \lor \diamond_1 \diamond_2 X$$

Iterations:

- $[\phi]_0 = \emptyset$
- $[\phi]_1 = \{(a_1, b_1)\}$
- $[\phi]_2 = \{(a_1, b_1); (a_2, b_2)\}$
- $[\phi]_3 = \{(a_1, b_1); (a_2, b_2); (a_3, b_3)\}$
 ...

Generalization:

$$[\phi] = \{(a_i, b_i) \mid i \in [1; \min(m, n)]\}$$

Idea: use one (or n) token per automata
Examples with Polyadic μ-calculus

Least fixed point (μ)

\[\phi = \mu X. (\square_1 \bot \land \square_2 \bot) \lor \lozenge_1 \lozenge_2 X \]

Iterations:

\[
\begin{align*}
[\phi]_0 &= \emptyset \\
[\phi]_1 &= \{(a_1, b_1)\} \\
[\phi]_2 &= \{(a_1, b_1); (a_2, b_2)\} \\
[\phi]_3 &= \{(a_1, b_1); (a_2, b_2); (a_3, b_3)\} \\
\vdots \\
[\phi] &= \{(a_i, b_i) \mid i \in [1; \min(m, n)]\}
\end{align*}
\]

Generalization:

\[
[\phi] = \{(a_i, b_i) \mid i \in [1; \min(m, n)]\}
\]

Idea: use one (or n) token per automata
Search for Attractors with Polyadic μ-calculus

\[
\phi_{\text{att}} = \{ y \leftarrow x \} \nu W. (\mu Z. (x = y) \lor (\Diamond_x Z)) \land (\Box_x W)
\]

\[
\phi_{\text{reach}} \lor \phi_{\text{explore}}
\]

- $\llbracket \phi_{\text{reach}} \rrbracket = \{ (s; t) | s \rightarrow^* t \}$
 $\phi_{\text{reach}} \equiv \text{“There exists a path from } x \text{ to } y \text{”}$

- $\llbracket \phi_{\text{explore}} \rrbracket = \{ (s; t) | \forall s', s \rightarrow^* s' \Rightarrow s' \rightarrow^* t \}$
 $\phi_{\text{explore}} \equiv \text{“All successors of } x \text{ can reach } y \text{”}$

- $\llbracket \phi_{\text{att}} \rrbracket = \{ (s; s) | \forall s', s \rightarrow^* s' \Rightarrow s' \rightarrow^* s \}$
 $\phi_{\text{att}} \equiv \text{“} x \text{ belongs to an attractor”}$
Search for Attractors with Polyadic μ-calculus

$\phi_{att} = \{y \leftarrow x\} \nu W. (\mu Z. (x = y) \lor (\Box x Z)) \land (\Box x W)$

- $[\phi_{reach}] = \{(s; t) \mid s \rightarrow^* t\}$
 $\phi_{reach} \equiv "There exists a path from x to y"

- $[\phi_{explore}] = \{(s; t) \mid \forall s', s \rightarrow^* s' \Rightarrow s' \rightarrow^* t\}$
 $\phi_{explore} \equiv "All successors of x can reach y"

- $[\phi_{att}] = \{(s; s) \mid \forall s', s \rightarrow^* s' \Rightarrow s' \rightarrow^* s\}$
 $\phi_{att} \equiv "x belongs to an attractor"$
Search for Attractors with Polyadic μ-calculus

$$\varphi_{\text{att}} = \{y \leftarrow x\} \nu W. (\mu Z. (x = y) \lor (\Diamond_x Z)) \land (\Box_x W)$$

- $\llbracket \varphi_{\text{reach}} \rrbracket = \{(s; t) \mid s \rightarrow^* t\}$
 $\varphi_{\text{reach}} \equiv \text{"There exists a path from } x \text{ to } y\text{"}$

- $\llbracket \varphi_{\text{explore}} \rrbracket = \{(s; t) \mid \forall s', s \rightarrow^* s' \Rightarrow s' \rightarrow^* t\}$
 $\varphi_{\text{explore}} \equiv \text{"All successors of } x \text{ can reach } y\text{"}$

