
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-021-06105-4

1 3

Learning any memory‑less discrete semantics for dynamical
systems represented by logic programs

Tony Ribeiro1,2 · Maxime Folschette3 · Morgan Magnin1,2 · Katsumi Inoue2

Received: 1 September 2020 / Revised: 6 October 2021 / Accepted: 14 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Learning from interpretation transition (LFIT) automatically constructs a model of the
dynamics of a system from the observation of its state transitions. So far the systems
that LFIT handled were mainly restricted to synchronous deterministic dynamics. How-
ever, other dynamics exist in the field of logical modeling, in particular the asynchronous
semantics which is widely used to model biological systems. In this paper, we propose
a modeling of discrete memory-less multi-valued dynamic systems as logic programs in
which a rule represents what can occur rather than what will occur. This modeling allows
us to represent non-determinism and to propose an extension of LFIT to learn regardless
of the update schemes, allowing to capture a large range of semantics. We also propose a
second algorithm which is able to learn a whole system dynamics, including its seman-
tics, in the form of a single propositional logic program with constraints. We show through
theoretical results the correctness of our approaches. Practical evaluation is performed on
benchmarks from biological literature.

Keywords Inductive logic programming · Dynamic systems · Logical modeling · Dynamic
semantics

1 Introduction

Learning the dynamics of systems with many interactive components becomes more and
more important in many applications such as physics, cellular automata, biochemical sys-
tems as well as engineering and artificial intelligence systems. In artificial intelligence
systems, knowledge like action rules is employed by agents and robots for planning and

Editors: Nikos Katzouris, Alexander Artikis, Luc De Raedt, Artur d’Avila Garcez, Ute Schmid,
Sebastijan Dumančić, Jay Pujara.

 * Tony Ribeiro
 tony.ribeiro@ls2n.fr

1 Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
3 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

http://orcid.org/0000-0002-1793-2854
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06105-4&domain=pdf

 Machine Learning

1 3

scheduling. In biology, learning the dynamics of biological systems corresponds to the
identification of influence of genes, signals, proteins and molecules that can help biologists
to understand their interactions and biological evolution.

In modeling of dynamical systems, the notion of concurrency and non-determinism is
crucial. When modeling a biological regulatory network, it is necessary to represent the
respective evolution of each component of the system. One of the most debated issues with
regard to semantics targets the choice of a proper update mode of every component, that is,
synchronous (Kauffman, 1969), asynchronous (Thomas, 1991) or more complex ones. The
differences and common features of different semantics w.r.t. properties of interest (attrac-
tors, oscillators, etc.) have thus resulted in an area of research per itself (Inoue, 2011; Naldi
et al., 2018; Chatain et al., 2020). But the biologists often have no idea whether a model
of their system of interest should intrinsically be synchronous, asynchronous, generalized,
or another semantics. It thus appears crucial to find ways to model systems from raw data
without burdening the modelers with an a priori choice of the proper semantics.

For a decade, learning dynamics of systems has raised a growing interest in the field of
inductive logic programming (ILP) (Muggleton et al., 2012; Cropper et al., 2020). ILP is a
form of logic-based machine learning where the goal is to induce a hypothesis (a logic pro-
gram) that generalises given training examples and background knowledge. Whereas most
machine learning approaches learn functions, ILP frameworks learn relations.

In the specific context of learning dynamical systems, previous works proposed an ILP
framework entitled learning from interpretation transition (LFIT) (Inoue et al. 2014) to
automatically construct a model of the dynamics of a system from the observation of its
state transitions. Figure 1 shows this learning process. Given some raw data, like time-
series data of gene expression, a discretization of those data in the form of state transitions
is assumed. From those state transitions, according to the semantics of the system dynam-
ics, several inference algorithms modeling the system as a logic program have been pro-
posed. The semantics of a system’s dynamics can indeed differ with regard to the synchro-
nism of its variables, the determinism of its evolution and the influence of its history. The
LFIT framework (Inoue et al., 2014; Ribeiro & Inoue, 2015; Ribeiro et al., 2018) proposed
several modeling and learning algorithms to tackle those different semantics.

In Inoue (2011), Inoue and Sakama (2012), state transitions systems are represented
with logic programs, in which the state of the world is represented by a Herbrand inter-
pretation and the dynamics that rule the environment changes are represented by a logic
program P. The rules in P specify the next state of the world as a Herbrand interpretation
through the immediate consequence operator (also called the TP operator) (Van Emden &

Fig. 1 Assuming a discretization of time series data of a system as state transitions, we propose a method to
automatically model the system dynamics

Machine Learning

1 3

Kowalski, 1976; Apt et al., 1988) which mostly corresponds to the synchronous semantics
we present in Sect. 3. In this paper, we extend upon this formalism to model multi-valued
variables and any memory-less discrete dynamic semantics including synchronous, asyn-
chronous and general semantics.

