Diagnosis of Event Sequences with LFIT

Tony Ribeiro', Maxime Folschette?, Morgan Magnin®*, Kotaro Okazaki®, Lo
Kuo-Yen®, and Katsumi Inoue*

! Independent Researcher
2 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
3 Univ. Nantes, CNRS, Centrale Nantes, UMR 6004 LS2N, F-44000 Nantes, France
4 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430,
Japan
5 SONAR Inc., 8-16-6, Ginza, Chuo-Ku, Tokyo 104-0061, Japan

Abstract. Diagnosis of the traces of executions of discrete event sys-
tems is of interest to understand dynamical behaviors of a wide range
of real world problems like real-time systems or biological networks. In
this paper, we propose to address this challenge by extending Learning
From Interpretation Transition (LFIT), an Inductive Logic Programming
framework that automatically constructs a model of the dynamics of a
system from the observation of its state transitions. As a way to tackle
diagnosis, we extend the theory of LFIT to model event sequences and
their temporal properties. It allows to learn logic rules that exploit those
properties to explain sequences of interest. We show how it can be done
in practice through a case study.

Keywords: dynamic systems - logical modeling - explainable artificial
intelligence

1 Introduction

Discrete event systems have been formalized as a wide range of paradigms, e.g.,
Petri nets [6], to model dynamical behaviors. In this paper, we propose to focus
on learning dynamical properties from the trace of executions of such system,
i.e., sequences of events. Such a setting can be related to fault diagnosis, which
has been the subject of much interest [5]. It consists of identifying underlying
phenomena that result in the failure of a system. It takes as input a model
and a set of observations of the system under the form of event sequences. In
our case, we only consider the event sequences as input and propose a method
independent of the model paradigm.

Since its first establishment in the 80s and 90s, Inductive Logic Program-
ming (ILP) has been identified as a promising approach to tackle such a diagno-
sis problem [4] and several works followed [3,10]. Learning From Interpretation
Transition (LFIT) [2] is an ILP framework that automatically builds a model of

ILP 2022, 31st International Conference on Inductive Logic Programming, Cumber-
land Lodge, Windsor, UK

2 T. Ribeiro et al.

the dynamics of a system from the observation of its state transitions. Our goal
here is to extend LFIT to exploit temporal properties to explain event sequences
of interest. Figure 1 illustrates the general LFIT learning process. Given some
raw data, like time-series of gene expression, a discretization of those data in
the form of state transitions is assumed. From those state transitions, according
to the semantics of the system dynamics, several inference algorithms modeling
the system as a logic program have been proposed.

Abstraction Learning Model

Time Series Data > State Transitions

= P > Dy
Algorithm of the Dynamics Decision
\ Making
Query
LFIT Answering

Fig. 1: Assuming a discretization of time series data of a system as state transi-
tions, we propose a method to automatically model the system dynamics.

In [8], we extended this framework to learn system dynamics independently
of its update semantics. For this purpose, we proposed a modeling of discrete
memory-less multi-valued systems as logic programs in which each rule represents
the possibility for a variable to take some value in the next state. This modeling
permits to characterize optimal programs independently of the update semantics,
allowing to model the dynamics of a wide range of discrete systems. To learn
such semantic-free optimal programs, we proposed GULA: the General Usage
LFIT Algorithm that now serves as the core block to several methods of the
framework. In this paper, we show how to use GULA in order to learn logic
rules that combine temporal patterns to explain event sequences of interest. We
use a case study to show some of the difficulties and interests of the method.

2 Dynamical Multi-Valued Logic Program

In this section, the concepts necessary to understand the modeling we propose in
this paper are formalized. Let V = {vy,--- , v, } be a finite set of n € N variables,
Val the set in which variables take their values and dom : V — p(Val) a function
associating a domain to each variable, with p the power set. The atoms of multi-
valued logic (MVL) are of the form v** where v € V and val € dom(v). The
set of such atoms is denoted by A = {v¥% € V x Val | val € dom(v)}. Let F
and T be a partition of V, that is: V = FUT and FNT = (. F is called
the set of feature variables, which values represent the state of the system at
the previous time step (¢t — 1), and T is called the set of target variables, which
values represent the state of the system at the current time step (¢). A MVL
rule R is defined by:

