Towards the use of Process Hitting to tackle biological observations inconsistent with background knowledge

Joint work: Yoshitaka Yamamoto (1), Morgan Magnin (2,3,4), Maxime Folschette (2), Katsumi Inoue (3)
(1) University of Yamanashi, Yamanashi, Japan
(2) Ecole Centrale de Nantes, IRCCyN, Nantes, France (3) National Institute of Informatics, Tôkyô, Japan
(4) JSPS Fellow

Motivations

- Given an existing network (background knowledge) and a (new) observation that is inconsistent with this network, how can we automatically design the minimal set of missing actions that can mimic the observation?
- Process Hitting is an efficient framework to cope with large networks (100 components)

Motivations

- Our proposition: design a method taking advantage of the Process Hitting methods to address the completion of networks with inconsistent observations
- Restrictions w.r.t. current work:
- Consider only addition of actions, not removal of actions
- Modeling of the evolution of a gene expression in case of ko w.r.t. wild type, under steady state assumption

Overview

- Motivating example
- Reminder about the Process Hitting framework
- 4-level based logics and associated truth tables
- Translating 4-level based models into Process Hitting
- Further discussions

Motivating example

\square Background theory B: Boolean network consisting of the three Boolean functions

- Mig1p = not GRR1
- Rgt1p = not (Mig1p \& RGT1)
- YGL157w = not Rgt1p
- Observation O:

When GRR1 is ko, then the gene expression of YGL157w decreases, i.e.:
When the gene expression of GRR1 decreases, the gene expression of YGL157w also decreases.
(we write it by promoted(ygl157w, grr1))

Inconsistency between B and O

] Given the following initial state, we meet the fact that the gene expression of YGL157w decreases
$<$ GRR1 $=-1$, Mig1p $=0, \operatorname{Rgt} 1 \mathrm{p}=0$, RGT1 $=0, \mathrm{YGL157w}=0>$ \Rightarrow This is inconsistent with the observation...

Overview

- Motivating example
- Reminder about the Process Hitting framework 4-level based logics and associated truth tables Translating 4-level based models into Process Hitting
- Further discussions

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{0}, b_{1}, z_{0}\right\rangle$

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{0}, b_{1}, z_{0}\right\rangle$
Actions: dynamics $\quad b_{1} \rightarrow z_{0} \upharpoonright z_{1}, a_{0} \rightarrow a_{0} \upharpoonright a_{1}, a_{1} \rightarrow z_{1} \upharpoonright z_{2}$

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{0}, b_{1}, z_{0}\right\rangle$
Actions: dynamics $\quad b_{1} \rightarrow z_{0} \upharpoonright z_{1}, a_{0} \rightarrow a_{0} \upharpoonright a_{1}, a_{1} \rightarrow z_{1} \upharpoonright z_{2}$

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{0}, b_{1}, z_{1}\right\rangle$
Actions: dynamics $\quad b_{1} \rightarrow z_{0} \upharpoonright z_{1}, \underline{a_{0}} \rightarrow a_{0} \upharpoonright a_{1}, a_{1} \rightarrow z_{1} \upharpoonright z_{2}$

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{1}, b_{1}, z_{1}\right\rangle$
Actions: dynamics $\quad b_{1} \rightarrow z_{0} \upharpoonright z_{1}, a_{0} \rightarrow a_{0} \upharpoonright a_{1}, \underline{a_{1} \rightarrow z_{1} \upharpoonright z_{2}}$

The Process Hitting modelling

[Paulevé et al., Transactions on Computational Systems Biology, 2011]

Sorts: components a, b, z
Processes: local states / levels of expression $\quad z_{0}, z_{1}, z_{2}$
States: sets of active processes $\left\langle a_{1}, b_{1}, z_{2}\right\rangle$
Actions: dynamics $\quad b_{1} \rightarrow z_{0} \upharpoonright z_{1}, a_{0} \rightarrow a_{0} \upharpoonright a_{1}, a_{1} \rightarrow z_{1} \upharpoonright z_{2}$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{array}{r}
{\left[\upharpoonright d_{1}:: \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{1}:: \upharpoonright b_{1}:: \upharpoonright d_{2}\right]}
\end{array}
$$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{aligned}
& {\left[\upharpoonright d_{1}\right.}\left.:: \upharpoonright d_{2}\right] \\
& {\left[\upharpoonright d_{1}:: \upharpoonright b_{1}:: \upharpoonright d_{2}\right] } \\
& {\left[\upharpoonright d_{2}\right] }
\end{aligned}
$$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{array}{r}
{\left[\upharpoonright d_{1}:: \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{1}:: \upharpoonright b_{1}:: \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{2}\right]}
\end{array}
$$