Inoue et al. (2014) proposed the LFIT framework to learn logic programs from traces of
interpretation transitions. The learning setting of this framework is as follows. We are given
a set of pairs of Herbrand interpretations (I, J) as positive examples such that J = TP(I), and
the goal is to induce a normal logic program (NLP) P that realizes the given transition rela-
tions. As far as we know, this concept of learning from interpretation transition (LFIT) has
never been considered in the ILP literature before (Inoue et al. 2014).

To date, the following systems have been tackled: memory-less deterministic systems
(Inoue et al., 2014), systems with memory (Ribeiro et al., 2015a), probabilistic systems
(Martínez Martínez et al., 2015) and their multi-valued extensions (Ribeiro et al. 2015b;
Martınez et al., 2016). Ribeiro et al. (2018) proposes a method that allows to deal with con-
tinuous time series data, the abstraction itself being learned by the algorithm. As a sum-
mary, the systems that LFIT handled so far were restricted to synchronous deterministic
dynamics.

In this paper, we extend this framework to learn systems dynamics independently of
its update semantics. For this purpose, we propose a modeling of discrete memory-less
multi-valued systems as logic programs in which each rule represents that a variable pos-
sibly takes some value at the next state, extending the formalism introduced in Inoue et al.
(2014), Ribeiro and Inoue (2015). Research in multi-valued logic programming has pro-
ceeded along three different directions (Kifer & Subrahmanian, 1992): bilattice-based log-
ics (Fitting, 1991; Ginsberg, 1988), quantitative rule sets (Van Emden, 1986) and annotated
logics (Blair & Subrahmanian, 1989, 1988). Our representation is based on annotated log-
ics. Here, to each variable corresponds a domain of discrete values. In a rule, a literal is an
atom annotated with one of these values. It allows us to represent annotated atoms simply
as classical atoms and thus to remain at a propositional level. This modeling allows us to
characterize optimal programs independently of the update semantics, allowing to model
the dynamics of a wide range of discrete systems. To learn such semantic-free optimal pro-
grams, we propose GULA: the General Usage LFIT Algorithm. We show from theoretical
results that this algorithm can learn under a wide range of update semantics including syn-
chronous (deterministic or not), asynchronous and generalized semantics.

Ribeiro et al. (2018) proposed a first version of GULA that we substantially extend in
this manuscript. In Ribeiro et al. (2018), there was no distinction between feature and target
variables, i.e., variables at time step t and t + 1 . From this consideration, interesting prop-
erties arise and allow to characterize the kind of semantics compatible with the learning
process of the algorithm (Theorem 1). It also allows to represent constraints and to propose
a new algorithm (Synchronizer, Sect. 5). We show through theoretical results that this sec-
ond algorithm can learn a program able to reproduce any given set of discrete state transi-
tions and thus the behavior of any discrete memory-less dynamical semantics.

Empirical evaluation provided in Ribeiro et al. (2018) was limited to scalability in
complete observability cases. With the goal to process real data, we introduce a heuristic
method allowing to use GULA to learn from partial observations and predict from unob-
served data. It allows us to apply the method on more realistic cases by evaluating both
scalability, prediction accuracy and explanation of prediction on partial data. Evaluation is
performed over the three aforementioned semantics for Boolean network benchmarks from
biological literature (Klarner et al., 2016; Dubrova & Teslenko, 2011). These experiments
emphasize the practical usage of the approach: our implementation reveals to be tractable

 Machine Learning

1 3

on systems up to a dozen components, which is sufficient enough to capture a large variety
of complex dynamic behaviors in practice.

The organization of the paper is as follows. Section 2 provides a formalization of dis-
crete memory-less dynamics system as multi-valued logic program. Section 3 formalizes
dynamical semantics under logic programs. Section 4 presents the first algorithm, GULA,
which learns optimal programs regardless of the semantics. Section 5 provides extension
of the formalization and a second algorithm, the Synchronizer, to represent and learn the
semantics behavior itself. In Sect. 6, we propose a heuristic method allowing to use GULA
to learn from partial observations and predict from unobserved data. Section 7 provides
experimental evaluations regarding scalability, prediction accuracy and explanation of pre-
dictions. Section 8 discusses related work and Sect. 9 concludes the paper. All proofs of
theorems and propositions are given in “Appendix”.

2 Logical modeling of dynamical systems

In this section, the concepts necessary to understand the learning algorithms we propose
are formalized. In Sect. 2.1, the basic notions of multi-valued logic (MVL) are presented.
Then, Sect. 2.2 presents a modeling of dynamics systems using this formalism.

In the following, we denote by ℕ ∶= {0, 1, 2,…} the set of natural numbers, and for
all k, n ∈ ℕ , [[k;n]] ∶= {i ∈ ℕ ∣ k ≤ i ≤ n} is the set of natural numbers between k and n
included. For any set S, the cardinality of S is denoted |S| and the power set of S is denoted
℘(S).