_ valg valy valm,
R = vpg" 0 <=v{"" Ao AV

Diagnosis of Event Sequences with LFIT 3
where m € N, and Vi € [[O;m]],vf“l" € A; furthermore, every variable is men-
tioned at most once in the right-hand part: Vj, k € [1;m],j # k = v; # vp.
The rule R has the following meaning: the variable v can take the value valy in
the next dynamical step if for each i € [1;m], variable v; has value val; in the
current dynamical step. The atom on the left side of the arrow is called the head
of R, denoted head(R) := v, and is made of a target variable: vo € 7. The
notation var(head(R)) := vo denotes the variable that occurs in head(R). The
conjunction on the right-hand side of the arrow is called the body of R, written
body(R), and all variables in the body are feature variables: Vi € [1;m],v; € F.
In the following, the body of a rule is assimilated to the set {quall, oo voalm)
we thus use set operations such as € and N on it, and we denote) an empty
body. A dynamical multi-valued logic program (DMVLP) is a set of MVL rules.

Definition 1 (Rule Domination). Let Ry, Ry be MVL rules. R; dominates
Ry, written Ry > Ry if head(R;) = head(R2) and body(R;) C body(R2).

The dynamical system we want to learn the rules of, is represented by a suc-
cession of states as formally given by Definition 2. We also define the “compati-
bility” of a rule with a state in Definition 3, and with a transition in Definition 4.

Definition 2 (Discrete state). A discrete state s on a set of variables X of a
DMVLP is a function from X to (dom(v))yex. It can be equivalently represented
by the set of atoms {v°() | v € X} and thus we can use classical set operations
on it. We write S to denote the set of all discrete states of X.

Often, X € {F,T}. In particular, a couple of states (s,s") € S¥ x S7 is
called a transition.

Definition 3 (Rule-state matching). Let s € S7. The MVL rule R matches
s, written RM s, if body(R) C s.

The final program we want to learn should both: (1) match the observations
in a complete (all transitions are learned) and correct (no spurious transition)
way; (2) represent only minimal necessary interactions (no overly-complex rules).
The following definitions formalize these desired properties.

Definition 4 (Rule and program realization). Let R be a MVL rule and
(s,8') € ST xS7T. The rule R realizes the transition (s, s') if RNsAhead(R) € s'.

A DMVLP P realizes (s, s') if Vv € T,3R € P,var(head(R)) = vAR realizes (s,s').
P realizes a set of transitions T C 87 x ST if V(s,s') € T, P realizes (s,s").

Definition 5 (Conflict and Consistency). A MVL rule R conflicts with a
set of transitions T C 87 xST when 3(s, s') € T, (RMsAY(s,s”) € T,head(R) ¢
s”) Otherwise, R is said to be consistent with T. A DMVLP P is consistent
with a set of transitions T if P does not contain any rule R conflicting with T

Definition 6 (Suitable and optimal program). Let T C S*xS7. A DMVLP
P is suitable for T if: P is consistent with T', P realizes T', and for any possible
MVL rule R consistent with T, there exists R’ € P s.t. R’ > R. If in addition,
for all R € P, all the MVL rules R’ belonging to DMVLP suitable for T are
such that R' > R implies R > R', then P is called optimal and denoted Po(T).

4 T. Ribeiro et al.

In [8], we proposed the General Usage LFIT Algorithm (GULA) that guar-
antees to learn the optimal program of a set of transitions: let T C S x S7,
GULA(A, T, F,T) = Po(T) (Theorem 5 of [8]).

The present work builds upon the definitions presented above. The aim is to
use GULA to learn about the possible influence of additional properties along
the original observations. If those properties respect the following proposition,
they can appear in rules learned by GULA, encoded as regular MVL atoms.

Proposition 1 (Properties encoding).
— Let V :=VrUVr a set of MVL feature and target variables;
— Let A:= Ar U A7 be the corresponding feature and target atoms;
— Let 87 C AFx be feature states (one atom of Ax per variable of Vr);
— Let Vp be a set of variables, Vp NV =0, and Ap the corresponding atoms;
— Let P: 87 — 8YP a function computing a property on feature states;
— Let T C ST x 87 be a set of transitions;
— Let T :={(sUP(s),s") | (s,8') € T} be the encoding of property P on T;
— Then, GULA(AU Ap, T, F UVp,T) = Po(T") and the rules of Po(T")
contain atoms of property P only if it is necessary to realize a target.

