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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Introduction

The Modeling/Analysis duality

Modeling a system is the first step towards its comprehension

Modeling Analysis

The required analysis has an impact on modeling
• The modeling tools must be adapted to the observed properties

Modeling choices have an impact on the results of the analysis
• The level of details changes the quantity of obtained info
• The size of the model increases the analysis duration

The modeling and analysis steps of a system are strongly linked
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Introduction

Overview of This Presentation

Abstracting biological models
• Abstraction of biological components
• Discrete, asynchronous and unitary representations

Examples of discrete models
• Discrete Networks (Thomas modeling)
• Asynchronous Automata Networks
• Other extensions of the Process Hitting formalism

Analysis of the dynamics of discrete models
• Static analysis on the structure
• Abstract interpretation
• A μ-calculus approach
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Abstractions of the Representation

Gene a

RNA a

Protein a
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Introduction

Discretization and Asynchronism
[Richard, Advances in Applied Mathematics, 2010]

a b
J0; 1K

• Unknown real values of concentrations or continuous activity levels
→ Abstracted as thresholds or discrete levels

• Continuous variations of the real values
→ Unitary dynamics

• Simultaneous crossings of two thresholds never occurs
→ Asynchronous dynamics
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Classical Analysis of Discrete Networks

Discrete Networks / Thomas Modeling
[Kauffman in Journal of Theoretical Biology, 1969]
[Thomas in Journal of Theoretical Biology, 1973]

• A set of components N = {a, b, z}

• A set of discrete expression levels for each component a ∈ Fa = J0; 2K
• The set of global states F = Fa × Fb × Fz

• Signs on the edges a +−→ z

or signs + thresholds a 2,+−−→ z

• Discrete parameters / evolution functions f a : F→ Fa

a f b(a)
0 0
1 1
2 1

z b f a(z, b)
0 0 1
0 1 0
1 0 1
1 1 2

a b f z (a, b)
0 0 0
0 1 0
1 0 0
1 1 0
2 0 0
2 1 1

z

a

b
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Classical Analysis of Discrete Networks

State-graph of a Discrete Network
Several semantics exist regarding the updates:

• Synchronous (deterministic)
• Asynchronous (non-deterministic)
• Generalized (even more non-deterministic)

In every case, exponential size in the number of components

000 010 001 011

100 110 101 111

200 210 201 211

abz

Attractor = minimal set of states from which the dynamics cannot escape
= terminal strongly connected component

• Stable state (state with no successors)
• Complex attractor (loop or composition of loops)
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Classical Analysis of Discrete Networks

Static Analysis of Discrete Networks
[Thomas in Numerical Methods in the Study of Critical Phenomena, 1981]

[Paulevé & Richard, Electronic Notes in Theoretical Computer Science 2012]

Conjectures of René Thomas:

• Multiple stable states ⇒ positive cycle in the graph
• Sustained oscillations (complex attractor) ⇒ negative cycle in the graph

z

a

b

J0; 2K

J0; 1K

J0; 1K

+ − +

+

+

000

111

110

000

100

010

110

Proofs:
[Remy, Ruet, Thieffry in Advances in Applied Mathematics, 2008]
[Richard, Advances in Applied Mathematics, 2010]
[Richard, Comet in Discrete Applied Mathematics, 2007]

Other results:
• Lower & upper bounds of the number of attractors
• Functionality of the cycles
• Sufficient condition for no stable state / Topological stable states
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Classical Analysis of Discrete Networks

Dynamic Analysis of Discrete Networks

• These static analysis results are not sufficient to predict the dynamics of
independent components.

Examples that cannot be tackled:
1) From the initial state (a, b, z) = (0, 0, 0), is it possible to reach z = 2?
2) Does (0, 0, 0) belong to an attractor?
3) What is the set of attractors of the model?

• Temporal logics (LTL, CTL, CTL∗)

More precise but require to compute the whole state graph

Examples:
1) (a = 0 ∧ b = 0 ∧ z = 0)⇒ EF(z = 2)
2) (a = 0 ∧ b = 0 ∧ z = 0)⇒ AG(EF(a = 0 ∧ b = 0 ∧ z = 0))
3) ???

• Applications of CTL and LTL

Check a property on a given model: NuSMV, LibDDD, ...
Create a model for which a property holds: SMBioNet, SPuTNIk, ...
[Bernot, Comet, Richard, Guespin in Journal of Theoretical Biology, 2004]
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Analysis with Asynchronous Automata Networks

The Enriched Process Hitting

Synchronized Automata Networks

Process Hitting Discrete Networks
(Thomas)
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Analysis with Asynchronous Automata Networks

Example of enriched Process Hitting Model

Model from [François et al. in Molecular Systems Biology, 2007]
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0 1

a

0

1
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Static analysis
c

0

1

f

0 1
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0

1

• No conflict
• All leaves are ∅

a1 a0 �∗ a1 {c0, f1}

f1

c0

f1 �∗ f1 ∅

c0 �∗ c0 ∅

{c0, f1} → a0 � a1
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Implementation of the Static Analysis Into PINT