2.1 Multi‑valued logic program

Let V = {v1,⋯ , vn} be a finite set of n ∈ ℕ variables, Val the set in which variables take
their values and 𝖽𝗈𝗆 ∶ V → ℘(Val) a function associating a domain to each variable. The
atoms of MVL are of the form vval where v ∈ V and val ∈ ���(v) . The set of such atoms
is denoted by AV

���
= {vval ∈ V × Val ∣ val ∈ ���(v)} for a given set of variables V and a

given domain function ��� . In the following, we work on specific V and ��� that we omit
to mention when the context makes no ambiguity, thus simply writing A for AV

���
.

Example 1 For a system of 3 variables, the typical set of variables is V = {a, b, c} .
In general, Val = ℕ so that domains are sets of natural integers, for instance:
���(a) = {0, 1} , ���(b) = {0, 1, 2} and ���(c) = {0, 1, 2, 3} . Thus, the set of all atoms is:
A = {a0, a1, b0, b1, b2, c0, c1, c2, c3}.

A MVL rule R is defined by:

where ∀i ∈ [[0;m]], v
vali
i

∈ A are atoms in MVL so that every variable is mentioned at most
once in the right-hand part: ∀j, k ∈ [[1;m]], j ≠ k ⇒ vj ≠ vk . If m = 0 , the rule is denoted:
v
val0
0

← ⊤ . Intuitively, the rule R has the following meaning: the variable v0 can take the
value val0 in the next dynamical step if for each i ∈ [[1;m]] , variable vi has value vali in the
current dynamical step.

(1)R = v
val0
0

← v
val1
1

∧⋯ ∧ vvalm
m

Machine Learning

1 3

The atom on the left-hand side of the arrow is called the head of R and is denoted
head(R) ∶= v

val0
0

 . The notation var(head(R)) ∶= v0 denotes the variable that occurs in
head(R) . The conjunction on the right-hand side of the arrow is called the body of R, written
body(R) and can be assimilated to the set {vval1

1
,⋯ , v

valm
m } ; we thus use set operations such

as ∈ and ∩ on it, and we denote it ∅ if it is empty. The notation var(body(R)) ∶= {v1,⋯ , vm}
denotes the set of variables that occurs in body(R) . More generally, for all sets of atoms
X ⊆ A , we denote var(X) ∶= {v ∈ V ∣ ∃val ∈ ���(v), vval ∈ X} the set of variables
appearing in the atoms of X. A multi-valued logic program (MVLP) is a set of MVL
rules.

Definition 1 introduces a domination relation between rules that defines a partial anti-
symmetric ordering. Intuitively, rules with more general bodies dominate other rules. In
our approach, we prefer a more general rule over a more specific one.

Definition 1 (Rule Domination) Let R1 , R2 be two MVL rules. The rule R1 dominates R2 ,
written R1 ≥ R2 if head(R1) = head(R2) and body(R1) ⊆ body(R2).

Example 2 Let R1 ∶= a1 ← b1 , R2 ∶= a1 ← b1 ∧ c0 . R1 dominates R2 since
head(R1) = head(R2) = a1 and body(R1) ⊆ body(R2) . Intuitively, R1 is more general than
R2 on c. R2 does not dominate R1 because body(R2) ⊈ body(R1) . Let R3 ∶= a1 ← a1 ∧ b0 ,
R1 (resp. R2) does not dominate R3 (and vice versa), since body(R1) ⊈ body(R3) : the rules
have a different condition over b. Let R4 ∶= a1 ← a1 , for the same reasons, R1 (resp. R2)
does not dominate R4.

Let R5 ∶= a0 ← � , R1 (resp. R2,R3,R4) does not dominate R5 (and vice versa) since
their head atoms are different (a1 ≠ a0).

The most general body for a rule is the empty set (also denoted ⊤). A rule with an empty
body dominates all rules with the same head atom. Furthermore, the only way two rules
dominate each over is that they are the same rule, as stated by Lemma 1.

Lemma 1 (Double Domination Is Equality) Let R1,R2 be two MVL rules. If R1 ≥ R2 and
R2 ≥ R1 then R1 = R2.

2.2 Dynamic multi‑valued logic program

We are interested in modeling non-deterministic (in a broad sense, which includes deter-
ministic) discrete memory-less dynamical systems. In such a system, the next state is
decided according to dynamics that depend on the current state of the system. From a mod-
eling perspective, the variables of the system at time step t can be seen as target variables
and the same variables at time step t − 1 as features variables. Furthermore, additional var-
iables that are external to the system, like stimuli or observation variables for example, can
appear only as feature or target variables.

Such a system can be represented by a MVLP with some restrictions. First, the set of
variables V is divided into two disjoint subsets: T (for targets) encoding system variables at
time step t plus optional external variables like observation variables, and F (for features)
encoding system variables at t − 1 and optional external variables like stimuli. It is thus
possible that |F| ≠ |T| . Second, rules only have a conclusion at t and conditions at t − 1 ,
i.e., only an atom of a variable of T can be a head and only atoms of variables in F can

 Machine Learning

1 3

appear in a body. In the following, we also re-use the same notations as for the MVL of
Sect. 2.1 such as head(R) , body(R) and var(head(R)).