Proof sketch. By construction from Theorem 1 of [8] and from Definition 6.
O
Proposition 1 allows to encode additional properties of the observation as
regular GULA input. For a given target atom, the atoms corresponding to a
property will appear in the rules of the optimal logic program only if the property
is a necessary condition to obtain this target atom. One use of such encoding is
to obtain more understandable rules as shown in the following sections.

3 Diagnosis of Labelled Event Sequences

Event sequences have the advantages to be considered as raw output data for
many dynamical systems while being able to represent the dynamics of a large
set of discrete models (Petri nets, logic programs, ...). As such, it is easy to use
them to assert the set of desirable (or undesirable) sequences. In this section, we
propose a modeling of event sequences and their temporal properties into the
LFIT framework. It allows to use GULA to learn logic rules that exploit those
properties to explain sequences of interest.

Discrete Event | | Labelled Event —)Prepmcessmg GULA ik Explanations
System Sequences P

INPUT OUTPUT

Our Focus

Fig.2: This paper focuses on the modeling and encoding of labelled event se-
quence for GULA to learn explanation rules exploiting temporal properties.

Diagnosis of Event Sequences with LFIT 5

3.1 Modeling Labelled Event Sequences

Definition 7 (Sequence). A sequence s is a tuple s = (s:)ic[0,|s|—1]- In the
rest of the paper, we note s; the it element of s.

An event sequence classification problem (ESCP) is a triple (E, Segpos, Segneg):
— E={eg,...,en} is a set of elements called events;
— Seq C E"™ is a set of sequences of events of size n € N;
— Segpos € Seq is the set of positive examples;
— Segneg € Seq is the set of negative examples;
- SquDos N SSQneg = @

Such classification problem can be encoded into MVL, allowing GULA to
learn a classifier in the form of a DMVLP. The algorithm takes as input a set of
atoms A, a set of transitions T', a set of feature variables F and a set of target
variables 7. An ESCP can be encoded as follows.

Proposition 2 (MVL encoding of ESCP). Let (E,Seqpos, Sedneg) be an
ESCP. The encoding of this ESCP is done as follows:
- A:={ev¢ | 0<i<n,ec E}U({label’? label"*} the set of MVL atoms;
— F:={ev; | 0 <i< n} the set of feature variables;
— T := {label} the set of target variables;

— f:Seq — 87 with s R {ev§ € A|i€[0,[s|]] As; =e} to encode positions;
— T :={(f(s),{label??’}) | s € Seqpos} U {(f(s),{label™™}) | s € Segneq} the

set of transitions.

Ezxample 1. Let us consider an ESCP with 3 events and sequences of size 4.
Consider the following ESCP (E, Seqpos, Segney) where not all sequences are
detailed:

— E={eg,e1,62}

— Seqpos = {(e1, €1, €0, €2), (€1, €0, €1, €2), (€1, €0, €0, €2), (€1, €0, €2, €1), - - .}

— Segneg = {(€e1,€1,€1,€1),(€e1,€1,e1,€9), (e1,€1,€1,€2), (e1,€1,€0,€1),...}
Now consider the corresponding MVL encoding: (A, T, F,T):

— A= {evy’, evg', evi?,evi®, evi', ...} U {label’*® label™}
- F = {evo,evl,ev%ev?,}
— T = {label}

= T = {({ev vt evi? evs?), {label™}), ({ev?, eviv, v vt} {label"™})...
({evg', evi',evs ,ev31} {Iabel”eg}) ({evg!, evs! evs ,ev3°} {label™}), ..}

Using the encoding of Proposition 2, the call to GULA(A,T,F,T) will
output a set of rules P such that using rule matching (Definition 3) we obtain
a correct classifier, as stated by Theorem 1. Indeed, all rules of P that match a
positive or negative observation has the correct label as head and there is always
at least one rule that matches each observation.