\rightarrow Concretization of the objective $=$ scenario

$$
\underline{a_{0} \rightarrow c_{0} \upharpoonright c_{1}}:: b_{0} \rightarrow d_{0} \upharpoonright d_{1}:: c_{1} \rightarrow b_{0} \upharpoonright b_{1}:: b_{1} \rightarrow d_{1} \upharpoonright d_{2}
$$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{array}{r}
{\left[\upharpoonright d_{1}:: \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{1}:: \upharpoonright b_{1}:: \upharpoonright d_{2}\right]} \\
{\left[\upharpoonright d_{2}\right]}
\end{array}
$$

\rightarrow Concretization of the objective $=$ scenario

$$
a_{0} \rightarrow c_{0} \upharpoonright c_{1}:: \underline{b}_{0} \rightarrow d_{0} \upharpoonright d_{1}:: c_{1} \rightarrow b_{0} \upharpoonright b_{1}:: b_{1} \rightarrow d_{1} \upharpoonright d_{2}
$$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{aligned}
& {\left[\upharpoonright d_{1}\right.}\left.:: \upharpoonright d_{2}\right] \\
& {\left[\upharpoonright d_{1}:: \upharpoonright b_{1}:: \upharpoonright d_{2}\right] } \\
& {\left[\upharpoonright d_{2}\right] }
\end{aligned}
$$

\rightarrow Concretization of the objective $=$ scenario

$$
a_{0} \rightarrow c_{0} \upharpoonright c_{1}: \because b_{0} \rightarrow d_{0} \upharpoonright d_{1}: \because \underline{c_{1} \rightarrow b_{0} \upharpoonright b_{1}}: \because b_{1} \rightarrow d_{1} \upharpoonright d_{2}
$$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{aligned}
& {\left[\upharpoonright d_{1}\right.}\left.:: \upharpoonright d_{2}\right] \\
& {\left[\upharpoonright d_{1}:: \upharpoonright b_{1}:: \upharpoonright d_{2}\right] } \\
& {\left[\upharpoonright d_{2}\right] }
\end{aligned}
$$

\rightarrow Concretization of the objective $=$ scenario

$$
a_{0} \rightarrow c_{0} \upharpoonright c_{1}:: b_{0} \rightarrow d_{0} \upharpoonright d_{1}:: c_{1} \rightarrow b_{0} \upharpoonright b_{1}:: \underline{b_{1} \rightarrow d_{1} \upharpoonright d_{2}}
$$

Static analysis: successive reachability

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

- Initial state

$$
\left\langle a_{1}, b_{0}, c_{0}, d_{0}\right\rangle
$$

- Objectives

$$
\begin{aligned}
{\left[\upharpoonright d_{1}\right.} & \left.:: \upharpoonright d_{2}\right] \\
{\left[\upharpoonright d_{1}:: \upharpoonright b_{1}\right.} & \left.: \because \upharpoonright d_{2}\right] \\
& {\left[\upharpoonright d_{2}\right] }
\end{aligned}
$$

\rightarrow Concretization of the objective $=$ scenario

$$
a_{0} \rightarrow c_{0} \upharpoonright c_{1}:: b_{0} \rightarrow d_{0} \upharpoonright d_{1}:: c_{1} \rightarrow b_{0} \upharpoonright b_{1}:: b_{1} \rightarrow d_{1} \upharpoonright d_{2}
$$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Over- and Under-approximations

[Paulevé et al., Mathematical Structures in Computer Science, 2012]

\rightarrow Directly checking R is hard (exponential)
\rightarrow Rather check approximations P and Q so that: $\underline{P \Rightarrow R \Rightarrow Q}$

Computing P or Q is much simpler (roughly polynomial)
\rightarrow Efficient for big models \rightarrow Hundredths of seconds

Enrichment of the Process Hitting

[Folschette et al., CS2Bio'13, 2013]