Definition 2 (Dynamic MVLP) Let T ⊂ V and F ⊂ V such that F = V ⧵ T . A DMVLP P
is a MVLP such that ∀R ∈ P, var(head(R)) ∈ T and ∀vval ∈ body(R), v ∈ F .

In the following, when there is no ambiguity, we suppose that F , T , V and A are already
defined and we omit to define them again.

Example 3 Figure 2 gives an example of regulation network with three elements a, b and c.
The information of this network is not complete; notably, the relative “force” of the com-
ponents a and b on the component c is not explicit. Multiple dynamics are then possible on
this network, among which four possibilities are given below by Program 1 to 4, defined on
T ∶= {at, bt, ct} , F ∶= {at−1, bt−1, ct−1} and ∀v ∈ T ∪ F, ���(v) ∶= {0, 1}.

Program 1 is a direct translation of the relations of the regulation network. It only con-
tains rules producing atoms with value 1 which is equivalent to a set of Boolean func-
tions. In Program 2, a always takes value 1 while in Program 3 it always takes value 0, a
having no incoming influence in the regulation network this can represent some kind of
default behavior. In Program 3, the two red rules introduce potential non-determinism in
the dynamics since both conditions can hold at the same time. In Program 4, the rule apply
the conditions of the regulation network but it also allows each variable to keep the value 1
at t if it has it at t − 1 and no inhibition occurs. We insist on the fact that the index notation t
or t − 1 is part of the variable name, not its value. This allows to distinguish variables from
T (t) or F (t − 1).

Program 1
b1t ← a1t−1
c1t ← a1t−1 ∧ b0t−1

Program 2
a1t ← ∅
b0t ← a0t−1
b1t ← a1t−1
c0t ← a0t−1
c0t ← b1t−1
c1t ← a1t−1 ∧ b0t−1

Program 3
a0t ← ∅
b0t ← a0t−1
b1t ← a1t−1
c0t ← a0t−1
c0t ← b1t−1
c1t ← a1t−1

Program 4
a1t ← a1t−1
b1t ← b1t−1
b1t ← a1t−1
c1t ← c1t−1 ∧ b0t−1
c1t ← a1t−1 ∧ b0t−1

Fig. 2 Example of interaction graph of a regulation network representing an incoherent feed-forward loop
(Kaplan et al., 2008) where a positively influences b and c, while b (and thus, indirectly, a) negatively influ-
ences c

Machine Learning

1 3

The dynamical system we want to learn the rules of is represented by a succession of
states as formally given by Definition 3. We also define the “compatibility” of a rule with a
state in Definition 4 and with a transition in Definition 5.

Definition 3 (Discrete state) A discrete state s on T (resp. F) of a DMVLP is a function
from T (resp. F) to ℕ , i.e., it associates an integer value to each variable in T (resp. F). It
can be equivalently represented by the set of atoms {vs(v) ∣ v ∈ T(resp. F)} and thus we can
use classical set operations on it. We write ST (resp. SF) to denote the set of all discrete
states of T (resp. F), and a couple of states (s, s�) ∈ S

F × S
T is called a transition.

When there is no possible ambiguity, we sometimes (Figs. 3, 5, …) denote a state only
by the values of variables, without naming the variables. In this case, the variables are
given in alphabetical order (a, b, c…). For instance, {a0, b1} is denoted 01 , {a1, b0} is
denoted 10 and {a0, b1, c0, d3} is denoted 0103 .

Example 4 Consider a dynamical system having two internal variables a and b,
an external stimilus st and an observation variable ch used to trace some impor-
tant events. The two sets of possible discrete states of a program defined on the
two sets of variables T = {at, bt, ch} and F = {at−1, bt−1, st} , and the set of atoms
A = {a0

t
, a1

t
, b0

t
, b1

t
, b2

t
, ch0, ch1, a0

t−1
, a1

t−1
, b0

t−1
, b1

t−1
, b2

t−1
, st0, st1} are:

Here, at−1 and at (resp. bt−1 and bt) are theoretically different variables from a MVL per-
spective. But they actually encode the same variable at different time step and thus a (resp.
b) is present in both F and T in its corresponding timed form.

On the other hand, variables st and ch are respectively a stimuli and an observation var-
iable and thus only appear in F,SF or T,ST . Depending on the number of stimuli and
observation variables, states of SF can have a different size than states in ST (see Fig. 4).

