
Towards the use of Process 
Hitting to tackle biological 

observations inconsistent with 
background knowledge

Joint work: Yoshitaka Yamamoto (1), Morgan Magnin 
(2,3,4), Maxime Folschette (2), Katsumi Inoue (3) 

!
(1) University of Yamanashi, Yamanashi, Japan 

(2) Ecole Centrale de Nantes, IRCCyN, Nantes, France 
(3) National Institute of Informatics, Tôkyô, Japan 

(4) JSPS Fellow 
  

NII-Yamanashi-LRI Workshop 
2014/10/07



Motivations

• Given an existing network (background 
knowledge) and a (new) observation that is 
inconsistent with this network, how can we 
automatically design the minimal set of missing 
actions that can mimic the observation?  
!

• Process Hitting is an efficient framework to cope 
with large networks (~ 100 components)



Motivations

• Our proposition: design a method taking advantage 
of the Process Hitting methods to address the 
completion of networks with inconsistent 
observations 
!

• Restrictions w.r.t. current work:  
• Consider only addition of actions, not removal 

of actions 
• Modeling of the evolution of a gene expression 

in case of ko w.r.t. wild type, under steady 
state assumption



Overview

• Motivating example 
• Reminder about the Process Hitting framework 
• 4-level based logics and associated truth tables 
• Translating 4-level based models into Process 

Hitting  
• Further discussions



Motivating example

❑  Background theory B:  Boolean network consisting 
of the three Boolean functions 

 - Mig1p = not GRR1 
 - Rgt1p =  not (Mig1p & RGT1) 
 - YGL157w = not Rgt1p 
❑  Observation O: 

When GRR1 is ko, then the gene expression of 
YGL157w decreases, i.e.:       
When the gene expression of GRR1 decreases,  
the gene expression of YGL157w also decreases. 
     ( we write it by promoted(ygl157w, grr1) )  



Inconsistency between B and O 

❑  Given the following initial state, we meet the fact    
      that the gene expression of YGL157w decreases 
 < GRR1 = -1, Mig1p = 0, Rgt1p = 0, RGT1 = 0, YGL157w = 0 > 
       ⇒ This is inconsistent with the observation…



Overview

• Motivating example 
• Reminder about the Process Hitting framework 
• 4-level based logics and associated truth tables 
• Translating 4-level based models into Process 

Hitting  
• Further discussions



The Process Hitting modelling
[Paulevé et al., Transactions on Computational Systems Biology, 2011]

a

0

1

b

0

1

z

0

1

2

Sorts: components a, b, z

Processes: local states / levels of expression z0, z1, z2

States: sets of active processes
Actions: dynamics b1 → z0 � z1, a0 → a0 � a1, a1 → z1 � z2



The Process Hitting modelling
[Paulevé et al., Transactions on Computational Systems Biology, 2011]

a

0

1

b

0

1

z

0

1

2

Sorts: components a, b, z
Processes: local states / levels of expression z0, z1, z2

States: sets of active processes
Actions: dynamics b1 → z0 � z1, a0 → a0 � a1, a1 → z1 � z2



The Process Hitting modelling
[Paulevé et al., Transactions on Computational Systems Biology, 2011]

a

0

1

b

0

1

z

0

1

2

Sorts: components a, b, z
Processes: local states / levels of expression z0, z1, z2

States: sets of active processes 〈a0, b1, z0〉

Actions: dynamics b1 → z0 � z1, a0 → a0 � a1, a1 → z1 � z2



The Process Hitting modelling
[Paulevé et al., Transactions on Computational Systems Biology, 2011]

a

0

1

b

0

1

z

0

1

2

Sorts: components a, b, z
Processes: local states / levels of expression z0, z1, z2

States: sets of active processes 〈a0, b1, z0〉
Actions: dynamics b1 → z0 � z1, a0 → a0 � a1, a1 → z1 � z2



The Process Hitting modelling
[Paulevé et al., Transactions on Computational Systems Biology, 2011]

a

0

1

b

0

1

z

0

1

2

Sorts: components a, b, z
Processes: local states / levels of expression z0, z1, z2

States: sets of active processes 〈a0, b1, z0〉
Actions: dynamics b1 → z0 � z1, a0 → a0 � a1, a1 → z1 � z2



The Process Hitting modelling
[Paulevé et al., Transactions on Computational Systems Biology, 2011]

a

0

1

b

0

1

z

0

1

2

Sorts: components a, b, z
Processes: local states / levels of expression z0, z1, z2