Theorem 1. Let (E, Seqpos, S€gneg) be an ESCP. Let A, T,F,T,f be as in
Proposition 2. The following holds:

Vi € {pos,neg},Vs € Seq;, {head(R) | R € GULA(A, T, F,T),RNf(s)} = {Iabell}

6 T. Ribeiro et al.

Proof sketch. By construction from Theorem 1 of [8], Definition 6 and Propo-
sition 2. a
To ease rule readability in the following examples, atom a® is written a(i).

Ezample 2. Let us consider the set of events E := {eg, e1,e2} and sequences of
size 4. The following set of positive examples Seqp,s = { (e1, €1, €0, €2), (e1, €0, €1, €2),
(617 €o, €0, 62), (61, €o, €2, 61), (617 €p, €2, 62)7 (60, €1, €1, 62), (60, €1, €o, 62), (60, €1, €2, 61),
(eo, €1, €2, 62), (6(), €p, €1, 62), (6()7 €, €0, 62), (6(), €p, €2, 61), (eo, €o, €2, 62), (e(), €2,€1, 61),
(60, €2,€1, 62)7 (eo, €2, €2, 61), (60, €2, €2, 62) }

All other possible sequences are negative examples: Seqneq = Seq \ Segpos,
thus: Segpeq = { (e1,€1,€1,€1), (e1,€1,€1,¢e0), (e1,e€1,€1,€2), (e1,e€1,€0,€1), (e1, €1, €0, €0),
(617 €1, €2, 61), (617 €1, €2, 60), ey (62, €2,€2, 60), (62, €2, €2, 62) }

Using the encoding of Proposition 2 we obtain the following :

GULA(A, T, F,T) =

label(neg) < evp(e2).

label(pos) < evg(ep),evi(e1),evs(ez). label(neg) + evs(ep).

label(pos) < evg(eo), eva(er), eva(ez). label(neg) < eva(ep),evs(er).
label(pos) < evg(eq), eva(ea), evs(er). label(neg) < evi(e2),eva(ep).
label(pos) < evg(eo), eva(ea), evg(es). label(neg) < evi(ep),eva(er),evs(er).
label(pos) < evg(eg),evi(ez),eva(er), evs(er). label(neg) < evi(e1),eva(er),evs(er).
label(pos) < evg(eq), evi(eon),eva(ez). label(neg) «— evp(e1),evi(ez).
label(pos) < evg(e1),evi(en),evs(ez). label(neg) < evo(e1),eva(er),evs(er).
label(pos) < evg(e1),evi(eo),eva(es),evs(er). label(neg) < evo(e1),evi(er),eva(er).
label(pos) < evg(e1),evi(er),eva(ep), evs(ez). label(neg) < evo(e1),evi(er),eva(ez).

label(neg) < evp(e1),evi(e1),evs(er).

This DMVLP correctly classifies each sequence of Segpos and Seqneq (see The-
orem 1) but position atoms (ev) are not enough to explain simply the whole
dynamics.

In Example 2, the encoding of Proposition 2 is arguably not enough for the
rules to explicitly explain the real influence of the system. The positive rules
(whose head is label(pos)) are very specific and it is not easy to make sense
from them individually. But we can see at least that all of them contain both
ep and e, thus their relationship must be of importance. Some negative rules
are of interest too: the two first ones tell us that e, cannot start the sequence
(label(neg) « evg(e2).) and eg cannot finish it (label(neg) < evs(eq).), thus their
ordering is also of importance.

With this simple encoding, the learned rules are mere consequences of the
real property behind this example, but none of them fully represents the property
itself. In order to have more meaningful rules, we could encode some properties
of interest as new variables and atoms by following Proposition 1. The idea is
to propose an encoding of some simple general temporal property which can be
combined to capture and explain the hidden property of the observed system.

3.2 Encoding Elementary LTL Operators

Linear Temporal Logic (LTL) [7] is a modal temporal logic used to characterize
the occurrence of properties in a unique linear dynamical path, like the event
sequences studied in this paper. It is mainly composed of the following operators:

Diagnosis of Event Sequences with LFIT 7

— F(¢): ¢ eventually has to hold (Finally);

— G(¢): ¢ has to hold on the entire subsequent path (Globally);

— U(¢, ¢): 9 has to hold at least until ¢ becomes true, which must hold at the

current or a future position (Until).

