MDSC team seminar

Qualitative modeling and dynamical analysis of Biological Regulatory Networks using Asynchronous Automata Networks

Maxime FOLSCHETTE

MDSC team / Bioinfo project / I3S laboratory / University of Nice-Sophia Antipolis maxime.folschette@i3s.unice.fr
http://maxime.folschette.name/

2015/09/28

The Modeling/Analysis duality

Modeling a system is the first step towards its comprehension

Modeling

Analysis

The Modeling/Analysis duality

Modeling a system is the first step towards its comprehension

The required analysis has an impact on modeling

- The modeling tools must be adapted to the observed properties

The Modeling/Analysis duality

Modeling a system is the first step towards its comprehension

The required analysis has an impact on modeling

- The modeling tools must be adapted to the observed properties

Modeling choices have an impact on the results of the analysis

- The level of details changes the quantity of obtained info
- The size of the model increases the analysis duration

The Modeling/Analysis duality

Modeling a system is the first step towards its comprehension

The required analysis has an impact on modeling

- The modeling tools must be adapted to the observed properties

Modeling choices have an impact on the results of the analysis

- The level of details changes the quantity of obtained info
- The size of the model increases the analysis duration

The modeling and analysis steps of a system are strongly linked

Overview of This Presentation

Abstracting biological models

- Abstraction of biological components
- Discrete, asynchronous and unitary representations

Overview of This Presentation

Abstracting biological models

- Abstraction of biological components
- Discrete, asynchronous and unitary representations

Examples of discrete models

- Discrete Networks (Thomas modeling)
- Asynchronous Automata Networks
- Other extensions of the Process Hitting formalism

Overview of This Presentation

Abstracting biological models

- Abstraction of biological components
- Discrete, asynchronous and unitary representations

Examples of discrete models

- Discrete Networks (Thomas modeling)
- Asynchronous Automata Networks
- Other extensions of the Process Hitting formalism

Analysis of the dynamics of discrete models

- Static analysis on the structure
- Abstract interpretation
- A μ-calculus approach

Abstractions of the Representation

Abstractions of the Representation

Abstractions of the Representation

Discretization and Asynchronism

[Richard, Advances in Applied Mathematics, 2010]

Discretization and Asynchronism

[Richard, Advances in Applied Mathematics, 2010]

Discretization and Asynchronism

[Richard, Advances in Applied Mathematics, 2010]

- Unknown real values of concentrations or continuous activity levels \rightarrow Abstracted as thresholds or discrete levels

Discretization and Asynchronism

[Richard, Advances in Applied Mathematics, 2010]

- Unknown real values of concentrations or continuous activity levels \rightarrow Abstracted as thresholds or discrete levels
- Continuous variations of the real values
\rightarrow Unitary dynamics

Discretization and Asynchronism

[Richard, Advances in Applied Mathematics, 2010]

- Unknown real values of concentrations or continuous activity levels \rightarrow Abstracted as thresholds or discrete levels
- Continuous variations of the real values
\rightarrow Unitary dynamics
- Simultaneous crossings of two thresholds never occurs
\rightarrow Asynchronous dynamics

Discrete Networks / Thomas Modeling
 [Kauffman in Journal of Theoretical Biology, 1969]
 [Thomas in Journal of Theoretical Biology, 1973]

- A set of components $N=\{a, b, z\}$

Discrete Networks／Thomas Modeling
 ［Kauffman in Journal of Theoretical Biology，1969］
 ［Thomas in Journal of Theoretical Biology，1973］

－A set of components $N=\{a, b, z\}$
－A set of discrete expression levels for each component $a \in \mathbb{F}^{a}=\llbracket 0 ; 2 \rrbracket$
－The set of global states $\mathbb{F}=\mathbb{F}^{a} \times \mathbb{F}^{b} \times \mathbb{F}^{z}$

Discrete Networks / Thomas Modeling

 [Kauffman in Journal of Theoretical Biology, 1969][Thomas in Journal of Theoretical Biology, 1973]

- A set of components $N=\{a, b, z\}$
- A set of discrete expression levels for each component $a \in \mathbb{F}^{a}=\llbracket 0 ; 2 \rrbracket$
- The set of global states $\mathbb{F}=\mathbb{F}^{a} \times \mathbb{F}^{b} \times \mathbb{F}^{z}$
- An evolution function for each component $f^{z}: \mathbb{F} \rightarrow \mathbb{F}^{z}$

Discrete Networks／Thomas Modeling
 ［Kauffman in Journal of Theoretical Biology，1969］
 ［Thomas in Journal of Theoretical Biology，1973］

－A set of components $N=\{a, b, z\}$
－A set of discrete expression levels for each component $a \in \mathbb{F}^{a}=\llbracket 0 ; 2 \rrbracket$
－The set of global states $\mathbb{F}=\mathbb{F}^{a} \times \mathbb{F}^{b} \times \mathbb{F}^{z}$

Discrete Networks / Thomas Modeling
 [Kauffman in Journal of Theoretical Biology, 1969]
 [Thomas in Journal of Theoretical Biology, 1973]

- A set of components $N=\{a, b, z\}$
- A set of discrete expression levels for each component $a \in \mathbb{F}^{a}=\llbracket 0 ; 2 \rrbracket$
- The set of global states $\mathbb{F}=\mathbb{F}^{a} \times \mathbb{F}^{b} \times \mathbb{F}^{z}$
- Signs on the edges $a \xrightarrow{+} z$

Discrete Networks / Thomas Modeling
 [Kauffman in Journal of Theoretical Biology, 1969]
 [Thomas in Journal of Theoretical Biology, 1973]

- A set of components $N=\{a, b, z\}$
- A set of discrete expression levels for each component $a \in \mathbb{F}^{a}=\llbracket 0 ; 2 \rrbracket$
- The set of global states $\mathbb{F}=\mathbb{F}^{a} \times \mathbb{F}^{b} \times \mathbb{F}^{z}$
- Signs on the edges $a \xrightarrow{+} z \quad$ or signs + thresholds $a \xrightarrow{2,+} z$

Discrete Networks / Thomas Modeling

[Kauffman in Journal of Theoretical Biology, 1969]
[Thomas in Journal of Theoretical Biology, 1973]

- A set of components $N=\{a, b, z\}$
- A set of discrete expression levels for each component $a \in \mathbb{F}^{a}=\llbracket 0 ; 2 \rrbracket$
- The set of global states $\mathbb{F}=\mathbb{F}^{a} \times \mathbb{F}^{b} \times \mathbb{F}^{z}$
- Signs on the edges $a \xrightarrow{+} z \quad$ or signs + thresholds $a \xrightarrow{2,+} z$
- Discrete parameters / evolution functions $f^{a}: \mathbb{F} \rightarrow \mathbb{F}^{a}$