States: sets of active processes 〈a0, b1, z1〉
Actions: dynamics b1 → z0 � z1, a0 → a0 � a1, a1 → z1 � z2



The Process Hitting modelling
[Paulevé et al., Transactions on Computational Systems Biology, 2011]

a

0

1

b

0

1

z

0

1

2

Sorts: components a, b, z
Processes: local states / levels of expression z0, z1, z2

States: sets of active processes 〈a1, b1, z1〉
Actions: dynamics b1 → z0 � z1, a0 → a0 � a1, a1 → z1 � z2



The Process Hitting modelling
[Paulevé et al., Transactions on Computational Systems Biology, 2011]

a

0

1

b

0

1

z

0

1

2

Sorts: components a, b, z
Processes: local states / levels of expression z0, z1, z2

States: sets of active processes 〈a1, b1, z2〉
Actions: dynamics b1 → z0 � z1, a0 → a0 � a1, a1 → z1 � z2



Static analysis: successive reachability
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

a

0

1

b

0

1

2

d

0

1

2

c
0 1

• Initial state
〈a1, b0, c0, d0〉

• Objectives
[ � d1 :: � d2 ]

[ � d1 :: � b1 :: � d2 ]

[ � d2 ]

→ Concretization of the objective = scenario
a0 → c0 � c1 :: b0 → d0 � d1 :: c1 → b0 � b1 :: b1 → d1 � d2



Static analysis: successive reachability
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

a

0

1

b

0

1

2

d

0

1

2

c
0 1

1?

2?

• Initial state
〈a1, b0, c0, d0〉

• Objectives
[ � d1 :: � d2 ]

[ � d1 :: � b1 :: � d2 ]

[ � d2 ]

→ Concretization of the objective = scenario
a0 → c0 � c1 :: b0 → d0 � d1 :: c1 → b0 � b1 :: b1 → d1 � d2



Static analysis: successive reachability
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

a

0

1

b

0

1

2

d

0

1

2

c
0 1

1?2?

3?

• Initial state
〈a1, b0, c0, d0〉

• Objectives
[ � d1 :: � d2 ]

[ � d1 :: � b1 :: � d2 ]

[ � d2 ]

→ Concretization of the objective = scenario
a0 → c0 � c1 :: b0 → d0 � d1 :: c1 → b0 � b1 :: b1 → d1 � d2



Static analysis: successive reachability
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

a

0

1

b

0

1

2

d

0

1

2

c
0 1

1?

• Initial state
〈a1, b0, c0, d0〉

• Objectives
[ � d1 :: � d2 ]

[ � d1 :: � b1 :: � d2 ]

[ � d2 ]

→ Concretization of the objective = scenario
a0 → c0 � c1 :: b0 → d0 � d1 :: c1 → b0 � b1 :: b1 → d1 � d2



Static analysis: successive reachability
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

a

0

1

b

0

1

2

d

0

1

2

c
0 1

1?

• Initial state
〈a1, b0, c0, d0〉

• Objectives
[ � d1 :: � d2 ]

[ � d1 :: � b1 :: � d2 ]

[ � d2 ]

→ Concretization of the objective = scenario
a0 → c0 � c1 :: b0 → d0 � d1 :: c1 → b0 � b1 :: b1 → d1 � d2



Static analysis: successive reachability
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

a

0

1

b

0

1

2

d

0

1

2

c
0 1

1?

• Initial state
〈a1, b0, c0, d0〉

• Objectives
[ � d1 :: � d2 ]

[ � d1 :: � b1 :: � d2 ]

[ � d2 ]

→ Concretization of the objective = scenario
a0 → c0 � c1 :: b0 → d0 � d1 :: c1 → b0 � b1 :: b1 → d1 � d2



Static analysis: successive reachability
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

a

0

1

b

0

1

2

d

0

1

2

c
0 1

1?

• Initial state
〈a1, b0, c0, d0〉

• Objectives
[ � d1 :: � d2 ]

[ � d1 :: � b1 :: � d2 ]

[ � d2 ]

→ Concretization of the objective = scenario
a0 → c0 � c1 :: b0 → d0 � d1 :: c1 → b0 � b1 :: b1 → d1 � d2



Static analysis: successive reachability
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

a

0

1

b

0

1

2

d

0

1

2

c
0 1

1?