Several additions to improve the expressiveness of the Process Hitting:

- Priorities
- Groups of actions with similar temporal/probabilistic parameters
- Neutralizing edges
- Atomistic delay relations between actions
- Synchronous actions
- Multiple reactants and products \rightarrow Biochemical reactions

All these formalisms can be translated to a canonical form
A new static analysis has been developed to check reachability properties
\rightarrow Efficient dynamic analysis on large models

Priorities

[Folschette et al., CS2Bio'13, 2013]

- Each action is linked to a class of priority
- An action is playable only if no action with a higher priority is playable

Priorities

[Folschette et al., CS2Bio'13, 2013]

- Each action is linked to a class of priority
- An action is playable only if no action with a higher priority is playable

Priorities

[Folschette et al., CS2Bio'13, 2013]

- Each action is linked to a class of priority
- An action is playable only if no action with a higher priority is playable

Priorities

[Folschette et al., CS2Bio'13, 2013]

- Each action is linked to a class of priority
- An action is playable only if no action with a higher priority is playable

- Allows to model classes of actions with similar temporal/stochastic parameters

Neutralizing edges

- Allows to integrate temporal data about relative reaction delays
- Atomistic preemptions
$c_{0} \rightarrow d_{0} \upharpoonright d_{1}$ cannot be played while
$a_{0} \rightarrow b_{0} \upharpoonright b_{1}$ is playable
$\rightarrow d_{1}$ is always reached after b_{1}

Neutralizing edges

- Allows to integrate temporal data about relative reaction delays
- Atomistic preemptions
$c_{0} \rightarrow d_{0} \upharpoonright d_{1}$ cannot be played while
$a_{0} \rightarrow b_{0} \upharpoonright b_{1}$ is playable
$\rightarrow d_{1}$ is always reached after b_{1}

Neutralizing edges

- Allows to integrate temporal data about relative reaction delays
- Atomistic preemptions
$c_{0} \rightarrow d_{0} \upharpoonright d_{1}$ cannot be played while
$a_{0} \rightarrow b_{0} \upharpoonright b_{1}$ is playable
$\rightarrow d_{1}$ is always reached after b_{1}

Synchronous actions

- Synchronization between actions:
- Presence of catalysts
- Consumption of reactants
- Creation of products
- Convenient for biochemical equations: $\quad X \xrightarrow{Y} Z$ in the following form:

$$
\left.\left.\begin{array}{rl}
\left\{X_{1}, Y_{1}, Z_{0}\right\} & \mapsto
\end{array} X_{0}, Z_{1}\right\}\right), ~ h_{1}=\left\{c_{1}\right\} \mapsto\left\{c_{0}\right\},\left\{c_{1}, d_{1}\right\}
$$

All processes of A
must be present to play $A \hookrightarrow B$
After playing $A \hookrightarrow B$,
all processes of B are active

Synchronous actions

- Synchronization between actions:
- Presence of catalysts
- Consumption of reactants
- Creation of products
- Convenient for biochemical equations: $\quad X \xrightarrow{Y} Z$ in the following form:

$$
\left.\begin{array}{rl}
\left\{X_{1}, Y_{1}, Z_{0}\right\} & \left.\mapsto X_{0}, Z_{1}\right\} \\
h_{1}=\left\{c_{1}\right\} & \left.\mapsto c_{0}\right\} \\
h_{2}=\left\{a_{0}, b_{1}, c_{0}, d_{0}\right\} & \mapsto
\end{array} c_{1}, d_{1}\right\}
$$

All processes of A must be present to play $A \hookrightarrow B$

After playing $A \hookrightarrow B$,
all processes of B are active

Synchronous actions

- Synchronization between actions:
- Presence of catalysts
- Consumption of reactants
- Creation of products
- Convenient for biochemical equations: $\quad X \xrightarrow{Y} Z$ in the following form:

$$
\left.\left.\begin{array}{rl}
\left\{X_{1}, Y_{1}, Z_{0}\right\} & \mapsto
\end{array} X_{0}, Z_{1}\right\}\right), ~ h_{1}=\left\{c_{1}\right\} \mapsto\left\{c_{0}\right\},\left\{c_{1}, d_{1}\right\}
$$