State-graph of a Discrete Network

Several semantics exist regarding the updates:

- Synchronous (deterministic)
- Asynchronous (non-deterministic)
- Generalized (even more non-deterministic)

In every case, exponential size in the number of components

State-graph of a Discrete Network

Several semantics exist regarding the updates:

- Synchronous (deterministic)
- Asynchronous (non-deterministic)
- Generalized (even more non-deterministic)

In every case, exponential size in the number of components

State-graph of a Discrete Network

Several semantics exist regarding the updates:

- Synchronous (deterministic)
- Asynchronous (non-deterministic)
- Generalized (even more non-deterministic)

In every case, exponential size in the number of components

Attractor $=$ minimal set of states from which the dynamics cannot escape $=$ terminal strongly connected component

State-graph of a Discrete Network

Several semantics exist regarding the updates:

- Synchronous (deterministic)
- Asynchronous (non-deterministic)
- Generalized (even more non-deterministic)

In every case, exponential size in the number of components

Attractor $=$ minimal set of states from which the dynamics cannot escape $=$ terminal strongly connected component

- Stable state (state with no successors)

State-graph of a Discrete Network

Several semantics exist regarding the updates:

- Synchronous (deterministic)
- Asynchronous (non-deterministic)
- Generalized (even more non-deterministic)

In every case, exponential size in the number of components

Attractor $=$ minimal set of states from which the dynamics cannot escape $=$ terminal strongly connected component

- Stable state (state with no successors)
- Complex attractor (loop or composition of loops)

Static Analysis of Discrete Networks

[Thomas in Numerical Methods in the Study of Critical Phenomena, 1981] [Paulevé \& Richard, Electronic Notes in Theoretical Computer Science 2012]

Conjectures of René Thomas:

Static Analysis of Discrete Networks

[Thomas in Numerical Methods in the Study of Critical Phenomena, 1981] [Paulevé \& Richard, Electronic Notes in Theoretical Computer Science 2012]

Conjectures of René Thomas:

- Multiple stable states \Rightarrow positive cycle in the graph

110

111

000

Static Analysis of Discrete Networks

[Thomas in Numerical Methods in the Study of Critical Phenomena, 1981] [Paulevé \& Richard, Electronic Notes in Theoretical Computer Science 2012]

Conjectures of René Thomas:

- Multiple stable states \Rightarrow positive cycle in the graph

110

111 000

Static Analysis of Discrete Networks

[Thomas in Numerical Methods in the Study of Critical Phenomena, 1981] [Paulevé \& Richard, Electronic Notes in Theoretical Computer Science 2012]

Conjectures of René Thomas:

- Multiple stable states \Rightarrow positive cycle in the graph
- Sustained oscillations (complex attractor) \Rightarrow negative cycle in the graph

110

Static Analysis of Discrete Networks

[Thomas in Numerical Methods in the Study of Critical Phenomena, 1981] [Paulevé \& Richard, Electronic Notes in Theoretical Computer Science 2012]

Conjectures of René Thomas:

- Multiple stable states \Rightarrow positive cycle in the graph
- Sustained oscillations (complex attractor) \Rightarrow negative cycle in the graph

000

Proofs:

[Remy, Ruet, Thieffry in Advances in Applied Mathematics, 2008]
[Richard, Advances in Applied Mathematics, 2010]
[Richard, Comet in Discrete Applied Mathematics, 2007]

Static Analysis of Discrete Networks

[Thomas in Numerical Methods in the Study of Critical Phenomena, 1981] [Paulevé \& Richard, Electronic Notes in Theoretical Computer Science 2012]

Conjectures of René Thomas:

- Multiple stable states \Rightarrow positive cycle in the graph
- Sustained oscillations (complex attractor) \Rightarrow negative cycle in the graph

Proofs:
[Remy, Ruet, Thieffry in Advances in Applied Mathematics, 2008]
[Richard, Advances in Applied Mathematics, 2010]
[Richard, Comet in Discrete Applied Mathematics, 2007]
Other results:

- Lower \& upper bounds of the number of attractors
- Functionality of the cycles
- Sufficient condition for no stable state / Topological stable states

Dynamic Analysis of Discrete Networks

- These static analysis results are not sufficient to predict the dynamics of independent components.

Examples that cannot be tackled:

1) From the initial state $(a, b, z)=(0,0,0)$, is it possible to reach $z=2$?
2) Does $(0,0,0)$ belong to an attractor?
3) What is the set of attractors of the model?

Dynamic Analysis of Discrete Networks

- These static analysis results are not sufficient to predict the dynamics of independent components.

Examples that cannot be tackled:

1) From the initial state $(a, b, z)=(0,0,0)$, is it possible to reach $z=2$?
2) Does $(0,0,0)$ belong to an attractor?
3) What is the set of attractors of the model?

- Temporal logics (LTL, CTL, CTL*)

More precise but require to compute the whole state graph
Examples:

1) $(a=0 \wedge b=0 \wedge z=0) \Rightarrow \operatorname{EF}(z=2)$
2) $(a=0 \wedge b=0 \wedge z=0) \Rightarrow \operatorname{AG}(\operatorname{EF}(a=0 \wedge b=0 \wedge z=0))$
3) ???

Dynamic Analysis of Discrete Networks

- These static analysis results are not sufficient to predict the dynamics of independent components.
Examples that cannot be tackled:

1) From the initial state $(a, b, z)=(0,0,0)$, is it possible to reach $z=2$?
2) Does $(0,0,0)$ belong to an attractor?
3) What is the set of attractors of the model?

- Temporal logics (LTL, CTL, CTL*)

More precise but require to compute the whole state graph
Examples:

1) $(a=0 \wedge b=0 \wedge z=0) \Rightarrow \operatorname{EF}(z=2)$
2) $(a=0 \wedge b=0 \wedge z=0) \Rightarrow \operatorname{AG}(E F(a=0 \wedge b=0 \wedge z=0))$
3) ???