• Initial state
〈a1, b0, c0, d0〉

• Objectives
[ � d1 :: � d2 ]

[ � d1 :: � b1 :: � d2 ]

[ � d2 ]

→ Concretization of the objective = scenario
a0 → c0 � c1 :: b0 → d0 � d1 :: c1 → b0 � b1 :: b1 → d1 � d2



Static analysis: successive reachability
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

a

0

1

b

0

1

2

d

0

1

2

c
0 1

• Initial state
〈a1, b0, c0, d0〉

• Objectives
[ � d1 :: � d2 ]

[ � d1 :: � b1 :: � d2 ]

[ � d2 ]

→ Concretization of the objective = scenario
a0 → c0 � c1 :: b0 → d0 � d1 :: c1 → b0 � b1 :: b1 → d1 � d2



Over- and Under-approximations
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

→ Directly checking R is hard (exponential)
→ Rather check approximations P and Q so that: P ⇒ R ⇒ Q

Exact solutions

R

Computing P or Q is much simpler (roughly polynomial)
→ Efficient for big models → Hundredths of seconds



Over- and Under-approximations
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

→ Directly checking R is hard (exponential)
→ Rather check approximations P and Q so that: P ⇒ R ⇒ Q

Over-Approximation

¬Q

Exact solutions

R

Computing P or Q is much simpler (roughly polynomial)
→ Efficient for big models → Hundredths of seconds



Over- and Under-approximations
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

→ Directly checking R is hard (exponential)
→ Rather check approximations P and Q so that: P ⇒ R ⇒ Q

Over-Approximation

¬Q

Exact solutions

R

Computing P or Q is much simpler (roughly polynomial)
→ Efficient for big models → Hundredths of seconds



Over- and Under-approximations
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

→ Directly checking R is hard (exponential)
→ Rather check approximations P and Q so that: P ⇒ R ⇒ Q

Over-Approximation

¬Q

Under-Approximation

P

Exact solutions

R

Computing P or Q is much simpler (roughly polynomial)
→ Efficient for big models → Hundredths of seconds



Over- and Under-approximations
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

→ Directly checking R is hard (exponential)
→ Rather check approximations P and Q so that: P ⇒ R ⇒ Q

Over-Approximation

¬Q

Under-Approximation

P

Exact solutions

R

Computing P or Q is much simpler (roughly polynomial)
→ Efficient for big models → Hundredths of seconds



Over- and Under-approximations
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

→ Directly checking R is hard (exponential)
→ Rather check approximations P and Q so that: P ⇒ R ⇒ Q

Over-Approximation

¬Q

Under-Approximation

P

Exact solutions

R

Computing P or Q is much simpler (roughly polynomial)
→ Efficient for big models → Hundredths of seconds



Over- and Under-approximations
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

→ Directly checking R is hard (exponential)
→ Rather check approximations P and Q so that: P ⇒ R ⇒ Q

Over-Approximation

¬Q

Under-Approximation

P

Exact solutions

R

Computing P or Q is much simpler (roughly polynomial)
→ Efficient for big models → Hundredths of seconds



Over- and Under-approximations
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

→ Directly checking R is hard (exponential)
→ Rather check approximations P and Q so that: P ⇒ R ⇒ Q

Over-Approximation

¬Q

Under-Approximation

P

Exact solutions

R

Computing P or Q is much simpler (roughly polynomial)
→ Efficient for big models → Hundredths of seconds



Enrichment of the Process Hitting
[Folschette et al., CS2Bio’13, 2013]

Several additions to improve the expressiveness of the Process Hitting:
• Priorities

• Groups of actions with similar temporal/probabilistic parameters
• Neutralizing edges

• Atomistic delay relations between actions
• Synchronous actions

• Multiple reactants and products → Biochemical reactions

All these formalisms can be translated to a canonical form

A new static analysis has been developed to check reachability properties
→ Efficient dynamic analysis on large models



Priorities
[Folschette et al., CS2Bio’13, 2013]

• Each action is linked to a class of priority
• An action is playable only if no action with a higher priority is
playable

1 2 3 . . . n

highest
priority

lowest
priority

I



Priorities
[Folschette et al., CS2Bio’13, 2013]

• Each action is linked to a class of priority
• An action is playable only if no action with a higher priority is
playable

1 2 3 . . . n

highest
priority

lowest
priority

I

a

0

1

b

0

1

1

2

→ b1 can never be reached



Priorities
[Folschette et al., CS2Bio’13, 2013]

• Each action is linked to a class of priority
• An action is playable only if no action with a higher priority is
playable

1 2 3 . . . n

highest
priority

lowest
priority

I

a

0

1

b

0

1

1

2

→ b1 can never be reached



Priorities
[Folschette et al., CS2Bio’13, 2013]