These operators over a sequence s can be encoded into a feature state following
Proposition 1 and the interpretation given below:

— Finally(s,e) =e€ s

— Globally(s,e)=e' €s = €' =e

— Until(s,e1,e2) =Fi € [1,]s]],si =ea AVj € [1,i—1],5; = €3

Ezample 3. Following Proposition 1, we can encode those LTL properties as ad-
ditional MVL variables and atoms: Vp = { F_eq, F_e1, F_ea, G_eg, G_e1, G _ea,
U_ep_er,U_egea, U_ey_eg, U_ey_eq, U_es_eg, U_eg_eq, }, with Vv € Vp,dom(v) =
{true, false}, where F_e; encodes Finally(s,e;), G_e; encodes Globally(s,e;),
U_e;_e; encodes Until(s, e;, e;).

Using this encoding on the transitions 7' of example 2 we obtain:

T = {({evy', evit,evs®, evs?, Fefe F elme F_ebre G,egalse, ...}, {label?*®}),

({evg!, evi®, evg!, evy?, Felrue F_elrve | _elrue, G,egalse, ...}, {labelP?®}),

({ev(e)2’ ev? ’ evgz ’ eV§O’ F*eéruev F*E{alse7 Ffeéruev G*e({alsev - '}7 {labelneg})v
({evez, eve? evs? evs?, Fel®™ F efolse P etrue G el® 1} {label™})}
We can now use GULA to learn rules that exploit those encoded properties.
GULA(AUAp, T, FUVp,T):
label(pos) + evs(es), F-e1(true),U_ei_ex(false). label(neg) < F_ex(false).
label(pos) + evs(es), F-e1(true),U_e;_eq(true). label(neg) < F_eo(false).

Tl.l.e.resulting DMVLP Py (T") contains 824 rules, divided into 735 with label(pos)
and 89 with label(neg).

In Example 3, most rules are again obscure consequences of the real prop-
erty. But some rules are explicit: label(neg) « F_ex(false) and label(neg) «+
F _eo(false), state that both eg and e must be present in a positive sequence.

3.3 Encoding Complex LTL Properties

LTL allows to model interesting temporal patterns as shown in [1] where they
study infinity sensibility of some specific LTL formula. Table 1 shows some exam-
ples of these properties. Encoded as new variables, these properties can be used
to enhance the explainability of the rules learned in our running example. Using
the encoding of Example 3 and the 18 properties considered in [1] is not enough
to construct a rule that explains all positive examples of Example 2. Here, we
need to consider an additional property, the “not precedence”: G(b = —F(a)),
i.e., a cannot appear before b.

Ezample 4. Using these properties and GULA as in Example 3, we obtain:
label(pos) « existence_eg(True), existence_es(True), not_precedence_es_eo(True).
label(pos) + not_precedence_eq_es(False), not_precedence_es_eo(True).

8 T. Ribeiro et al.

Property LTL formula Description
Existence F(a) a must appear at least once
Absence 2 —F(a A F(a)) a can appear at most once
Choice F(a) VvV F(b)) a or b must appear
Exclusive choice (F(a) V F(b)) AN ~(F(a) A F(b)) Either a or b must appear, but not both
Resp. existence F(a) = F(b) if a appear, then b must appear as well
Coexistence |(F(a) => F(b)) A (F(b) = F(a)) Either a and b both appear, or none of them
Response G(a = F(b)) Every time a appears, b must appear afterwards
Precedence —(U(a,b) V G(a)) b can appear only if a appeared before
Not coexistence —(F(a) AN F(b)) Only one among a and b can appear, but not both

Table 1: Examples of sequence properties from [1].

label(pos) « existence_es(True), not_precedence_es_eo(True), evo(eg).
label(pos) + existence_eq(True), not_precedence_es_eo(True),evs(es).

In Example 4, the first rule is the exact representation of the function ap-
plied to generate the example, which was: F'(eg) A F'(e2) A G(ea = —F(eo)).
The second rule uses not_precedence_eqg_es(False) as a divert way to ensure the
existence of both ey and es. The two other rules make use of explicit positions
to get the existence of either ey or es.