- Applications of CTL and LTL

Check a property on a given model: NuSMV, LibDDD, ... Create a model for which a property holds: SMBioNet, SPuTNIk, ... [Bernot, Comet, Richard, Guespin in Journal of Theoretical Biology, 2004]

The Enriched Process Hitting

Synchronized Automata Networks

The Enriched Process Hitting

Synchronized Automata Networks

The Enriched Process Hitting

Synchronized Automata Networks
 Asynchronous Automata Networks

The Enriched Process Hitting

Example of enriched Process Hitting Model

Example of enriched Process Hitting Model

Model from [François et al. in Molecular Systems Biology, 2007]

Static analysis

- No conflict
- All leaves are \varnothing

Static analysis

- No conflict
- All leaves are \varnothing

Static analysis

- No conflict
- All leaves are \varnothing

$\left\{c_{0}, f_{1}\right\}$

Static analysis

- No conflict
- All leaves are \varnothing

Static analysis

- No conflict
- All leaves are \varnothing

Static analysis

- No conflict
- All leaves are \varnothing

Static analysis

- No conflict
- All leaves are \varnothing

$$
\left\{c_{0}, f_{1}\right\} \rightarrow a_{0} \upharpoonright a_{1}
$$

Static analysis

Implementation of the Static Analysis Into PINT

Complexity:

- Computation of the local causality graph:
- Polynomial in the number of sorts
- Exponential in the number of processes of each sort
- Analysis of the graph (sufficient condition):
- Polynomial in the size of the graph

Implementation of the Static Analysis Into PINT

Complexity:

- Computation of the local causality graph:
- Polynomial in the number of sorts
- Exponential in the number of processes of each sort
- Analysis of the graph (sufficient condition):
- Polynomial in the size of the graph

Makes the study of large networks tractable:

Model	Automata	Actions	States	libddd 1	GINsim 2	PINT
egfr20	35	670	2^{64}		$<1 \mathrm{~s}$	$\mathbf{0 . 0 2 s}$
tcrsig40	54	301	2^{73}		∞	$\mathbf{0 . 0 2 s}$
tcrsig94	133	1124	2^{194}	$[>1 \mathrm{~min}-\infty]$		$\mathbf{0 . 0 3 s}$
egfr104	193	2356	2^{320}	$[>1 \mathrm{~min}-\infty]$		$\mathbf{0 . 1 6 s}$

1 LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]
${ }^{2}$ TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]
egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]
tcrsig40 : T-Cell Receptor (40 composants) [Klamt et al., 2006]
tcrsig94 : T-Cell Receptor (94 composants) [Saez-Rodriguez et al., 2007]

Classes of priorities

[Folschette et al. in Theoretical Computer Science, 2015b]

- Each action is associated to a discrete priority
- An action is playable only if no other action with higher priority is playable

| (1) (2) | \cdots | \cdots |
| :--- | :--- | :--- | :--- |
| highest
 priority | (n) | lowest
 priority |

$\rightarrow b_{1}$ cannot be reached

Classes of priorities

[Folschette et al. in Theoretical Computer Science, 2015b]

- Each action is associated to a discrete priority
- An action is playable only if no other action with higher priority is playable
$\xrightarrow[\begin{array}{l}\text { highest } \\ \text { priority }\end{array}]{\text { (1) (2) (3) }}$

$\rightarrow b_{1}$ cannot be reached

Temporal Simulation
 [Paulevé (PhD thesis), 2011]

- Simulation with stochastic parameters:

Temporal Simulation

[Paulevé (PhD thesis), 2011]

- Simulation with stochastic parameters:

Stochastic parameters:

- $\mathbf{a}=[0.742 ; 1.29]$ (mean 1)
- $\mathbf{c}=[1.48 ; 2.59]$ (mean 2)
- $\mathbf{f}=[23.9 ; 35.4]$ (mean 30)

Temporal Simulation

[Paulevé (PhD thesis), 2011]

- Simulation with stochastic parameters:

Stochastic parameters:

- $\mathbf{a}=[0.742 ; 1.29]($ mean 1$)$
- $\mathbf{c}=[1.48 ; 2.59]$ (mean 2)

$$
\Rightarrow \mathbf{a}<\mathbf{c}<\mathbf{f}
$$

- $\mathbf{f}=[23.9 ; 35.4]$ (mean 30)

Temporal Simulation

[Paulevé (PhD thesis), 2011]

- Simulation with stochastic parameters:

Stochastic parameters:

- $\mathbf{a}=[0.742 ; 1.29]($ mean 1$)(1)$
- $\mathbf{c}=[1.48 ; 2.59]($ mean 2) (2)
- $\mathbf{f}=[23.9 ; 35.4]($ mean 30$)$ (3)

$$
\Rightarrow \mathbf{a}<\mathbf{c}<\mathbf{f}
$$

Example with Classes of Priorities

Example with Classes of Priorities

Neutralizing Edges

- Integration of temporal data about relative reaction speeds
- Atomistic preemptions between actions similar to "atomistic priorities"
$c_{0} \rightarrow d_{0} \upharpoonright d_{1}$ cannot be plays while
$a_{0} \rightarrow b_{0} \upharpoonright b_{1}$ is playable
$\rightarrow d_{1}$ is always reached after b_{1}

Neutralizing Edges

- Integration of temporal data about relative reaction speeds
- Atomistic preemptions between actions similar to "atomistic priorities"
$c_{0} \rightarrow d_{0} \upharpoonright d_{1}$ cannot be plays while
$a_{0} \rightarrow b_{0} \upharpoonright b_{1}$ is playable
$\rightarrow d_{1}$ is always reached after b_{1}

Neutralizing Edges

- Integration of temporal data about relative reaction speeds
- Atomistic preemptions between actions similar to "atomistic priorities"
$c_{0} \rightarrow d_{0} \upharpoonright d_{1}$ cannot be plays while
$a_{0} \rightarrow b_{0} \upharpoonright b_{1}$ is playable
$\rightarrow d_{1}$ is always reached after b_{1}

Example with Neutralizing Edges

Equivalence Between Process Hitting Extensions

All developed enrichments have the same expressivity

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation

Equivalence Between Process Hitting Extensions

All developed enrichments have the same expressivity

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation

Equivalence Between Process Hitting Extensions

All developed enrichments have the same expressivity

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation

Equivalence Between Process Hitting Extensions

All developed enrichments have the same expressivity

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation

Equivalence Between Process Hitting Extensions

All developed enrichments have the same expressivity

- Expressive power improved
- Can always be translated to the canonical form
- But sometimes at the cost of an exponential translation

Translation From and To Other Discrete Models

- Equivalence with Discrete Networks / Thomas modeling
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham

Translation From and To Other Discrete Models

- Equivalence with Discrete Networks / Thomas modeling
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham

Translation From and To Other Discrete Models

- Equivalence with Discrete Networks / Thomas modeling
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham

Translation From and To Other Discrete Models

- Equivalence with Discrete Networks / Thomas modeling
- Translation towards (bounded) Petri nets with inhibitor arcs
- Translation from the Boolean semantics of Biocham

Inferring a BRN with Thomas' parameters

Inferring a BRN with Thomas' parameters

Inferring a BRN with Thomas' parameters

Inferring the Interaction Graph

(b)

Inferring the Interaction Graph

Inferring the Interaction Graph

\rightarrow Exhaustive search in all possible configurations

Inferring the Interaction Graph

\rightarrow Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others $\left[b_{0}\right]$.