- $\llbracket \varphi_{\text{att}} \rrbracket = \{(s; s) \mid \forall s', s \rightarrow^* s' \Rightarrow s' \rightarrow^* s\}$
 $\varphi_{\text{att}} \equiv \text{"}x\text{ belongs to an attractor\"}$
Search for Attractors with Polyadic μ-calculus

$\varphi_{\text{att}} = \{ y \leftarrow x \} \nu W. (\mu Z. (x = y) \lor (\Diamond_x Z)) \land (\Box_x W)$

φ_{reach} = belongs to an attractor

- $\llbracket \varphi_{\text{reach}} \rrbracket = \{ (s; t) \mid s \to^* t \}$
 $\varphi_{\text{reach}} \equiv \text{"There exists a path from } x \text{ to } y\"$

- $\llbracket \varphi_{\text{explore}} \rrbracket = \{ (s; t) \mid \forall s', s \to^* s' \Rightarrow s' \to^* t \}$
 $\varphi_{\text{explore}} \equiv \text{"All successors of } x \text{ can reach } y\"$

- $\llbracket \varphi_{\text{att}} \rrbracket = \{ (s; s) \mid \forall s', s \to^* s' \Rightarrow s' \to^* s \}$
 $\varphi_{\text{att}} \equiv \text{"} x \text{ belongs to an attractor\"}
Search for Switches with Polyadic μ-calculus

\[\varphi_{\text{switch}}(a) = (\mu W. (x = a) \lor (\Diamond_x W)) \land \Diamond_x \{x \leftarrow y\}(\nu Z. \neg(y = a) \land (\Box_y Z)) \]

- \([\varphi_{\text{reach}}] = \{(s; t) \mid s \rightarrow^* a\}\)
 \(\varphi_{\text{reach}} \equiv \text{“There exists a path from } x \text{ to } a\)

- \([\varphi_{\text{noreach}}] = \{(s; t) \mid \neg(t \rightarrow^* a)\}\)
 \(\varphi_{\text{noreach}} \equiv \text{“There exists no path from } y \text{ to } a\)

- \([\varphi_{\text{switch}}] = \{(s; t) \mid s \rightarrow t \land s \rightarrow^* a \land \neg(t \rightarrow^* a)\}\)
 \(\varphi_{\text{switch}} \equiv \text{“There is a switch between } x \text{ and } y\)
Search for Switches with Polyadic μ-calculus

$\varphi_{\text{switch}}(a) = \left(\mu W.(x = a) \lor (\Diamond_x W) \right) \land \\
\Diamond_x \{x \leftarrow y\} \left(\nu Z.\neg(y = a) \land (\Box_y Z) \right)$

$[\varphi_{\text{reach}}] = \{(s; t) | s \rightarrow^* a\}$
$\varphi_{\text{reach}} \equiv \text{“There exists a path from } x \text{ to } a\text{”}$

$[\varphi_{\text{noreach}}] = \{(s; t) | \neg(t \rightarrow^* a)\}$
$\varphi_{\text{noreach}} \equiv \text{“There exists no path from } y \text{ to } a\text{”}$

$[\varphi_{\text{switch}}] = \{(s; t) | s \rightarrow t \land s \rightarrow^* a \land \neg(t \rightarrow^* a)\}$
$\varphi_{\text{switch}} \equiv \text{“There is a switch between } x \text{ and } y\text{”}$
Search for Switches with Polyadic μ-calculus

Let φ_{reach} be the property:

$$\varphi_{\text{reach}} = (\mu W. (x = a) \lor (\Diamond x W)) \land (\Box x \{x \leftarrow y\} (\nu Z. \neg (y = a) \land (\Box y Z)))$$

- φ_{reach} equals "There exists a path from x to a"

Let φ_{noreach} be the property:

$$\varphi_{\text{noreach}} = \{ (s; t) | \neg(t \rightarrow^* a) \}$$

- φ_{noreach} equals "There exists no path from y to a"

Let φ_{switch} be the property:

$$\varphi_{\text{switch}} = \{ (s; t) | s \rightarrow t \land s \rightarrow^* a \land \neg(t \rightarrow^* a) \}$$

- φ_{switch} equals "There is a switch between x and y"
Search for Switches with Polyadic μ-calculus

\[\varphi_{\text{switch}}(a) = \left(\mu W. (x = a) \lor (\diamond x W) \right) \land \diamond_x \{x \leftarrow y\}(\nu Z. \lnot (y = a) \land (\square y Z)) \]