S
F = {
{a0

t−1
, b0

t−1
, st0}, {a0

t−1
, b0

t−1
, st1},

{a0
t−1

, b1
t−1

, st0}, {a0
t−1

, b1
t−1

, st1},
{a0

t−1
, b2

t−1
, st0}, {a0

t−1
, b2

t−1
, st1},

{a1
t−1

, b0
t−1

, st0}, {a1
t−1

, b0
t−1

, st1},
{a1

t−1
, b1

t−1
, st0}, {a1

t−1
, b1

t−1
, st1},

{a1
t−1

, b2
t−1

, st0}, {a1
t−1

, b2
t−1

, st1}}

and ST = {
{a0

t
, b0

t
, ch0}, {a0

t
, b0

t
, ch1},

{a0
t
, b1

t
, ch0}, {a0

t
, b1

t
, ch1},

{a0
t
, b2

t
, ch0}, {a0

t
, b2

t
, ch1},

{a1
t
, b0

t
, ch0}, {a1

t
, b0

t
, ch1},

{a1
t
, b1

t
, ch0}, {a1

t
, b1

t
, ch1},

{a1
t
, b2

t
, ch0}, {a1

t
, b2

t
, ch1} }.

Fig. 3 Example of a pseudo-idempotent semantics DS

 Machine Learning

1 3

Definition 4 (Rule-state matching) Let s ∈ S
F . The MVL rule R matches s, written R ⊓ s ,

if body(R) ⊆ s.

Fig. 4 Representation of a state transition of a dynamical system over n variables, m stimuli and k observa-
tion variables, i.e., |F| = n + m, |T| = n + k

Fig. 5 A Boolean network with two variables inhibiting each other (top). The corresponding synchro-
nous, asynchronous and general dynamics are given as state-transition diagrams (middle). In these state-
transition diagrams, each box with a label “xy” represents both the feature state {ax

t−1
, b

y

t−1
} and the target

state {ax
t
, b

y

t } , and each arrow represents a possible transitions between states. The corresponding optimal
DMVLP (bottom) contain comments (in grey) that explain sub-parts of the programs

Machine Learning

1 3

We note that this definition of matching only concerns feature variables. Target vari-
ables are never meant to be matched.

Example 5 Let F = {at−1, bt−1, st} , T = {at, bt, ch} and dom(at−1) = dom(st)
= dom(at) = dom(ch) = {0, 1}, dom(bt−1) = dom(bt) = {0, 1, 2} . The rule
ch0 ← a1

t−1
∧ b1

t−1
∧ st1 only matches the state {a1

t−1
, b1

t−1
, st1} . The rule ch0 ← a0

t−1
∧ st1

matches {a0
t−1

, b0
t−1

, st1} , {a0
t−1

, b1
t−1

, st1} and {a0
t−1

, b2
t−1

, st1} . The rule b2
t
← a1

t−1
 matches

{a1
t−1

, b0
t−1

, st0} , {a1
t−1

, b0
t−1

, st1} , {a1
t−1

, b1
t−1

, st0} , {a1
t−1

, b1
t−1

, st1} , {a1
t−1

, b2
t−1

, st0} ,
{a1

t−1
, b2

t−1
, st1} . The rule a1 ← ∅ matches all states of SF .

The final program we want to learn should both:

• match the observations in a complete (all transitions are learned) and correct (no spuri-
ous transition) way;

• represent only minimal necessary interactions (according to Occam’s razor: no overly-
complex bodies of rules)

The following definitions formalize these desired properties. In Definition 5 we character-
ize the fact that a rule of a program is useful to describe the dynamics of one variable in a
transition; this notion is then extended to a program and a set of transitions, under the con-
dition that there exists such a rule for each variable and each transition. A conflict (Defini-
tion 6) arises when a rule describes a change that is not featured in the considered set of
transitions.

Finally, Definitions 8 and 7 give the characteristics of a complete (the whole dynamics
is covered) and consistent (without conflict) program.

Definition 5 (Rule and program realization) Let R be a MVL rule and (s, s�) ∈ S
F × S

T .
The rule R realizes the transition (s, s�) , written s

R
������→ s′ , if R ⊓ s ∧ head(R) ∈ s�.

A DMVLP P realizes (s, s�) ∈ S
F × S

T , written s
P
������→ s′ , if

∀v ∈ T,∃R ∈ P, var(head(R)) = v ∧ s
R
������→ s� . It realizes a set of transitions T ⊆ S

F × S
T ,

written P↪T , if ∀(s, s�) ∈ T , s
P
������→ s�.

Example 6 The rule c1
t
← a1

t−1
∧ b1

t−1
 realizes the transition t = ({a1

t−1
, b1

t−1
, c0

t−1
} ,

{a0
t
, b1

t
, c1

t
}) since it matches the first state of t and its conclusion is in the second state.

However, the rule c1
t
← a1

t−1
∧ b0

t−1
 does not realize t since it does not match the feature

state of t.

Example 7 The transition t = ({a1
t−1

, b1
t−1

, c0
t−1

} , {a0
t
, b1

t
, c1

t
}) is realized by Program 3

of Example 3, by using the rules a0
t
← ∅ , b1

t
← a1

t−1
 and c1

t
← a1

t−1
 . However, Program 2

of the same Example does not realize t since the only rule that could produce c1
t
 , that is,

c1
t
← a1

t−1
∧ b0

t−1
 , does not match {a1

t−1
, b1

t−1
, c0

t−1
} ; moreover, no rule can produce a0

t
 . Pro-

grams 1 and 4 of the same Example cannot produce a0
t
 either and thus do not realize t.