Inferring the Interaction Graph

\rightarrow Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others $\left[b_{0}\right]$.
2. Change the active process of the regulator $\left[a_{0}, a_{1}\right]$ and watch the evolution.

Inferring the Interaction Graph

\rightarrow Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others $\left[b_{0}\right]$.
2. Change the active process of the regulator $\left[a_{0}, a_{1}\right]$ and watch the evolution.

Inferring the Interaction Graph

\rightarrow Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others $\left[b_{0}\right]$.
2. Change the active process of the regulator $\left[a_{0}, a_{1}\right]$ and watch the evolution.

Inferring the Interaction Graph

\rightarrow Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others $\left[b_{0}\right]$.
2. Change the active process of the regulator $\left[a_{0}, a_{1}\right]$ and watch the evolution.

Inferring the Interaction Graph

\rightarrow Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others [b_{0}].
2. Change the active process of the regulator $\left[a_{0}, a_{1}\right]$ and watch the evolution.
3. Conclude locally: $\left(a_{0} \upharpoonright a_{1} \Rightarrow z_{0} \upharpoonright z_{2}\right) \Rightarrow$ activation $(+) \&$ threshold $=1$.

Inferring the Interaction Graph

\rightarrow Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others [b_{0}].
2. Change the active process of the regulator $\left[a_{0}, a_{1}\right]$ and watch the evolution.
3. Conclude locally: $\left(a_{0} \upharpoonright a_{1} \Rightarrow z_{0} \upharpoonright>z_{2}\right) \Rightarrow$ activation $(+) \&$ threshold $=1$.
4. Iterate

Inferring the Interaction Graph

\rightarrow Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others [b_{0}].
2. Change the active process of the regulator $\left[a_{0}, a_{1}\right]$ and watch the evolution.
3. Conclude locally: $\left(a_{0} \upharpoonright a_{1} \Rightarrow z_{0} \upharpoonright>z_{2}\right) \Rightarrow$ activation $(+) \&$ threshold $=1$.
4. Iterate

Inferring the Interaction Graph

\rightarrow Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others [b_{0}].
2. Change the active process of the regulator $\left[a_{0}, a_{1}\right]$ and watch the evolution.
3. Conclude locally: $\left(a_{0} \upharpoonright a_{1} \Rightarrow z_{0} \upharpoonright z_{2}\right) \Rightarrow$ activation $(+) \&$ threshold $=1$.
4. Iterate

Inferring the Interaction Graph

\rightarrow Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others [b_{0}].
2. Change the active process of the regulator $\left[a_{0}, a_{1}\right]$ and watch the evolution.
3. Conclude locally: $\left(a_{0} \upharpoonright a_{1} \Rightarrow z_{0} \upharpoonright z_{2}\right) \Rightarrow$ activation $(+) \&$ threshold $=1$.
4. Iterate and conclude globally.

Inferring the Interaction Graph

\rightarrow Exhaustive search in all possible configurations

1. Pick one regulator [a], and choose an active process for all the others [b_{0}].
2. Change the active process of the regulator $\left[a_{0}, a_{1}\right]$ and watch the evolution.
3. Conclude locally: $\left(a_{0} \upharpoonright a_{1} \Rightarrow z_{0} \upharpoonright z_{2}\right) \Rightarrow$ activation $(+) \&$ threshold $=1$.
4. Iterate and conclude globally.

Problematic cases:
$\left.\begin{array}{l}\rightarrow \text { No focal processes (cycle) } \\ \rightarrow \text { Opposite influences (+ \& -) }\end{array}\right\} \Rightarrow$ Unsigned edge

Inferring Parameters

1. For each configuration of resources $\left[\omega=\left\{a^{+}, b^{-}\right\}\right]$

Inferring Parameters

[Folschette et al. in Theoretical Computer Science, 2015a]

1. For each configuration of resources $\left[\omega=\left\{a^{+}, b^{-}\right\}\right]$ find the focal processes.

2. For each configuration of resources $\left[\omega=\left\{a^{+}, b^{-}\right\}\right]$ find the focal processes. If possible, conclude. $\left[k_{z,\left\{a^{+}, b^{-}\right\}}=1\right]$

Inferring Parameters

[Folschette et al. in Theoretical Computer Science, 2015a]

1. For each configuration of resources $\left[\omega=\left\{a^{+}, b^{-}\right\}\right]$
find the focal processes. If possible, conclude. $\left[k_{z,\left\{a^{+}, b^{-}\right\}}=1\right]$
Inconclusive cases:

- Behavior cannot be represented as a BRN
- Lack of cooperation (no focal processes)

1. For each configuration of resources $\left[\omega=\left\{a^{+}, b^{-}\right\}\right]$
find the focal processes. If possible, conclude. $\left[k_{z,\left\{a^{+}, b^{-}\right\}}=1\right]$
Inconclusive cases:

- Behavior cannot be represented as a BRN
- Lack of cooperation (no focal processes)

2. If some parameters could not be inferred, enumerate all admissible parametrizations, regarding:

- Biological constraints [Bernot et al. in Concurrent Models in Molecular Biology, 2007]
- The dynamics of the Process Hitting

$$
\left[k_{z,\left\{a^{+}, b^{-}\right\}} \in\{0 ; 1 ; 2\} ; k_{z,\left\{a^{-}, b^{+}\right\}} \in\{0 ; 1 ; 2\}\right]
$$

Translation to Thomas Modeling

[Folschette et al. in Theoretical Computer Science, 2015a]

- Two successive inferences: 1) interaction graph; 2) parameters
- Exhaustive analysis of the local dynamics for each regulator
- enumeration of all parametrizations compatible with the dynamics

Complexity:

Linear in the number of genes,
Exponential in the number of regulators of one component

Translation to Thomas Modeling

[Folschette et al. in Theoretical Computer Science, 2015a]

- Two successive inferences: 1) interaction graph; 2) parameters
- Exhaustive analysis of the local dynamics for each regulator
- enumeration of all parametrizations compatible with the dynamics

Complexity:

Linear in the number of genes, Exponential in the number of regulators of one component

Models				Inference the IG		Inference of parameters	
Name	Sorts	Processes	Actions	Duration	Edges	Durations	Parameters
egfr20	42	152	399	1s	51	1s	192
tcrsig40	54	156	305	1s	55	1s	143
tcrsig94	133	448	1082	$\mathbf{1 0 0 s}$	197	1s	578
egfr104	193	744	2304	200s	280	3s	27 '496

```
egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]
tcrsig40 : T-Cell Receptor (40 composants) [Klamt et al., 2006]
tcrsig94 : T-Cell Receptor (94 composants) [Saez-Rodriguez et al., 2007]
```


