MOVEP 2014

Efficient analysis on very large models

Maxime FOLSCHETTE
MeForBio / IRCCyN / École Centrale de Nantes (Nantes, France) maxime.folschette@irccyn.ec-nantes.fr http://maxime.folschette.name/

Context and Aims

MeForBio team:
Qualitative modelling to study large dynamical biological systems

Context and Aims

MeForBio team:
 Qualitative modelling to study large dynamical biological systems

1) The object: Gene regulations

Large discrete models to study gene interactions

Context and Aims

MeForBio team:
 Qualitative modelling to study large dynamical biological systems

1) The object: Gene regulations

Large discrete models to study gene interactions
2) The method: Static analysis

Efficient methods thanks to the Process Hitting framework

Context and Aims

MeForBio team:
 Qualitative modelling to study
 large dynamical biological systems

1) The object: Gene regulations

Large discrete models to study gene interactions
2) The method: Static analysis

Efficient methods thanks to the Process Hitting framework
3) The result: Applications

The example of gene therapies

Gene regulations

Gene regulations

Usual biological algebraic models

[De Jong, Journal of Computational Biology, 2002]

Modelling interacting genes/proteins: Boolean Networks

Usual biological algebraic models

[De Jong, Journal of Computational Biology, 2002]

Modelling interacting genes/proteins: Boolean Networks

Questions:

- How does z behave?
- Is it possible to make a inactive?
- If I knock-out b. what changes?

The combinatorial explosion

\rightarrow Problem: easy to understand but hard to study exponential number of states

Model
Possible states

4

The combinatorial explosion

\rightarrow Problem: easy to understand but hard to study exponential number of states

The combinatorial explosion

\rightarrow Problem: easy to understand but hard to study exponential number of states

The combinatorial explosion

\rightarrow Problem: easy to understand but hard to study exponential number of states

Model

The combinatorial explosion

\rightarrow Problem: easy to understand but hard to study exponential number of states
Model

(10)	1024
(20)	1048576
(100)	1267650600000000000000000000000

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{0}, b_{1}, z_{0}\right\rangle$

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{0}, b_{1}, z_{0}\right\rangle$
Actions: dynamics $\quad b_{1} \rightarrow z_{0} \upharpoonright z_{1}, a_{0} \rightarrow a_{0} \upharpoonright a_{1}, a_{1} \rightarrow z_{1} \upharpoonright z_{2}$

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{0}, b_{1}, z_{0}\right\rangle$
Actions: dynamics $\quad \underline{b_{1} \rightarrow z_{0}} z_{1}, a_{0} \rightarrow a_{0} \upharpoonright a_{1}, a_{1} \rightarrow z_{1} \upharpoonright z_{2}$

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{0}, b_{1}, z_{1}\right\rangle$
Actions: dynamics $b_{1} \rightarrow z_{0} \upharpoonright z_{1}, \underline{a_{0} \rightarrow a_{0} \upharpoonright a_{1}}, a_{1} \rightarrow z_{1} \upharpoonright z_{2}$

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{1}, b_{1}, z_{1}\right\rangle$
Actions: dynamics $b_{1} \rightarrow z_{0} \upharpoonright z_{1}, a_{0} \rightarrow a_{0} \upharpoonright a_{1}, \underline{a_{1} \rightarrow z_{1} \upharpoonright z_{2}}$

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{1}, b_{1}, z_{2}\right\rangle$
Actions: dynamics $\quad b_{1} \rightarrow z_{0} \upharpoonright z_{1}, a_{0} \rightarrow a_{0} \upharpoonright a_{1}, a_{1} \rightarrow z_{1} \upharpoonright z_{2}$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{array}{r}
{\left[\upharpoonright d_{1}\right.} \\
\left.:: \upharpoonright d_{2}\right] \\
{\left[\upharpoonright d_{1}:: \upharpoonright b_{1}:: \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{2}\right]}
\end{array}
$$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{array}{r}
{\left[\upharpoonright d_{1}: \because \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{1}:: \upharpoonright b_{1}: \because \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{2}\right]}
\end{array}
$$

\rightarrow Concretization of the objective $=$ scenario

$$
\underline{a_{0} \rightarrow c_{0} \upharpoonright c_{1}}:: b_{0} \rightarrow d_{0} \upharpoonright d_{1}:: c_{1} \rightarrow b_{0} \upharpoonright b_{1}:: b_{1} \rightarrow d_{1} \upharpoonright d_{2}
$$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{aligned}
{\left[\upharpoonright d_{1}\right.} & \left.:: \upharpoonright d_{2}\right] \\
{\left[\upharpoonright d_{1}:: \upharpoonright b_{1}\right.} & \left.: \because \upharpoonright d_{2}\right] \\
& {\left[\upharpoonright d_{2}\right] }
\end{aligned}
$$

\rightarrow Concretization of the objective $=$ scenario

$$
a_{0} \rightarrow c_{0} \upharpoonright c_{1}: \because \underline{b_{0} \rightarrow d_{0} \upharpoonright d_{1}}:: c_{1} \rightarrow b_{0} \upharpoonright b_{1}:: b_{1} \rightarrow d_{1} \upharpoonright d_{2}
$$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{array}{r}
{\left[\upharpoonright d_{1}:: \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{1}:: \upharpoonright b_{1}:: \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{2}\right]}
\end{array}
$$

\rightarrow Concretization of the objective $=$ scenario

$$
a_{0} \rightarrow c_{0} \upharpoonright c_{1}:: b_{0} \rightarrow d_{0} \upharpoonright d_{1}: \because \underline{c_{1} \rightarrow b_{0} \upharpoonright b_{1}}: \because b_{1} \rightarrow d_{1} \upharpoonright d_{2}
$$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{array}{r}
{\left[\upharpoonright d_{1}:: \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{1}:: \upharpoonright b_{1}:: \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{2}\right]}
\end{array}
$$