In the following, for all sets of transitions T ⊆ S
F × S

T , we denote:
f irst(T) ∶= {s ∈ S

F ∣ ∃(s1, s2) ∈ T , s1 = s} the set of all initial states of these transitions.
We note that f irst(T) = � ⟺ T = �.

 Machine Learning

1 3

Definition 6 (Conflict and Consistency) A MVL rule R conflicts with a set of transitions
T ⊆ S

F × S
T when ∃s ∈ first(T),

(
R ⊓ s ∧ ∀(s, s�) ∈ T , head(R) ∉ s�

)
 . R is said to be con-

sistent with T when R does not conflict with T.

A rule is consistent if for all initial states of the transitions of T (f irst(T)) matched by
the rule, there exists a transitions of T for which it verifies the conclusion.

Definition 7 (Consistent program) A DMVLP P is consistent with a set of transitions T if
P does not contain any rule R conflicting with T.

Example 8 Let s1 = {a1
t−1

, b0
t−1

, c0
t−1

}, s2 = {a1
t−1

, b0
t−1

, c1
t−1

}, s3 = {a0
t−1

, b0
t−1

, c0
t−1

} and

Let T = {t1, t2, t3, t4, t5}.
Program 1 of Example 3 is consistent with T. The rule b1

t
← a1

t−1
 matches s1 and both

s1 and b1
t
 are observed in t2. The rule also matches s2 which is observed with b1

t
 in t3. The

rule c1
t
← a1

t−1
∧ b0

t−1
 matches s1 (resp. s2), which is observed with c1

t
 in t1 (resp. t3).

Program 2 is not consistent with T since a1
t
← ∅ is not consistent with T: it matches s1,

s2 and s3 but the transitions of T that include s2 (t3, t4) do not contain a1
t
 . Program 3 is not

consistent with T since a0
t
← ∅ matches s1, s2, s3 but the only transition that contains s3

(t5) does not contain a0
t
 . Program 4 is not consistent with T since a1

t
← a1

t−1
 matches s2 but

the transitions of T that include s2 (t3, t4) do not contain a1
t
.

Definition 8 (Complete program) A DMVLP P is complete if
∀s ∈ S

F,∀v ∈ T,∃R ∈ P,R ⊓ s ∧ var(head(R)) = v.

A complete DMVLP realizes at least one transition for each possible initial state.

Example 9 Program 1 of Example 3 is not complete since it does not have any rule over
target variable at , in fact it does not realize any transitions. Program 2 of same example is
complete:

• The rule a1
t
← ∅ will realize a1

t
 from any feature state;

• For bt it has a first (resp. second) rule that matches all feature state where a0
t−1

 (resp.
a1
t−1

) appears and the domain of at−1 being {0, 1} all cases and thus all feature states are
covered by this two rules;

• For ct , all combinations of values of a and b are covered by the three last rules,
∀val ∈ ���(ct−1),

• {a0
t−1

, b0
t−1

, cval
t−1

} is matched by c0
t
← a0

t−1
;

• {a0
t−1

, b1
t−1

, cval
t−1

} is matched by c0
t
← b1

t−1
 (and c0

t
← b1

t−1
);

• {a1
t−1

, b0
t−1

, cval
t−1

} is matched by c0
t
← a1

t−1
∧ b0

t−1
;

• {a1
t−1

, b1
t−1

, cval
t−1

} is matched by c0
t
← b1

t−1
.

t1 = (s1, {a0
t
, b1

t
, c1

t
}),

t2 = (s1, {a1
t
, b1

t
, c0

t
}),

t3 = (s2, {a0
t
, b1

t
, c0

t
}),

t4 = (s2, {a0
t
, b0

t
, c1

t
}),

t5 = (s3, {a1
t
, b1

t
, c0

t
}).

Machine Learning

1 3

Program 3 is also complete, and it even realizes multiple values for ct when both a1
t−1

 and
b1
t−1

 are in a feature state: {a1
t−1

, b1
t−1

, c0
t−1

} is matched by both c0
t
← b1

t−1
 and c1

t
← a1

t−1
 . Pro-

gram 4 is not complete: no transition is realized when a0
t−1

 is in a feature state since the
only rule of at is a1

t
← a1

t−1
.

Definition 9 groups all the properties that we want the learned program to have: suitabil-
ity and optimality, and Proposition 1 states that the optimal program of a set of transitions
is unique.

Definition 9 (Suitable and optimal program) Let T ⊆ S
F × S

T . A DMVLP Pis suitable
for T when:

• P is consistent with T,
• P realizes T,
• P is complete,
• For any possible MVL rule R consistent with T, there exists R� ∈ P such that R′ ≥ R.