The Modal μ-calculus

LTL: Example of the "Until" operator
$p \cup q \equiv$ "Either q, or p and the next state also verifies $p U q$ " \Rightarrow Implicit fixed point
(Modal) μ-calculus makes such fixed points explicit

- Basic property: p (" p is verified in this node")

- Fixed points: μ ('east fixed point), i (greatest fixed point)

Polyadic (modal) μ-calculus allows to manipulate several tokens in parallel

- Token manipulation:
$i=j$ ("tokens i and j point to the same node") $i \leftarrow j$ ("move token i to the position of token j ")

The Modal μ-calculus

LTL: Example of the "Until" operator
$p \cup q \equiv$ "Either q, or p and the next state also verifies $p U q$ " \Rightarrow Implicit fixed point
(Modal) $\boldsymbol{\mu}$-calculus makes such fixed points explicit

$$
\varphi=p|\neg \varphi| \varphi \wedge \varphi|\varphi \vee \varphi| \diamond \varphi|\square \varphi| \mu X . \varphi|\nu X . \varphi| X
$$

- Basic property: p (" p is verified in this node")
- Modal operators: \square ("for all successors"), \diamond ("there exists a successor")
- Fixed points: μ (least fixed point), ν (greatest fixed point)

Polyadic (modal) μ-calculus allows to manipulate several tokens in parallel

- Token manipulation: $i=j$ ("tokens i and j point to the same node")

The Modal μ-calculus

LTL: Example of the "Until" operator
$p \cup q \equiv$ "Either q, or p and the next state also verifies $p U q$ " \Rightarrow Implicit fixed point
(Modal) μ-calculus makes such fixed points explicit

$$
\varphi=p|\neg \varphi| \varphi \wedge \varphi|\varphi \vee \varphi| \diamond \varphi|\square \varphi| \mu X . \varphi|\nu X . \varphi| X
$$

- Basic property: p (" p is verified in this node")
- Modal operators: \square ("for all successors"), \diamond ("there exists a successor")
- Fixed points: μ (least fixed point), ν (greatest fixed point)

Polyadic (modal) μ-calculus allows to manipulate several tokens in parallel

$$
\varphi=p_{i}|i \leftarrow j| i=j|\neg \varphi| \varphi \wedge \varphi|\varphi \vee \varphi| \diamond_{i} \varphi\left|\square_{i} \varphi\right| \mu X . \varphi|\nu X . \varphi| X
$$

- Token manipulation:
$i=j$ ("tokens i and j point to the same node")
$i \leftarrow j$ ("move token i to the position of token j ")

Examples with Modal μ-calculus

No tokens: only one evolution is studied
Atomic property (p, q, r)

$$
\llbracket p \rrbracket=\{p\}
$$

Possible future ("may") $\llbracket \diamond q \rrbracket=\{p\}$

Necessary future ("must")

 $\begin{aligned} \llbracket \square q \rrbracket & =\varnothing \\ \llbracket \square p \rrbracket & =\{q ; r\}\end{aligned}$
Examples with Modal μ-calculus

No tokens: only one evolution is studied
Atomic property (p, q, r)

$$
\begin{aligned}
& \llbracket p \rrbracket=\{p\} \\
& \llbracket q \vee r \rrbracket=\{q ; r\}
\end{aligned}
$$

Possible future ("may") $\llbracket \diamond q \rrbracket=\{p\}$

Necessary future ("must")

 $\llbracket \square q]=\varnothing$$\llbracket \square p \rrbracket=\{q ; r\}$

Examples with Modal μ-calculus

No tokens: only one evolution is studied
Atomic property (p, q, r)

$$
\begin{aligned}
& \llbracket p \rrbracket=\{p\} \\
& \llbracket q \vee r \rrbracket=\{q ; r\}
\end{aligned}
$$

Possible future ("may")
$\llbracket \diamond q \rrbracket=\{p\}$

Necessary future ("must")

Examples with Modal μ-calculus

No tokens: only one evolution is studied
Atomic property (p, q, r)

$$
\begin{aligned}
& \llbracket p \rrbracket=\{p\} \\
& \llbracket q \vee r \rrbracket=\{q ; r\}
\end{aligned}
$$

Possible future ("may")
$\llbracket \diamond q \rrbracket=\{p\}$
Necessary future ("must")
$\llbracket \square q \rrbracket=\varnothing$

Examples with Modal μ-calculus

No tokens: only one evolution is studied
Atomic property (p, q, r)

$$
\begin{aligned}
& \llbracket p \rrbracket=\{p\} \\
& \llbracket q \vee r \rrbracket=\{q ; r\}
\end{aligned}
$$

Possible future ("may")
$\llbracket \diamond q \rrbracket=\{p\}$
Necessary future ("must")
$\begin{aligned} \llbracket \square q \rrbracket & =\varnothing \\ \llbracket \square p \rrbracket & =\{q ; r\}\end{aligned}$

Examples with Polyadic μ-calculus

> Atomic property (p, q, r) $$
p_{1} \wedge r_{2} \rrbracket=\{(p, r)\}
$$ $\llbracket p_{1} \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}$

Token affectation $(i \leftarrow j)$ $\llbracket\{2 \leftarrow 1\} p_{1} \wedge p_{2} \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}$

Token comnarison ($i=j$) $\llbracket 1=2 \rrbracket=\{(p, p) ;(q, q) ;(r, r)\}$

Possible future ("may") $\llbracket\rangle_{1} q \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}$

Necessary future ("must")

 $\llbracket \square_{1} q \rrbracket=\varnothing$
Examples with Polyadic μ-calculus

Atomic property (p, q, r)
$\llbracket p_{1} \wedge r_{2} \rrbracket=\{(p, r)\}$
$\llbracket p_{1} \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}$
Token affectation ($i \leftarrow j$)
$\llbracket\{2 \leftarrow 1\} p_{1} \wedge p_{2} \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}$
Token comparison $(i=j)$ $\llbracket 1=2 \rrbracket=\{(p, p) ;(q, q) ;(r, r)\}$

Possible future ("may")

Necessary future ("must") $\llbracket \square_{1} q \rrbracket=\varnothing$

Examples with Polyadic μ-calculus

Atomic property (p, q, r)

$$
\begin{aligned}
& \llbracket p_{1} \wedge r_{2} \rrbracket=\{(p, r)\} \\
& \llbracket p_{1} \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}
\end{aligned}
$$

Token affectation $(i \leftarrow j)$
$\llbracket\{2 \leftarrow 1\} p_{1} \wedge p_{2} \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}$
Token comparison ($i=j$)
$\llbracket 1=2 \rrbracket=\{(p, p) ;(q, q) ;(r, r)\}$