\rightarrow Concretization of the objective $=$ scenario

$$
a_{0} \rightarrow c_{0} \upharpoonright c_{1}:: b_{0} \rightarrow d_{0} \upharpoonright d_{1}:: c_{1} \rightarrow b_{0} \upharpoonright b_{1}:: \underline{b_{1} \rightarrow d_{1} \upharpoonright d_{2}}
$$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{array}{r}
{\left[\upharpoonright d_{1}:: \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{1}:: \upharpoonright b_{1}:: \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{2}\right]}
\end{array}
$$

\rightarrow Concretization of the objective $=$ scenario

$$
a_{0} \rightarrow c_{0} \upharpoonright c_{1}:: b_{0} \rightarrow d_{0} \upharpoonright d_{1}:: c_{1} \rightarrow b_{0} \upharpoonright b_{1}: \because b_{1} \rightarrow d_{1} \upharpoonright d_{2}
$$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Exact solutions

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Computing P or Q is much simpler (roughly polynomial)
\rightarrow Efficient for big models \rightarrow Hundredths of seconds

Efficient analysis on very large models ○ Studying large models ○ Static analysis

Under-approximation

Under-approximation

Sufficient condition:

- no cycle
- each objective has a solution

Under-approximation

Sufficient condition:

- no cycle
- each objective has a solution

P is true $\Rightarrow R$ is true

Under-approximation

Sufficient condition:

- no cycle
- each objective has a solution

Under-approximation

Sufficient condition:

- no cycle
- each objective has a solution

P is false \Rightarrow Inconclusive

Over-approximation

Necessary condition:

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives
Q is false $\Rightarrow R$ is false

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

R is true \Rightarrow Inconclusive

Translation of PH models

[Folschette et al., Computational Methods in Systems Biology, 2012]

Process Hitting

Efficient but recent

Translation of PH models

[Folschette et al., Computational Methods in Systems Biology, 2012]

Process Hitting

Efficient but recent

Boolean Networks
Widespread \& readable

Translation of PH models

[Folschette et al., Computational Methods in Systems Biology, 2012]

Process Hitting

Efficient but recent

Translation of PH models

[Folschette et al., Computational Methods in Systems Biology, 2012]

Process Hitting

Efficient but recent

Boolean Networks
Widespread \& readable

Enrichment of PH semantics

[Folschette et al., CS2Bio'13, 2013]

Process Hitting
Loose behaviour

Boolean Networks Accurate behaviour

Enrichment of PH semantics

[Folschette et al., CS2Bio'13, 2013]

Process Hitting

Accurate behaviour

Boolean Networks Accurate behaviour

Gene therapies

Modify DNA to cure a disease

- Replace a mutated gene \rightarrow remove a harmful protein
- Add a new gene \rightarrow produce a therapeutic protein

Gene therapies

Modify DNA to cure a disease

- Replace a mutated gene \rightarrow remove a harmful protein
- Add a new gene \rightarrow produce a therapeutic protein

Gene therapies

Modify DNA to cure a disease

- Replace a mutated gene \rightarrow remove a harmful protein
- Add a new gene \rightarrow produce a therapeutic protein

Back to the Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Back to the Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

R is true \Rightarrow Inconclusive

Back to the Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

R is true \Rightarrow Inconclusive

Back to the Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives

Back to the Over-approximation

Necessary condition:

There exists a traversal with no cycle

- objective \rightarrow follow one solution
- solution \rightarrow follow all processes
- process \rightarrow follow all objectives
Q is false $\Rightarrow R$ is false

Summary \& Conclusion

- What is Bio-informatics?
\rightarrow Qualitative modelling of gene regulations
\rightarrow Large models are hard to study (exponential)
- What do I do?
\rightarrow The Process Hitting modelling
\rightarrow Very efficient on large-scale models (polynomial)
\rightarrow My contribution: reach the expressivity of boolean networks
- What for?
\rightarrow Validating \& utilizing biological models
\rightarrow Gene therapies

Efficient analysis on very large models

Bibliography

- Loïc Paulevé, Morgan Magnin, Olivier Roux. Refining dynamics of gene regulatory networks in a stochastic π-calculus framework. In Corrado Priami, Ralph-Johan Back, Ion Petre, and Erik de Vink, editors: Transactions on Computational Systems Biology XIII, Lecture Notes in Computer Science, 171-191. Springer Berlin Heidelberg, 2011.
- Loïc Paulevé, Morgan Magnin, Olivier Roux. Static analysis of biological regulatory networks dynamics using abstract interpretation. Mathematical Structures in Computer Science. 2012.
- Hidde de Jong. Modeling and simulation of genetic regulatory systems: a literature review, Journal of Computational biology 9(1), 67-103. 2002.
- Maxime Folschette, Loïc Paulevé, Katsumi Inoue, Morgan Magnin, Olivier Roux. Concretizing the Process Hitting into Biological Regulatory Networks. In David Gilbert and Monika Heiner, editors, Computational Methods in Systems Biology X, Lecture Notes in Computer Science, 166-186. Springer Berlin Heidelberg, 2012.
- Maxime Folschette, Loïc Paulevé, Morgan Magnin, Olivier Roux.

Under-approximation of Reachability in Multivalued Asynchronous Networks. In E. Merelli and A. Troina, editors, 4th International Workshop on Interactions between Computer Science and Biology (CS2Bio'13), Electronic Notes in Theoretical Computer Science, Volume 299, 33-51. June 2013.