All processes of A must be present to play $A \hookrightarrow B$

After playing $A \hookrightarrow B$,
all processes of B are active

Overview

- Motivating example
- Reminder about the Process Hitting framework
- 4-level based logics and associated truth tables
- Translating 4-level based models into Process Hitting
- Further discussions

Modeling ideas

- 4 cases to consider:
- The concentration of a component c in ko of a given gene g is higher than its concentration in Wild Type (which will be denoted \uparrow)
- The concentration of a component c in case of ko of a given gene g is lower than its concentration in Wild Type (which then will be denoted \downarrow)
- The concentration of a component c in case of ko of a given gene g is stable compared to Wild Type (which then will be denoted -)
- When the evolution of the concentration of a component c between ko and wild type is unknown: add a fourth level « unknown" in the logical framework, but not necessary in the Process Hitting final representation.

Our stoichiometric modeling

- A and B: denoting the effect by the complex of A and B
\Rightarrow Strength: depending on the amount of the complex

- A or B: denoting the (individual) effects by A and B
\Rightarrow Strength: depending on the amount of both A and B

Truth table in 4 valued logic (1/2)

\uparrow : increase. \downarrow : decrease. -: unchanged.

A	B	A and B	A or B
\uparrow	\uparrow	\uparrow	\uparrow
\uparrow	\downarrow	\downarrow	unknown
\uparrow	-	-	\uparrow
\uparrow	unknown	unknown	unknown
\downarrow	\downarrow	\downarrow	\downarrow
\downarrow	-	\downarrow	\downarrow
\downarrow	unknown	\downarrow	unknown
-	-	-	-
-	unknown	unknown	unknown
unknown	unknown	unknown	unknown

Truth table in 4 values logic (2/2)

\uparrow : increase. \downarrow : decrease. -: unchanged.

A	$\neg \mathrm{A}$
\uparrow	\downarrow
\downarrow	\uparrow
-	-
unknown	unknown

Overview

- Motivating example
- Reminder about the Process Hitting framework
- 4-level based logics and associated truth tables
- Translating 4-level based models into Process Hitting
- Further discussions

Principle of the translation of < 4 valued logics » into PH

- When A has more than one regulator, use a cooperative sort to update A according to the state of regulators $->$ need to use priorities in PH
- «unknown » is modeled by modeling every potential underlying behavior

Translating 4 valued logics into Process Hitting: $A=B$

1. $A=B$
2. $A=\operatorname{not} B$
3. $A=B$ and C
4. $A=B$ or C

Translating 4 valued logics into Process Hitting

1. $A=B$
2. $A=\operatorname{not} B$
3. $A=B$ and C
4. $A=B$ or C

- Maybe add a slide with the translation of $A=B$ and C, but the resulting $P H$ is quite complex?

Back to the example

Back to the example: one execution

Back to the example: one execution

And with synchronous semantics?

Our question

In case that the dynamics of the model does not encompass the observation into any playable scenario of actions... how to detect missing actions as few as possible that can lead the goal state?

Related discussions

- Asynchronous versus synchronous semantics, w.r.t. the addition of priorities
- Compare 4-valued logics with existing approaches with ODEs
- Interest for a cut-sets based approach

Cut-sets in Process Hitting

- Sets of necessary processes that, should they be disabled, would prevent the considered reachability
- Useful to refute a model: if a cut set computed from the model does not prevent the reachability in the concrete (modeled) system, then it is a proof that there exists concrete behaviors that are not reproducible by the model.
- See (Paulevé et al., 2014) and Loïc's talk last year

Problem setting (for abduction in process hitting)

\square Finding actions for explaining the observation with the background theory (Boolean network)

Problem setting (for abduction in process hitting)

\square Finding actions for explaining the observation with the background theory (Boolean network)

New actions

Initial state

Problem setting (for abduction in process hitting)

\square Finding actions for explaining the observation with the background theory (Boolean network)

Problem setting (for abduction in process hitting)

] Finding actions for explaining the observation with the background theory (Boolean network)

Overview

- Motivating example
- Reminder about the Process Hitting framework
- 4-level based logics and associated truth tables
- Translating 4-level based models into Process Hitting
- Further discussions

Research plan and future work

- Formalize an algorithmic approach to tackle this completion problem
- Study models with feedback loops and extend the principle of 4 -valued logics
- Tackle models with time series data as input