Examples with Polyadic μ-calculus

Atomic property (p, q, r)

$$
\begin{aligned}
& \llbracket p_{1} \wedge r_{2} \rrbracket=\{(p, r)\} \\
& \llbracket p_{1} \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}
\end{aligned}
$$

Token affectation $(i \leftarrow j$)
$\llbracket\{2 \leftarrow 1\} p_{1} \wedge p_{2} \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}$
Token comparison ($i=j$)
$\llbracket 1=2 \rrbracket=\{(p, p) ;(q, q) ;(r, r)\}$
Possible future ("may")
$\llbracket\rangle_{1} q \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}$

Examples with Polyadic μ-calculus

Atomic property (p, q, r)

$$
\begin{aligned}
& \llbracket p_{1} \wedge r_{2} \rrbracket=\{(p, r)\} \\
& \llbracket p_{1} \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}
\end{aligned}
$$

Token affectation $(i \leftarrow j$)
$\llbracket\{2 \leftarrow 1\} p_{1} \wedge p_{2} \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}$
Token comparison ($i=j$)
$\llbracket 1=2 \rrbracket=\{(p, p) ;(q, q) ;(r, r)\}$
Possible future ("may")
$\llbracket\rangle_{1} q \rrbracket=\{(p, p) ;(p, q) ;(p, r)\}$
Necessary future ("must")
$\llbracket \square_{1} q \rrbracket=\varnothing$

Examples with Polyadic μ-calculus

Least fixed point (μ)

$$
\phi=\mu X .\left(\square_{1} \perp \wedge \square_{2} \perp\right) \vee \diamond_{1} \diamond_{2} X
$$

Iterations:

Generalization: $\llbracket \phi \rrbracket=\left\{\left(a_{i}, b_{i}\right) \mid i \in[1 ; \min (m, n)]\right\}$

Idea: use one (or n) token per automata

Examples with Polyadic μ-calculus

Least fixed point (μ)

$$
\phi=\mu X .\left(\square_{1} \perp \wedge \square_{2} \perp\right) \vee \diamond_{1} \diamond_{2} X
$$

Iterations:

$$
\begin{aligned}
& \llbracket \phi \rrbracket_{0}=\varnothing \\
& \llbracket \phi \rrbracket_{1}=\left\{\left(a_{1}, b_{1}\right)\right\} \\
& \llbracket \phi \rrbracket_{2}=\left\{\left(a_{1}, b_{1}\right) ;\left(a_{2}, b_{2}\right)\right\} \\
& \llbracket \phi \rrbracket_{3}=\left\{\left(a_{1}, b_{1}\right) ;\left(a_{2}, b_{2}\right) ;\left(a_{3}, b_{3}\right)\right\}
\end{aligned}
$$

Generalization:

Idea: use one (or n) token per automata

Examples with Polyadic μ-calculus

Least fixed point (μ)

$$
\phi=\mu X .\left(\square_{1} \perp \wedge \square_{2} \perp\right) \vee \diamond_{1} \diamond_{2} X
$$

Iterations:

$$
\begin{aligned}
& \llbracket \phi \rrbracket_{0}=\varnothing \\
& \llbracket \phi \rrbracket_{1}=\left\{\left(a_{1}, b_{1}\right)\right\} \\
& \llbracket \phi \rrbracket_{2}=\left\{\left(a_{1}, b_{1}\right) ;\left(a_{2}, b_{2}\right)\right\} \\
& \llbracket \phi \rrbracket_{3}=\left\{\left(a_{1}, b_{1}\right) ;\left(a_{2}, b_{2}\right) ;\left(a_{3}, b_{3}\right)\right\}
\end{aligned}
$$

$$
\vdots
$$

Generalization:
$\llbracket \phi \rrbracket=\left\{\left(a_{i}, b_{i}\right) \mid i \in[1 ; \min (m, n)]\right\}$
Idea: use one (or n) token per automata

Examples with Polyadic μ-calculus

Least fixed point (μ)

$$
\phi=\mu X .\left(\square_{1} \perp \wedge \square_{2} \perp\right) \vee \diamond_{1} \diamond_{2} X
$$

Iterations:

$$
\begin{aligned}
& \llbracket \phi \rrbracket_{0}=\varnothing \\
& \llbracket \phi \rrbracket_{1}=\left\{\left(a_{1}, b_{1}\right)\right\} \\
& \llbracket \phi \rrbracket_{2}=\left\{\left(a_{1}, b_{1}\right) ;\left(a_{2}, b_{2}\right)\right\} \\
& \llbracket \phi \rrbracket_{3}=\left\{\left(a_{1}, b_{1}\right) ;\left(a_{2}, b_{2}\right) ;\left(a_{3}, b_{3}\right)\right\}
\end{aligned}
$$

Generalization:

$$
\llbracket \phi \rrbracket=\left\{\left(a_{i}, b_{i}\right) \mid i \in[1 ; \min (m, n)]\right\}
$$

Idea: use one (or n) token per automata

Search for Attractors with Polyadic μ-calculus

$=\begin{gathered}\text { belongs to } \\ \text { an attractor }\end{gathered}$

$$
\varphi_{\text {att }}=\{\boldsymbol{y} \leftarrow \boldsymbol{x}\} \nu W \cdot \underbrace{\left(\mu Z \cdot(\boldsymbol{x}=\boldsymbol{y}) \vee\left(\diamond_{\boldsymbol{x}} Z\right)\right)}_{\varphi_{\text {explore }}} \wedge\left(\square_{x} W\right)
$$

$\varphi_{\text {explore }} \equiv$ "All successors of \boldsymbol{x} can reach \boldsymbol{y} "

Search for Attractors with Polyadic μ-calculus

$=\begin{gathered}\text { belongs to } \\ \text { an attractor }\end{gathered}$

$$
\varphi_{\text {att }}=\{\boldsymbol{y} \leftarrow \boldsymbol{x}\} \nu W \cdot \underbrace{\left(\mu Z \cdot(\boldsymbol{x}=\boldsymbol{y}) \vee\left(\diamond_{\boldsymbol{x}} Z\right)\right)}_{\varphi_{\text {explore }}} \wedge\left(\square_{x} W\right)
$$

- $\llbracket \varphi_{\text {reach }} \rrbracket=\left\{(s ; t) \mid s \rightarrow^{*} t\right\}$ $\varphi_{\text {reach }} \equiv$ "There exists a path from \boldsymbol{x} to $\boldsymbol{y} "$ $\varphi_{\text {explore }} \equiv$ "All successors of \boldsymbol{x} can reach \boldsymbol{y} " - $\left[\varphi_{\text {att }} \rrbracket=\left\{(s ; s) \mid \forall s^{\prime}, s \rightarrow{ }^{*} s^{\prime} \Rightarrow s^{\prime}\right.\right.$
$\varphi_{\text {att }} \equiv " x$ belongs to an attractor"