• Each action is linked to a class of priority
• An action is playable only if no action with a higher priority is
playable

1 2 3 . . . n

highest
priority

lowest
priority

I

• Allows to model classes of actions with similar temporal/stochastic
parameters

A B C . . . N

instantaneous very fast very slow
I



Neutralizing edges

a

0

1

b

0

1

c

0

1

d

0

1 • Allows to integrate temporal data
about relative reaction delays

• Atomistic preemptions

c0 → d0 � d1 cannot be played while

a0 → b0 � b1 is playable

→ d1 is always reached after b1



Neutralizing edges

a

0

1

b

0

1

c

0

1

d

0

1 • Allows to integrate temporal data
about relative reaction delays

• Atomistic preemptions

c0 → d0 � d1 cannot be played while

a0 → b0 � b1 is playable

→ d1 is always reached after b1



Neutralizing edges

a

0

1

b

0

1

c

0

1

d

0

1 • Allows to integrate temporal data
about relative reaction delays

• Atomistic preemptions

c0 → d0 � d1 cannot be played while

a0 → b0 � b1 is playable

→ d1 is always reached after b1



Synchronous actions

b

0

1

a

0

1

d

0

1

c

0

1

• Synchronization between actions:
– Presence of catalysts
– Consumption of reactants
– Creation of products

• Convenient for biochemical
equations: X Y−→ Z
in the following form:

{X1, Y1, Z0}� {X0, Z1}

h1 = {c1}� {c0}
h2 = {a0, b1, c0, d0}� {c1, d1}

All processes of A
must be present to play A� B

After playing A� B,
all processes of B are active



Synchronous actions

b

0

1

a

0

1

d

0

1

c

0

1

• Synchronization between actions:
– Presence of catalysts
– Consumption of reactants
– Creation of products

• Convenient for biochemical
equations: X Y−→ Z
in the following form:

{X1, Y1, Z0}� {X0, Z1}

h1 = {c1}� {c0}
h2 = {a0, b1, c0, d0}� {c1, d1}

All processes of A
must be present to play A� B

After playing A� B,
all processes of B are active



Synchronous actions

b

0

1

a

0

1

d

0

1

c

0

1

• Synchronization between actions:
– Presence of catalysts
– Consumption of reactants
– Creation of products

• Convenient for biochemical
equations: X Y−→ Z
in the following form:

{X1, Y1, Z0}� {X0, Z1}

h1 = {c1}� {c0}
h2 = {a0, b1, c0, d0}� {c1, d1}

All processes of A
must be present to play A� B

After playing A� B,
all processes of B are active



Overview

• Motivating example 
• Reminder about the Process Hitting framework 
• 4-level based logics and associated truth tables 
• Translating 4-level based models into Process 

Hitting  
• Further discussions



Modeling ideas

• 4 cases to consider:  
• The concentration of a component c in ko of a given 

gene g is higher than its concentration in Wild Type 
(which will be denoted ↑) 

• The concentration of a component c in case of ko of a 
given gene g is lower than its concentration in Wild Type 
(which then will be denoted ↓)  

• The concentration of a component c in case of ko of a 
given gene g is stable compared to Wild Type (which 
then will be denoted -)  

• When the evolution of the concentration of a component 
c between ko and wild type is unknown: add a fourth 
level « unknown" in the logical framework, but not 
necessary in the Process Hitting final representation. 10



Our stoichiometric modeling 
❑  A and B: denoting the effect by the complex of A 

and B 
 ⇒ Strength: depending on the amount of the complex 

!
!
❑  A or B: denoting the (individual) effects by A and B 
⇒ Strength: depending on the amount of both A and B

A B

A

B



Truth table in 4 valued logic (1/2)

Ａ Ｂ Ａ and Ｂ Ａ or Ｂ
↑ ↑ ↑ ↑

↑ ↓ ↓ unknown

↑ – – ↑

↑ unknown unknown unknown

↓ ↓ ↓ ↓

↓ – ↓ ↓

↓ unknown ↓ unknown

– – – –

– unknown unknown unknown

unknown unknown unknown unknown

↑:   increase. ↓:   decrease. –:  unchanged.



Truth table in 4 values logic (2/2)

Ａ ¬A

↑ ↓

↓ ↑

– –

unknown unknown

↑:   increase. ↓:   decrease. –:  unchanged.



Overview

• Motivating example 
• Reminder about the Process Hitting framework 
• 4-level based logics and associated truth tables 
• Translating 4-level based models into Process 

Hitting  
• Further discussions



Principle of the translation of 
« 4 valued logics » into PH
• When A has more than one regulator, use a 

cooperative sort to update A according to 
the state of regulators —> need to use 
priorities in PH  
!

