

Journées Starting Block - CRIStAL — 2020-09-15

BioComputing

Maxime FOLSCHETTE

maxime.folschette@centralelille.fr http://maxime.folschette.name/

Présentation équipe BioComputing o Curriculum Vitæ

Analysis of the Dynamics

Efficient reachability analysis

Dynamical patterns enumeration

Hepatocellular carcinoma progression

Machine Learning

Constraints on hybrid parameters

Learning models from time series data

Cerebral aneurysms & Myopathy

New projects

Diabetes Understanding & Prediction

Marine ecological systems (algae)

Maxime FOLSCHETTE

The Modeling Problem

Maxime FOLSCHETTE

Experiments in silico

Maxime FOLSCHETTE

Experiments in silico

DRY LAB

Maxime FOLSCHETTE

Experiments in silico

Maxime FOLSCHETTE

Preliminary Abstraction

© 2012 Pearson Education, Inc.

Maxime FOLSCHETTE

Preliminary Abstraction

Maxime FOLSCHETTE

Preliminary Abstraction

Maxime FOLSCHETTE

Discretization and Asynchronism

[Richard et al., 2008]

Discretization and Asynchronism

[Richard et al., 2008]

Discrete levels and thresholds

Maxime FOLSCHETTE

Discretization and Asynchronism

[Richard et al., 2008]

- Discrete levels and thresholds
- Nature of interactions

Maxime FOLSCHETTE

Preliminary Abstraction

Maxime FOLSCHETTE

Preliminary Abstraction

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

State-graph

The state-graph depicts explicitly the whole dynamics

abz 000	010	001	011	
100	110	101	111	
200	210	201	211	$(b)^{r}$

Maxime FOLSCHETTE

State-graph

The state-graph depicts explicitly the whole dynamics

State-graph

The state-graph depicts explicitly the whole dynamics

State-graph

The state-graph depicts explicitly the whole dynamics

State-graph

The state-graph depicts explicitly the whole dynamics

Stable state = state with no successors

Maxime FOLSCHETTE

State-graph

The state-graph depicts explicitly the whole dynamics

Stable state = state with no successors

• **Complex attractor** = minimal loop or composition of loops from which the dynamics cannot escape

State-graph

The state-graph depicts explicitly the whole dynamics

- Stable state = state with no successors
- **Complex attractor** = minimal loop or composition of loops from which the dynamics cannot escape
- **Reachability** = from **201**, can I reach **000**?

Maxime FOLSCHETTE

Analysis of Big Models

Maxime FOLSCHETTE

10/23

Combinatorial explosion

Maxime FOLSCHETTE

11/23

Combinatorial explosion

Maxime FOLSCHETTE

11/23

Approximation of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012] [Folschette et al., Theoretical Computer Science, 2015a]

Maxime FOLSCHETTE

12/23

Approximation of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012] [Folschette et al., Theoretical Computer Science, 2015a]

Maxime FOLSCHETTE

Approximation of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012] [Folschette et al., Theoretical Computer Science, 2015a]

Maxime FOLSCHETTE

Approximation of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012] [Folschette et al., Theoretical Computer Science, 2015a]

Maxime FOLSCHETTE

12/23

Approximation of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012] [Folschette et al., Theoretical Computer Science, 2015a]

Maxime FOLSCHETTE

Approximation of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012] [Folschette et al., Theoretical Computer Science, 2015a]

Maxime FOLSCHETTE

Approximation of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012] [Folschette et al., Theoretical Computer Science, 2015a]

Maxime FOLSCHETTE

Approximation of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012] [Folschette et al., Theoretical Computer Science, 2015a]

Maxime FOLSCHETTE

Approximation of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012] [Folschette et al., Theoretical Computer Science, 2015a]

Maxime FOLSCHETTE

Approximation of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012] [Folschette et al., Theoretical Computer Science, 2015a]

Maxime FOLSCHETTE

P is true \Rightarrow **R** is true

Maxime FOLSCHETTE

13/23

Leucine Reaction Network

[Allart et al., Computational Methods in Systems Biology, 2019]

Maxime FOLSCHETTE

15/23

Machine Learning

Maxime FOLSCHETTE

16/23

Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA) [Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Maxime FOLSCHETTE

Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA) [Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Maxime FOLSCHETTE

17/23

Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA) [Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Maxime FOLSCHETTE

17/23

Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA) [Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Maxime FOLSCHETTE

17/23

Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA) [Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Maxime FOLSCHETTE

Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA) [Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Maxime FOLSCHETTE

Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA) [Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Maxime FOLSCHETTE

17/23

Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA) [Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Maxime FOLSCHETTE

17/23

Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA) [Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Maxime FOLSCHETTE

17/23

Maxime FOLSCHETTE

Modeling of Diabetes

Maxime FOLSCHETTE

19/23

Gastro-Intestinal Anatomy

[https://foodandhealth.com/digestive-diseases-awareness/] [Baud et al., Cell Metabolism, 2016]

Gastro-intestinal anatomy

Roux-En-Y Gastric Bypass

Maxime FOLSCHETTE

Effects of Bariatric Surgery

Courtesy of Pattou and coll.

Glucose homeostasis restored by bariatric surgery

Maxime FOLSCHETTE

Glucose Flux

[Dalla Man et al., IEEE Transactions on Biomed. Eng., 2007]

Maxime FOLSCHETTE

22/23

Présentation équipe BioComputing

Discussion