3.4 Discussion

In Example 4, we see a few examples of rules that could be discarded. Indeed,
GULA learns many rules that are redundant when the meaning of the prop-
erty is known (which GULA is oblivious of). Given a subsumption relationship
between the encoded properties, a post-processing of the learned rules could be
done to simplify or discard rules. Furthermore, in these examples, we guided the
rule learning by only giving the property of interest to GULA (“existence” and
“not precedence”) and the optimal program is already almost a thousand rules:
801 label(pos) rules and 108 label(neg) rules. The rules shown in Example 4 can
be found by weighting and ordering rules according to the number of examples
they match. The two first rules are the only ones matching all 17 positive se-
quences of Example 2. If given all 18 properties of [1] and the “not precedence”
property, the optimal program will, in theory, still contain the rules shown in
Example 4 plus many others. But it would require to handle more than 100
variables to do so, which is too much for GULA to handle in reasonable time.

In practice, it is more interesting to use PRIDE [9], GULA’s polynomial
approximated version, to explore the search space in reasonable time. Although
PRIDE outputs a subset of the optimal program and thus can miss interesting
rules, it can be given some guidance in the form of heuristics, such as variable
ordering, to find those “best” rules we are interested in here. All the examples
of this paper have been generated using the open source python package pylfit®
and are available as a Jupiter notebook” on the pylfit Github repository.

5 Package pylfit source code is available at: https://github. com/Tony-sama/pylfit/
" Case study notebook: https://github.com/Tony-sama/pylfit/blob/master/
tests/evaluations/ilp2022/1fit-sequence-patern-learning.ipynb

https://github.com/Tony-sama/pylfit/
https://github.com/Tony-sama/pylfit/blob/master/tests/evaluations/ilp2022/lfit-sequence-patern-learning.ipynb
https://github.com/Tony-sama/pylfit/blob/master/tests/evaluations/ilp2022/lfit-sequence-patern-learning.ipynb

Diagnosis of Event Sequences with LFIT 9

4 Conclusion

In this paper, we proposed an extension of LFIT theory that allows to encode
properties of transitions as additional variables, allowing GULA to learn rules
that exploit them. We proposed a modeling of event sequences and their tem-
poral properties allowing to use GULA to learn rules combining properties to
explain sequences of interest. Being able to include properties of transitions in
the learning process can be useful in a various range of application fields. For
instance, in biology, some information on the dynamics of the system to be mod-
elled is expressed as a LTL property by modelers. Inclusion of such knowledge
in the global learning process can give more expressive rules about the dynamics
and lead to a better understanding of the studied systems by the biologists. We
showed through a case study that such encoding can indeed allow to learn more
meaningful rules and to capture complex temporal patterns.

However, by encoding properties, we increase the number of variables con-
sidered, which leads to a combinatorial explosion of the run time for GULA. Its
polynomial approximated version PRIDE would be preferred in practice, with
additional heuristics allowing to guide its search towards comprehensive rules.

References

1. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces:
Insensitivity to infiniteness. In: Proceedings of the AAAT Conference on Artificial
Intelligence. vol. 28 (2014)

2. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Ma-
chine Learning 94(1), 51-79 (2014)

3. Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions
with inductive logic programming. Machine Learning 100(2), 555-585 (2015)

4. Muggleton, S.: Inductive logic programming: derivations, successes and shortcom-
ings. ACM SIGART Bulletin 5(1), 5-11 (1994)

5. Pencolé, Y., Subias, A.: Diagnosability of event patterns in safe labeled time petri
nets: a model-checking approach. IEEE Transactions on Automation Science and
Engineering (2021)

6. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Fakultat fiir Math-
ematik und Physik, Technische Hochschule Darmstadt, Darmstadt (Allemagne)
(1962)

7. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977). pp. 46-57 (1977)

8. Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Learning any memory-less
discrete semantics for dynamical systems represented by logic programs. Machine
Learning (2021)

9. Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Polynomial algorithm for learn-
ing from interpretation transition. In: 1st International Joint Conference on Learn-
ing & Reasoning. pp. 1-5 (2021)

10. Sato, S., Watanabe, Y., Seki, H., Ishii, Y., Yuen, S.: Fault diagnosis for distributed
cooperative system using inductive logic programming. In: 2020 IEEE Interna-
tional Conference on Prognostics and Health Management (ICPHM). pp. 1-8.
IEEE (2020)

	Diagnosis of Event Sequences with LFIT