Search for Attractors with Polyadic μ-calculus

$=\begin{gathered}\text { belongs to } \\ \text { an attractor }\end{gathered}$

$$
\varphi_{\text {att }}=\{\boldsymbol{y} \leftarrow \boldsymbol{x}\} \nu W \cdot \underbrace{\left(\mu Z \cdot(\boldsymbol{x}=\boldsymbol{y}) \vee\left(\diamond_{\boldsymbol{x}} Z\right)\right)}_{\varphi_{\text {explore }}} \wedge\left(\square_{x} W\right)
$$

- $\llbracket \varphi_{\text {reach }} \rrbracket=\left\{(s ; t) \mid s \rightarrow^{*} t\right\}$ $\varphi_{\text {reach }} \equiv$ "There exists a path from \boldsymbol{x} to $\boldsymbol{y} "$
- $\llbracket \varphi_{\text {explore }} \rrbracket=\left\{(s ; t) \mid \forall s^{\prime}, s \rightarrow^{*} s^{\prime} \Rightarrow s^{\prime} \rightarrow^{*} t\right\}$ $\varphi_{\text {explore }} \equiv$ "All successors of \boldsymbol{x} can reach \boldsymbol{y} "

Search for Attractors with Polyadic μ-calculus

$=\begin{gathered}\text { belongs to } \\ \text { an attractor }\end{gathered}$

$$
\varphi_{\text {att }}=\{\boldsymbol{y} \leftarrow \boldsymbol{x}\} \nu W \cdot \underbrace{\left(\mu Z \cdot(\boldsymbol{x}=\boldsymbol{y}) \vee\left(\diamond_{\boldsymbol{x}} Z\right)\right)}_{\varphi_{\text {explore }}} \wedge\left(\square_{x} W\right)
$$

- $\llbracket \varphi_{\text {reach }} \rrbracket=\left\{(s ; t) \mid s \rightarrow^{*} t\right\}$ $\varphi_{\text {reach }} \equiv$ "There exists a path from \boldsymbol{x} to $\boldsymbol{y} "$
- $\llbracket \varphi_{\text {explore }} \rrbracket=\left\{(s ; t) \mid \forall s^{\prime}, s \rightarrow^{*} s^{\prime} \Rightarrow s^{\prime} \rightarrow^{*} t\right\}$ $\varphi_{\text {explore }} \equiv$ "All successors of \boldsymbol{x} can reach \boldsymbol{y} "
- $\llbracket \varphi_{\mathrm{att}} \rrbracket=\left\{(s ; s) \mid \forall s^{\prime}, s \rightarrow^{*} s^{\prime} \Rightarrow s^{\prime} \rightarrow^{*} s\right\}$ $\varphi_{\text {att }} \equiv$ " x belongs to an attractor"

Search for Switches with Polyadic μ-calculus

$=$ switch regarding a

$$
\begin{aligned}
& \varphi_{\text {switch }}(\boldsymbol{a})=\overbrace{\left(\mu W .(\boldsymbol{x}=\boldsymbol{a}) \vee\left(\diamond_{\boldsymbol{x}} W\right)\right)} \wedge \\
& \diamond_{\boldsymbol{x}}\{\boldsymbol{x} \leftarrow \boldsymbol{y}\} \underbrace{}_{\varphi_{\text {noreach }}^{\left(\nu Z . \neg(\boldsymbol{y}=\boldsymbol{a}) \wedge\left(\square_{\boldsymbol{y}} Z\right)\right)}}
\end{aligned}
$$

\square

Search for Switches with Polyadic μ-calculus

$=$ switch regarding a

$$
\begin{aligned}
& \varphi_{\text {switch }}(\boldsymbol{a})=\overbrace{\left(\mu W .(\boldsymbol{x}=\boldsymbol{a}) \vee\left(\diamond_{\boldsymbol{x}} W\right)\right)} \wedge \\
& \diamond_{\boldsymbol{x}}\{\boldsymbol{x} \leftarrow \boldsymbol{y}\} \underbrace{}_{\varphi_{\text {noreach }}^{\left(\nu Z . \neg(\boldsymbol{y}=\boldsymbol{a}) \wedge\left(\square_{\boldsymbol{y}} Z\right)\right)}}
\end{aligned}
$$

- $\llbracket \varphi_{\text {reach }} \rrbracket=\left\{(s ; t) \mid s \rightarrow^{*} a\right\}$
$\varphi_{\text {reach }} \equiv$ "There exists a path from x to $a^{\prime \prime}$

Search for Switches with Polyadic μ-calculus

$=$ switch regarding a

$$
\begin{array}{r}
\varphi_{\text {switch }}(\boldsymbol{a})=\overbrace{\left(\mu W .(\boldsymbol{x}=\boldsymbol{a}) \vee\left(\diamond_{\boldsymbol{x}} W\right)\right)}^{(\mu}) \\
\diamond_{\boldsymbol{x}}\{\boldsymbol{x} \leftarrow \boldsymbol{y}\} \underbrace{\left(\nu Z \cdot \neg(\boldsymbol{y}=\boldsymbol{a}) \wedge\left(\square_{\boldsymbol{y}} Z\right)\right)}_{\varphi_{\text {noreach }}}
\end{array}
$$

- $\llbracket \varphi_{\text {reach }} \rrbracket=\left\{(s ; t) \mid s \rightarrow^{*} a\right\}$ $\varphi_{\text {reach }} \equiv$ "There exists a path from \boldsymbol{x} to $\boldsymbol{a}^{\prime \prime}$
- $\llbracket \varphi_{\text {noreach }} \rrbracket=\left\{(s ; t) \mid \neg\left(t \rightarrow^{*} a\right)\right\}$ $\varphi_{\text {noreach }} \equiv$ "There exists no path from \boldsymbol{y} to \boldsymbol{a} " $\varphi_{\text {switch }} \equiv$ "There is a switch between x and y "

Search for Switches with Polyadic μ-calculus

$=$ switch regarding a

$$
\left.\begin{array}{rl}
\varphi_{\text {switch }}(\boldsymbol{a}) & =\overbrace{\left(\mu W .(\boldsymbol{x}=\boldsymbol{a}) \vee\left(\diamond_{\boldsymbol{x}} W\right)\right)}
\end{array}\right)
$$