- \([\varphi_{\text{reach}}] = \{(s; t) \mid s \rightarrow^* a\} \)
 \(\varphi_{\text{reach}} \equiv \) “There exists a path from \(x \) to \(a \)”

- \([\varphi_{\text{noreach}}] = \{(s; t) \mid \lnot (t \rightarrow^* a)\} \)
 \(\varphi_{\text{noreach}} \equiv \) “There exists no path from \(y \) to \(a \)”

- \([\varphi_{\text{switch}}] = \{(s; t) \mid s \rightarrow t \land s \rightarrow^* a \land \lnot (t \rightarrow^* a)\} \)
 \(\varphi_{\text{switch}} \equiv \) “There is a switch between \(x \) and \(y \)”
Generic bisimulation between two models:

\[
\varphi_{\text{bisim}} = \nu X. \left(\bigwedge_{p \in P} p_1 \leftrightarrow p_2 \right) \land \left(\Box_1 \Diamond_2 X \land \Box_2 \Diamond_1 X \right)
\]

Bisimulation only on two sets of observable components \(O\) and \(O'\):

\[
\varphi_{\text{bisim-obs}} = \nu X. \left(\bigwedge_{p \in P} \bigwedge_{(i,j) \in C} p_i \leftrightarrow p_j \right) \land \left(\Box^* \Box^* O \Diamond^* \Diamond^* O' X \right)
\]
Summary & Conclusion

- Discrete modeling = coherent abstraction of real biochemical phenomena
 - Discrete Networks / Thomas modeling
 - Asynchronous Automata Networks
 - Other extensions of the Process Hitting

- Static analysis based on the structure
 - Results on attractors (multiple stable states / complex attractors)
 - But results are not always fine enough

- Static analysis by abstract interpretation
 - Reachability properties
 - Very efficient (polynomial complexity)
 - Broad rand of models (+ translations)
 - But only one kind of property (CTL operator EF)

- μ-calculus
 - More generic than CTL*
 - Example: enumeration of attractors
 - More ongoing work: cycles, switches...
 - Ongoing implementation...
Summary & Conclusion

- **Discrete modeling** = coherent abstraction of real biochemical phenomena
 - Discrete Networks / Thomas modeling
 - Asynchronous Automata Networks
 - Other extensions of the Process Hitting

- Static analysis based on the structure
 - Results on attractors (multiple stable states / complex attractors)
 - But results are not always fine enough

- Static analysis by abstract interpretation
 - Reachability properties
 - Very efficient (polynomial complexity)
 - Broad rand of models (+ translations)
 - But only one kind of property (CTL operator \(EF \))

- \(\mu \)-calculus
 - More generic than CTL*
 - Example: enumeration of attractors
 - More ongoing work: cycles, switches...
 - Ongoing implementation...
Summary & Conclusion

• Discrete modeling = coherent abstraction of real biochemical phenomena
 → Discrete Networks / Thomas modeling
 → Asynchronous Automata Networks
 → Other extensions of the Process Hitting

• Static analysis based on the structure
 → Results on attractors (multiple stable states / complex attractors)
 → But results are not always fine enough

• Static analysis by abstract interpretation
 → Reachability properties
 → Very efficient (polynomial complexity)
 → Broad rand of models (+ translations)
 → But only one kind of property (CTL operator EF)

• μ-calculus
 → More generic than CTL*
 → Example: enumeration of attractors
 → More ongoing work: cycles, switches...
 → Ongoing implementation...
Summary & Conclusion

- Discrete modeling = coherent abstraction of real biochemical phenomena
 - Discrete Networks / Thomas modeling
 - Asynchronous Automata Networks
 - Other extensions of the Process Hitting

- Static analysis based on the structure
 - Results on attractors (multiple stable states / complex attractors)
 - But results are not always fine enough

- Static analysis by abstract interpretation
 - Reachability properties
 - Very efficient (polynomial complexity)
 - Broad rand of models (+ translations)
 - But only one kind of property (CTL operator EF)

- μ-calculus
 - More generic than CTL*
 - Example: enumeration of attractors
 - More ongoing work: cycles, switches...
 - Ongoing implementation...

Thank you