If in addition, for all R ∈ P , all the MVL rules R′ belonging to DMVLP suitable for T are
such that R′ ≥ R implies R ≥ R′ then P is called optimal.

Note that Definition 9 ensures local minimality regarding the ordering ≥ (see Definition
1). In terms of biological models, it is more interesting to focus on local minimality, thus
simple but numerous rules, modeling local influences from which the complexity of the
whole system arises, than global minimality that would produce system-level rules hiding
the local correlations and influences. Definition 9 also guarantees that we obtain all the
minimal rules which guarantees to provide biological collaborators with the whole set of
possible explanations of biological phenomena involved in the system of interest.

Proposition 1 (Uniqueness of Optimal Program) Let T ⊆ S
F × S

T . The DMVLP optimal
for T is unique and denoted PO(T).

Example 10
Program 1 and 4 of Example 3 are not complete (see Example 9) and thus not suitable for
T. Program 3 is complete but not consistent with T (see Example 8). Program 2 is com-
plete, consistent and realizes T but is not suitable for T: indeed, c1

t
← a1

t−1
 is consistent with

T and there is no rule in Program 2 that dominates it.
Let us consider:

Let T = { ({a0
t−1

, b0
t−1

, c0
t−1

}, {a1
t
, b0

t
, c0

t
})

({a0
t−1

, b0
t−1

, c1
t−1

}, {a1
t
, b0

t
, c0

t
})

({a0
t−1

, b1
t−1

, c0
t−1

}, {a1
t
, b0

t
, c0

t
})

({a1
t−1

, b0
t−1

, c0
t−1

}, {a1
t
, b1

t
, c1

t
})

({a0
t−1

, b1
t−1

, c1
t−1

}, {a1
t
, b0

t
, c0

t
})

({a1
t−1

, b0
t−1

, c1
t−1

}, {a1
t
, b1

t
, c1

t
})

({a1
t−1

, b1
t−1

, c0
t−1

}, {a1
t
, b1

t
, c0

t
})

({a1
t−1

, b1
t−1

, c0
t−1

}, {a1
t
, b1

t
, c1

t
}) }.

 Machine Learning

1 3

P is complete, consistent, realizes T and all rules consistent with T are dominated by a rule
of P. Thus, P is suitable for T. But P is not optimal since c1

t
← a1

t−1
∧ b0

t−1
 is dominated by

c1
t
← a1

t−1
 . By removing c1

t
← a1

t−1
∧ b0

t−1
 from P, we obtain the optimal program of T.

According to Definition 9, we can obtain the optimal program by a trivial brute force
enumeration algorithm: generate all rules consistent with T then remove the dominated
ones as shown in Algorithm 1.

Algorithm 1 Brute Force Enumeration

– INPUT: a set of atoms A, two sets of variables F and T and a set of
transitions T ⊆ SF × ST .

– Generate all possible rules over A,F , T .
– P := {vval ← {v′val′ | v′val′ ∈ A ∧ v′ ∈ F} | vval ∈ A ∧ v ∈ T }

– Keep only the rules consistent with T .
– P := {R ∈ P | ∀(s, s′) ∈ T, body(R) ⊆ s =⇒ ∃(s, s′′) ∈ T, head(R) ∈

s′′}
– Remove rules dominated by another rule

– P := {R ∈ P | �R′ ∈ P,R′ �= R ∧R′ ≥ R}
– OUTPUT: P (P is PO(T)).

The purpose of Sect. 4 is to propose a non-trivial approach that is more efficient in
practice to obtain the optimal program. This approach also respects the optimality proper-
ties of Definition 9 and thus ensures independence from the dynamical semantics, that are
detailed in next Section.

3 Dynamical semantics

The aim of this section is to formalize the general notion of dynamical semantics as an
update policy based on a program, and to give characterizations of several widespread
existing semantics used on discrete models.

In the previous section, we supposed the existence of two distinct sets of variables F
and T that represent conditions (features) and conclusions (targets) of rules. Conclusion
atoms allow to create one or several new state(s) made of target variables, from conditions
on the current state which is made of feature atoms.

P ∶= { a1
t
← �

b0
t
← a0

t−1

b1
t
← a1

t−1

c0
t
← a0

t−1

c0
t
← b1

t−1

c1
t
← a1

t−1

c1
t
← a1

t−1
∧ b0

t−1
}.

Machine Learning

1 3

In Definition 10, we formalize the notion of dynamical semantics which is a function
that, to a program, associates a set of transitions where each state has at least one outgoing
transition. Such a set of transitions can also be seen as a function that maps any state to a
non-empty set of states, regarded as possible dynamical branchings. We give examples of
semantics afterwards.

Definition 10 (Dynamical Semantics)
A dynamical semantics (on A) is a function that associates, to each DMVLP P, a set

of transitions T ⊆ S
F × S

T so that: f irst(T) = S
F . Equivalently, a dynamical semantics can

be seen as a function of
(
DMVLP → (SF → ℘(ST) ⧵ {�})

)
 where DMVLP is the set of

DMVLPs.