- $\llbracket \varphi_{\text {reach }} \rrbracket=\left\{(s ; t) \mid s \rightarrow^{*} a\right\}$ $\varphi_{\text {reach }} \equiv$ "There exists a path from \boldsymbol{x} to $\boldsymbol{a}^{\prime \prime}$
- $\llbracket \varphi_{\text {noreach }} \rrbracket=\left\{(s ; t) \mid \neg\left(t \rightarrow^{*} a\right)\right\}$ $\varphi_{\text {noreach }} \equiv$ "There exists no path from \boldsymbol{y} to \boldsymbol{a} "
- $\llbracket \varphi_{\text {switch }} \rrbracket=\left\{(s ; t) \mid s \rightarrow t \wedge s \rightarrow^{*} a \wedge \neg\left(t \rightarrow^{*} a\right)\right\}$ $\varphi_{\text {switch }} \equiv$ "There is a switch between \boldsymbol{x} and \boldsymbol{y} "

Bisimulation with Polyadic μ-calculus

Generic bisimulation between two models:

$$
\varphi_{\text {bisim }}=\nu X \cdot\left(\bigwedge_{p \in P} p_{1} \Leftrightarrow p_{2}\right) \wedge\left(\square_{1} \diamond_{2} X \wedge \square_{2} \diamond_{1} X\right)
$$

Bisimulation only on two sets of observable components O and O^{\prime} :

$$
\varphi_{\text {bisim-obs }}=\nu X .\left(\bigwedge_{p \in P} \bigwedge_{(i ; j) \in C} p_{i} \Leftrightarrow p_{j}\right) \wedge\left(\square \frac{*}{O} \square_{O} \diamond \frac{*}{O^{\prime}} \diamond O_{O^{\prime}} X\right)
$$

Summary \& Conclusion

- Discrete modeling $=$ coherent abstraction of real biochemical phenomena
\rightarrow Discrete Networks / Thomas modeling
\rightarrow Asynchronous Automata Networks
\rightarrow Other extensions of the Process Hitting
- Static analysis based on the structure
\rightarrow Results on attractors (multiple stable states / complex attractors)
\rightarrow But results are not always fine enough
- Static analysis by abstract interpretation
\rightarrow Reachability properties
\rightarrow Very efficient (polynomial complexity)
- Broad rand of models (+ translations)
\rightarrow But only one kind of property (CTL operator EF)
- μ-calculus
\rightarrow More generic than CTL*
\rightarrow Example: enumeration of attractors
\rightarrow More ongoing work: cycles, switches..
\rightarrow Ongoing implementation

Summary \& Conclusion

- Discrete modeling $=$ coherent abstraction of real biochemical phenomena
\rightarrow Discrete Networks / Thomas modeling
\rightarrow Asynchronous Automata Networks
\rightarrow Other extensions of the Process Hitting
- Static analysis based on the structure
\rightarrow Results on attractors (multiple stable states / complex attractors)
\rightarrow But results are not always fine enough
- Static analysis by abstract interpretation
\rightarrow Reachability properties
\rightarrow Very efficient (polynomial complexity)
\rightarrow Broad rand of models (+ translations)
\rightarrow But only one kind of property (CTL operator EF)
- μ-calculus

More generic than CTL*
\rightarrow Example: enumeration of attractors
\rightarrow More ongoing work: cycles, switches Ongoing implementation.

Summary \& Conclusion

- Discrete modeling $=$ coherent abstraction of real biochemical phenomena
\rightarrow Discrete Networks / Thomas modeling
\rightarrow Asynchronous Automata Networks
\rightarrow Other extensions of the Process Hitting
- Static analysis based on the structure
\rightarrow Results on attractors (multiple stable states / complex attractors)
\rightarrow But results are not always fine enough
- Static analysis by abstract interpretation
\rightarrow Reachability properties
\rightarrow Very efficient (polynomial complexity)
\rightarrow Broad rand of models (+ translations)
\rightarrow But only one kind of property (CTL operator EF)
- μ-calculus

More generic than CTL*
Example: enumeration of attractors
More ongoing work: cycles, switches
Ongoing implementation.

Summary \& Conclusion

- Discrete modeling $=$ coherent abstraction of real biochemical phenomena
\rightarrow Discrete Networks / Thomas modeling
\rightarrow Asynchronous Automata Networks
\rightarrow Other extensions of the Process Hitting
- Static analysis based on the structure
\rightarrow Results on attractors (multiple stable states / complex attractors)
\rightarrow But results are not always fine enough
- Static analysis by abstract interpretation
\rightarrow Reachability properties
\rightarrow Very efficient (polynomial complexity)
\rightarrow Broad rand of models (+ translations)
\rightarrow But only one kind of property (CTL operator EF)
- μ-calculus
\rightarrow More generic than CTL*
\rightarrow Example: enumeration of attractors
\rightarrow More ongoing work: cycles, switches...
\rightarrow Ongoing implementation...

Bibliography

- René Thomas. On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations. In Jean Della Dora, Jacques Demongeot and Bernard Lacolle, editors: Numerical Methods in the Study of Critical Phenomena, Synergies 9, 180-193. Springer Berlin Heidelberg, 1981.
- Loïc Paulevé, Morgan Magnin, Olivier Roux. Refining dynamics of gene regulatory networks in a stochastic π-calculus framework. In Corrado Priami, Ralph-Johan Back, Ion Petre, and Erik de Vink, editors: Transactions on Computational Systems Biology XIII, Lecture Notes in Computer Science, 171-191. Springer Berlin Heidelberg, 2011.
- Loïc Paulevé, Morgan Magnin, Olivier Roux. Static analysis of biological regulatory networks dynamics using abstract interpretation. Mathematical Structures in Computer Science. 2012.
- Loïc Paulevé, Adrien Richard. Static Analysis of Boolean Networks Based on Interaction Graphs: A Survey, Electronic Notes in Theoretical Computer Science 284, 93-104. Elsevier, 2012.
- Adrien Richard and Jean-Paul Comet. Necessary conditions for multistationarity in discrete dynamical systems. Discrete Applied Mathematics 155(18), 2403-2413. 2007.
- Adrien Richard. Negative circuits and sustained oscillations in asynchronous automata networks, Advances in Applied Mathematics 44(4), 378-392. Elsevier, 2010.
- Élisabeth Remy, Paul Ruet and Denis Thieffry. Graphic requirements for multistability and attractive cycles in a boolean dynamical framework, Advances in Applied Mathematics 41(3), 335-350. Elsevier, 2008.
- Mmaxime Folschette, Loïc Paulevé, Kastumi Inoue, Morgan Magnin and Olivier Roux. Identification of Biological Regulatory Networks from Process Hitting models, Theoretical Computer Science 568, 49-71. Elsevier, 2015a.
- Maxime Folschette, Loïc Paulevé, Morgan Magnin and Olivier Roux. Sufficient Conditions for Reachability in Automata Networks with Priorities, Theoretical Computer Science. Elsevier, 2015b, in press.

Thank you