Complexity:
• Computation of the local causality graph:

• Polynomial in the number of sorts
• Exponential in the number of processes of each sort

• Analysis of the graph (sufficient condition):
• Polynomial in the size of the graph

Makes the study of large networks tractable:

Model Automata Actions States libddd1 GINsim2 PINT
egfr20 35 670 264 <1s 0.02s

tcrsig40 54 301 273 ∞ 0.02s
tcrsig94 133 1124 2194 [>1min – ∞] 0.03s
egfr104 193 2356 2320 [>1min – ∞] 0.16s

1 LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]
2 TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]
tcrsig40 : T-Cell Receptor (40 composants) [Klamt et al., 2006]
tcrsig94 : T-Cell Receptor (94 composants) [Saez-Rodriguez et al., 2007]
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Classes of priorities
[Folschette et al. in Theoretical Computer Science, 2015b]

• Each action is associated to a discrete priority
• An action is playable only if no other action with higher priority is playable

1 2 3 . . . n

highest
priority

lowest
priority

I

a

0

1

b

0

1

1

2

→ b1 cannot be reached
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Temporal Simulation
[Paulevé (PhD thesis), 2011]

• Simulation with stochastic parameters:

a
0

1

0 5 10 15 20 25 30 35 40

c
0

1

0 5 10 15 20 25 30 35 40

f
0

1

0 5 10 15 20 25 30 35 40

t
a c f

Stochastic parameters:
• a = [0.742; 1.29] (mean 1)
• c = [1.48; 2.59] (mean 2)
• f = [23.9; 35.4] (mean 30)

⇒ a < c < f
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Example with Classes of Priorities
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Example with Classes of Priorities
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Neutralizing Edges

a

0

1

b

0

1

c

0

1

d

0

1 • Integration of temporal data
about relative reaction speeds

• Atomistic preemptions between actions
similar to “atomistic priorities”

c0 → d0 � d1 cannot be plays while

a0 → b0 � b1 is playable

→ d1 is always reached after b1
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Equivalence Between Process Hitting Extensions

Standard
Process Hitting

Synchronous
Automata Networks

Asynchronous
Automata Networks

Process Hitting
with classes of priority

Process Hitting
with neutralizing edges

All developed enrichments have the same expressivity
• Expressive power improved
• Can always be translated to the canonical form
• But sometimes at the cost of an exponential translation
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Translation From and To Other Discrete Models

Standard
Process Hitting

Synchronous
Automata Networks

Asynchronous
Automata Networks

Process Hitting
with classes of priority

Process Hitting
with neutralizing edges

Thomas Modeling
Discrete Networks

Boolean Semantics
of Biocham

Bounded Petri Nets
with inhibitor arcs

• Equivalence with Discrete Networks / Thomas modeling
• Translation towards (bounded) Petri nets with inhibitor arcs
• Translation from the Boolean semantics of Biocham
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Inferring a BRN with Thomas’ parameters
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Inferring the Interaction Graph
[Folschette et al. in Theoretical Computer Science, 2015a]a

0

1

b

0

1

z

0

1

2

ab

00

01

10

11

a

b

z

→ Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others [b0].
2. Change the active process of the regulator [a0, a1] and watch the evolution.
3. Conclude locally: (a0 � a1 ⇒ z0 � z2) ⇒ activation (+) & threshold = 1.
4. Iterate

Problematic cases:
→ No focal processes (cycle)
→ Opposite influences (+ & −)

}
⇒ Unsigned edge
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Links with Other formalisms

Inferring Parameters
[Folschette et al. in Theoretical Computer Science, 2015a]
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1

1. For each configuration of resources [ω = {a+, b−}]
find the focal processes. If possible, conclude. [kz,{a+,b−} = 1]
Inconclusive cases:

– Behavior cannot be represented as a BRN
– Lack of cooperation (no focal processes)

2. If some parameters could not be inferred, enumerate all admissible
parametrizations, regarding:

– Biological constraints [Bernot et al. in Concurrent Models in Molecular Biology, 2007]
– The dynamics of the Process Hitting

[kz,{a+,b−} ∈ {0; 1; 2}; kz,{a−,b+} ∈ {0; 1; 2}]
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Links with Other formalisms

Translation to Thomas Modeling
[Folschette et al. in Theoretical Computer Science, 2015a]

• Two successive inferences: 1) interaction graph; 2) parameters
• Exhaustive analysis of the local dynamics for each regulator
• enumeration of all parametrizations compatible with the dynamics

Complexity:
Linear in the number of genes,
Exponential in the number of regulators of one component

Models Inference the IG Inference of parameters
Name Sorts Processes Actions Duration Edges Durations Parameters
egfr20 42 152 399 1s 51 1s 192

tcrsig40 54 156 305 1s 55 1s 143
tcrsig94 133 448 1082 100s 197 1s 578
egfr104 193 744 2304 200s 280 3s 27’496

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]
tcrsig40 : T-Cell Receptor (40 composants) [Klamt et al., 2006]
tcrsig94 : T-Cell Receptor (94 composants) [Saez-Rodriguez et al., 2007]
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Analysis with μ-calculus