• « unknown » is modeled by modeling 
every potential underlying behavior 

15



Translating 4 valued logics into Process 
Hitting: A=B

1. A = B 
2. A = not B 
3. A = B and C 
4. A = B or C

B

 ↑

–

 ↓

A

  ↑

–

 ↓



Translating 4 valued logics into Process 
Hitting

1. A = B 
2. A = not B 
3. A = B and C 
4. A = B or C

B

 ↑

–

 ↓

A

  ↑

 –

 ↓



• Maybe add a slide with the translation of 
A = B and C, but the resulting PH is quite 
complex ?

18



GRR1

 ↑

–

 ↓

Mig1p

 ↑

–

 ↓

Rgt1p

 ↑

–

 ↓

YGL157w

 ↑

–

 ↓

RGT

 ↑

–

 ↓

Back to the example

initial state



GRR1

 ↑

–

 ↓

Mig1p

 ↑

–

 ↓

Rgt1p

 ↑

–

 ↓

YGL157w

 ↑

–

 ↓

RGT

 ↑

–

 ↓

Back to the example: one execution

initial state

next   state



GRR1

 ↑

–

 ↓

Mig1p

 ↑

–

 ↓

Rgt1p

 ↑

–

 ↓

YGL157w

 ↑

–

 ↓

RGT

 ↑

–

 ↓

Back to the example: one execution

initial state

next   state

This result is different 
from the observation



GRR1

 ↑

–

 ↓

Mig1p

 ↑

–

 ↓

Rgt1p

 ↑

–

 ↓

YGL157w

 ↑

–

 ↓

RGT

 ↑

–

 ↓

And with synchronous semantics? 

initial state

next   state

This result is different 
from the observation



Our question

In case that the dynamics of the model does 
not encompass the observation into 
any playable scenario of actions… how to 
detect missing actions as few as possible 
that can lead the goal state?



Related discussions

• Asynchronous versus synchronous 
semantics, w.r.t. the addition of priorities 
!

• Compare 4-valued logics with existing 
approaches with ODEs 
!

• Interest for a cut-sets based approach 

24



Cut-sets in Process Hitting

• Sets of necessary processes that, should they be 
disabled, would prevent the considered 
reachability 
!

• Useful to refute a model: if a cut set computed 
from the model does not prevent the reachability 
in the concrete (modeled) system, then it is a 
proof that there exists concrete behaviors that 
are not reproducible by the model. 
!

• See (Paulevé et al., 2014) and Loïc’s talk last year
25



Problem setting  
(for abduction in process hitting)

❑  Finding actions for explaining the observation 
with the background theory (Boolean network)

GRR1
 ↑
–

 ↓

Mig1p
 ↑
–

 ↓

Rgt1p
 ↑
–

 ↓

YGL157w
 ↑
–

 ↓

Rgt1p
 ↑
–

 ↓

Initial state



Problem setting  
(for abduction in process hitting)

❑  Finding actions for explaining the observation with  
     the background theory (Boolean network)

GRR1
 ↑
–

 ↓

Mig1p
 ↑
–

 ↓

Rgt1p
 ↑
–

 ↓

YGL157w
 ↑
–

 ↓

RGT
 ↑
–

 ↓

Initial state
New 

actions



Problem setting  
(for abduction in process hitting)

❑  Finding actions for explaining the observation with  
     the background theory (Boolean network)

GRR1
 ↑
–

 ↓

Mig1p
 ↑
–

 ↓

Rgt1p
 ↑
–

 ↓

YGL157w
 ↑
–

 ↓

RGT
 ↑
–

 ↓

Initial state



Problem setting  
(for abduction in process hitting)

❑  Finding actions for explaining the observation with  
     the background theory (Boolean network)

GRR1
 ↑
–

 ↓

Mig1p
 ↑
–

 ↓

Rgt1p
 ↑
–

 ↓

YGL157w
 ↑
–

 ↓

RGT
 ↑
–

 ↓

We can have 
observation



Overview

• Motivating example 
• Reminder about the Process Hitting framework 
• 4-level based logics and associated truth tables 
• Translating 4-level based models into Process 

Hitting  
• Further discussions



Research plan and future work

• Formalize an algorithmic approach to 
tackle this completion problem 
!

• Study models with feedback loops and 
extend the principle of 4-valued logics 
!

• Tackle models with time series data as 
input 


