Learning any memory-less discrete semantics for dynamical systems represented by logic programs

Tony Ribeiro1,2, Maxim Falschleuter3, Morgan Magnin1, Karatsi Inoue3
(1) Université de Nantes, CNRS, LINA, F-44000 Nantes, France
(2) LIRMM, CNRS, Université de Montpellier, 34090 Montpellier, France
(3) National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Motivations: Learning Dynamics

- Given a set of input/output states of a black-box system, learn its internal mechanics.
- Discrete system: input/output are vectors of same size which contain discrete values.
- Dynamic system: input/output are states of the system and output is the next input.

Coal: produce an artificial system with the same behavior, i.e., a digital twin.
- Representation: propositional logic programs encoding multi-valued discrete variables.
- Method: learn the dynamics of systems from its state transitions.

Formalization: MVL and DMVL

Definition 1 (Atoms): Let \(V = \{v_1, \ldots, v_n\} \) be a finite set of \(n \) variables, and \(\mathcal{D} : V \rightarrow 2^\mathcal{D} \) the domain of \(V \). An atom of \(\mathcal{D} \) is defined as \(\{v \} \) for \(v \in V \).

Definition 2 (Multi-valued logic program): A MVL is a set of \(\mathcal{D} \) rules.

Definition 3 (Dynamic, MVL): Let \(T \subseteq V \) and \(F \subseteq \mathcal{D} \) such that \(F = V \setminus T \). A MVL over \(T \) is a MVL such that \(\forall R \in P, \exists \mathbf{a} \in \mathcal{D} \) for all \(\mathbf{a} \) in \(\mathcal{D} \).

Definition 4 (Discrete state): A discrete state \(s \) on \(T \) (resp. \(F \)) is a MVL if it is a function from \(T \) (resp. \(F \)) to \(\mathcal{D} \).

Definition 5 (Iteration): A transition is a couple of states \((s, s') \in S \times S\).

Definition 6 (Semantics): A semantics is a function \(\text{sem} : \{\text{MVL} \} \rightarrow \{\text{SC}\} \).

Problem: Dynamics Semantics

Semantics: Decide the target states according to a DMVL and a feature state.

- Synchronous
- Asynchronous
- General

A semantics that produces the same states, when being given the atoms of its own decision is pseudo-idempotent and is compatible with its transition optimal DMVL.

Definition 8 (Pseudo-idempotent Semantics): Let \(DS \) be a dynamical semantics. \(DS \) is pseudo-idempotent if, for all \(P \) a DMVL, \(DS(P) \cap DS(P') = DS(P) \).

Algorithm: GULA

Definition 9 (Rule least specialization): Let \(R \) be a MVL rule and \(s \in S \) such that \(\mathcal{D} \). The least specialization of \(R \) by a \(\mathcal{D} \) according to \(F \) is \(A \).

Definition 10 (Program least revision): Let \(P \) be a DMVL, \(s \in S \), \(T \subseteq S \), \(F \subseteq S \) such that \(\mathcal{D} \). Let \(P' = \{A \in P \mid R \text{ conflicts with } T\} \). The least revision of \(P \) by \(T \) according to \(A \) is \(D \). If \(\mathcal{D} \), then \(D \).

Learning From Any Semantics Using Constraints

Definition 11 (Constrained DMVL): Let \(P \) be a DMVL over \(\mathcal{D} \), \(s \subseteq S \), \(T \subseteq S \), \(F \subseteq S \) such that \(\mathcal{D} \). Let \(P \) be a DMVL such that \(\mathcal{D} \). A DMVL \(P \) is a DMVL such that \(\mathcal{D} \) and \(\mathcal{D} \). A constraint over \(T \) such that \(\mathcal{D} \) and \(\mathcal{D} \). A constraint over \(T \) such that \(\mathcal{D} \) and \(\mathcal{D} \). A constraint over \(T \) such that \(\mathcal{D} \) and \(\mathcal{D} \). A constraint over \(T \) such that \(\mathcal{D} \) and \(\mathcal{D} \).

Definition 12 (Constraint transition matching): Let \(s, s' \in S \). \(\mathcal{D} \) and \(\mathcal{D} \).

Definition 13 (Suitable and optimal constraints): Let \(T \subseteq S \). \(\mathcal{D} \) and \(\mathcal{D} \).

Definition 14 (Synonymous constrained semantics): The synonymous constrained semantics \(\mathcal{D} \).

Contributions

- Previous works: Synchronous deterministic transitions only [1-3].
- Novelty: Learn from any memory-less discrete dynamics semantics.
- Application: semantic choice, which has an important meaning for the one who try to model a system, can now be done a posteriori. The rules can explain local interactions and constraint are tests of semantic behaviors.
- Weakness: current complete method is too costly/sensitive to deal with real system.
- Outlook: development of heuristic approach (DVMVL, PRIDE) to tackle real data and tools (see other paper) to extract knowledge from the learned model.
- The source code is available as open source on Github. See QR-code.