The Modal μ-calculus

LTL: Example of the “Until” operator
p U q ≡ “Either q, or p and the next state also verifies p U q”

⇒ Implicit fixed point

(Modal) μ-calculus makes such fixed points explicit

ϕ = p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ | �ϕ | µX .ϕ | νX .ϕ | X

• Basic property: p (“p is verified in this node”)
• Modal operators: � (“for all successors”), ♦ (“there exists a successor”)
• Fixed points: µ (least fixed point), ν (greatest fixed point)

Polyadic (modal) μ-calculus allows to manipulate several tokens in parallel

ϕ = pi | i ← j | i = j | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦iϕ | �iϕ | µX .ϕ | νX .ϕ | X

• Token manipulation:
i = j (“tokens i and j point to the same node”)
i ← j (“move token i to the position of token j”)
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Analysis with μ-calculus

Examples with Modal μ-calculus

p

q

r

No tokens: only one evolution is studied

Atomic property (p, q, r)
JpK = {p}
Jq ∨ rK = {q; r}

Possible future (“may”)
J♦ qK = {p}

Necessary future (“must”)
J� qK = ∅
J� pK = {q; r}
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Analysis with μ-calculus

Examples with Polyadic μ-calculus

p

q

r

Atomic property (p, q, r)
Jp1 ∧ r2K = {(p, r)}
Jp1K = {(p, p); (p, q); (p, r)}

Token affectation (i ← j)
J{2← 1} p1 ∧ p2K = {(p, p); (p, q); (p, r)}

Token comparison (i = j)
J1 = 2K = {(p, p); (q, q); (r , r)}

Possible future (“may”)
J♦1 qK = {(p, p); (p, q); (p, r)}

Necessary future (“must”)
J�1 qK = ∅
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Examples with Polyadic μ-calculus

a1 b1

a2 b2

... ...

an bm Least fixed point (µ)
φ = µX .(�1⊥ ∧�2⊥) ∨ ♦1♦2X

Iterations:
JφK0 = ∅
JφK1 = {(a1, b1)}
JφK2 = {(a1, b1); (a2, b2)}
JφK3 = {(a1, b1); (a2, b2); (a3, b3)}

...
Generalization:

JφK = {(ai , bi) | i ∈ [1;min(m, n)]}

Idea: use one (or n) token per automata
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Qualitative modeling and dynamical analysis of BRNs using AANs ◦ Analysis with μ-calculus

Search for Attractors with Polyadic μ-calculus

= belongs to
an attractor

ϕatt = {y ← x}νW .(µZ . (x = y) ∨ (♦xZ ))︸ ︷︷ ︸
ϕreach

∧ (�xW )

︸ ︷︷ ︸
ϕexplore

• JϕreachK = {(s; t) | s →∗ t}
ϕreach ≡ “There exists a path from x to y”

• JϕexploreK = {(s; t) | ∀s′, s →∗ s′ ⇒ s′ →∗ t}
ϕexplore ≡ “All successors of x can reach y”

• JϕattK = {(s; s) | ∀s′, s →∗ s′ ⇒ s′ →∗ s}
ϕatt ≡ “x belongs to an attractor”
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Search for Switches with Polyadic μ-calculus

a

= switch regarding a

ϕswitch(a) =

ϕreach︷ ︸︸ ︷(
µW .(x = a) ∨ (♦xW )

)
∧

♦x{x ← y}
(
νZ .¬(y = a) ∧ (�yZ )

)
︸ ︷︷ ︸

ϕnoreach
• JϕreachK = {(s; t) | s →∗ a}
ϕreach ≡ “There exists a path from x to a”

• JϕnoreachK = {(s; t) | ¬(t →∗ a)}
ϕnoreach ≡ “There exists no path from y to a”

• JϕswitchK = {(s; t) | s → t ∧ s →∗ a ∧ ¬(t →∗ a)}
ϕswitch ≡ “There is a switch between x and y”
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Bisimulation with Polyadic μ-calculus

Generic bisimulation between two models:

ϕbisim = νX .(
∧

p∈P
p1 ⇔ p2) ∧ (�1♦2X ∧�2♦1X )

Bisimulation only on two sets of observable components O and O′:

ϕbisim-obs = νX .(
∧

p∈P

∧
(i ;j)∈C

pi ⇔ pj) ∧ (�∗O�O♦
∗
O′♦O′X )
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Summary & Conclusion

• Discrete modeling = coherent abstraction of real biochemical phenomena
→ Discrete Networks / Thomas modeling
→ Asynchronous Automata Networks
→ Other extensions of the Process Hitting

• Static analysis based on the structure
→ Results on attractors (multiple stable states / complex attractors)
→ But results are not always fine enough

• Static analysis by abstract interpretation
→ Reachability properties
→ Very efficient (polynomial complexity)
→ Broad rand of models (+ translations)
→ But only one kind of property (CTL operator EF )

• μ-calculus
→ More generic than CTL*
→ Example: enumeration of attractors
→ More ongoing work: cycles, switches...
→ Ongoing implementation...
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