A dynamical semantics has an infinity of possibility to produce transitions from a
DMVLP . Indeed, like DS1(P) of Example 11, a semantics can totally ignore the DMVLP
rules. It can also use the rule in an adversary way like DSinverse that keeps only the tran-
sitions that are not permitted by the program. Such semantics can produce transitions
that are not consistent with the input program, i.e., the rules which conclusions were not
selected for the transition will be in conflict with the set of transitions from this feature
state. The kind of semantics we are interested in are the ones that properly use the rule of
the DMVLP and ensure the properties of consistency introduced in Definition 7.

In Example 11, the dynamical semantics DSsyn , DSasyn and DSgen are example of such
semantics. They are trivial forms of the synchronous, asynchronous and general semantics
that are widely used in bioinformatics. Indeed, DSsyn is trivial because it generates transi-
tions towards an arbitrary state when the program P is not complete (if no rule matches for
some target variable, the program produces an incomplete state), while DSasyn and DSgen
are trivial because they require feature and target variables to correspond and have a spe-
cific form (labelled with t − 1 and t) with no additional stimuli or observation variables.
We formalize those three semantics properly under our modeling in next Section with no
restriction on the feature and target variables forms.

Example 11 For this example, suppose that feature and target variable are “symmetrical”
(called regular variables later): T = {at, bt,… , zt} and F = {at−1, bt−1,… , zt−1} , with:
∀xt, xt−1 ∈ T × F, ���(xt) = ���(xt−1) . Let convert be a function of (SF → S

T) such that
for any DMVLP P,∀s ∈ S

F, convert(s) = {vval
t

∣ vval
t−1

∈ s} , and s0 ∈ S
T an arbitrary target

state that is used to ensure that each of the following semantics produces at least one target
state. Let DS1 , DS2 , DSsyn , DSasyn , DSgen and DSinverse be dynamical semantics defined as
follows, where P is a DMVLP and s ∈ S

F:

• (DS1(P))(s) = {s0}
• (DS2(P))(s) = {s� ∈ S

T ∣ s� ⊆ {head(R) ∣ R ∈ P, |body(R)| = 3}} ∪ {s0}
• (DSsyn(P))(s) = {s� ∈ S

T ∣ s� ⊆ {head(R) ∣ R ∈ P, body(R) ⊆ s}} ∪ {s0}
• (DSasyn(P))(s) = {s� ∈ S

T ∣ s� ⊆ convert(s) ∪ {head(R) ∣ R ∈ P,
body(R) ⊆ s} ∧ |{vval

t
∈ s� ∣ vval

t−1
∈ s}| ∈ {|T|, |T| − 1}}

• (DSgen(P))(s) = {s� ∈ S
T ∣ s� ⊆ convert(s) ∪ {head(R) ∣ R ∈ P, body(R) ⊆ s}

• (DSinverse(P))(s) = (ST ⧵ (DSsyn(P))(s)) ∪ {s0}

DS1 always outputs transitions towards s0 and totally ignores the rules of the given program
and thus can produce transitions that are not consistent with the input program. DS2 uses

 Machine Learning

1 3

the rules of the DMVLP but in an improper way, as it always considers the conclusions of
rules as long as they have exactly 3 conditions, whether they match the feature state or not.
DSinverse uses proper rules conclusions, but in order to contradict the program: it produces
transitions so that the program is not consistent, plus a transition to s0 to ensure at least a
transition.

DSsyn use the rules in the expected way, i.e., it checks if they match the considered fea-
ture state and applies their conclusion; it is a trivial form of synchronous semantics as
properly introduced later in Definition 15. DSasyn also uses the rules as expected: it uses
the feature state to restrict the possible target states to at most one modification compared
to the feature state; this is a trivial form of asynchronous semantics, as properly introduced
later in Definition 16. DSgen also uses the rules as expected: it mixes the current feature
state with rules conclusions to produce a partially new target state; it is a trivial form of
general semantics, as properly introduced later in Definition 17.

We now aim at characterizing a set of semantics of interest for the current work, as
given in Theorem 1. Beforehand, Definition 11 allows to denote as �����������(s,P) the
set of heads of rules, in a program P, matching a state s, and Definition 12 introduces a
notation B|X to consider only atoms in a set B ⊆ A that have their variable in a set X ⊆ V .
These two notations will be used in the next theorem and afterwards. In the following,
we especially use the notation of Definition 12 with A (denoted A|X) and on �����������
(denoted �����������|X(s,P)).

Definition 11 (Program Conclusions) Let s in SF and P a MVLP . We denote:
�����������(s,P) ∶= {head(R) ∈ A ∣ R ∈ P,R ⊓ s} the set of conclusion atoms in state s
for the program P.

Definition 12 (Restriction of a Set of Atoms) Let B ⊆ A be a set of atoms, and X ⊆ V be a
set of variables. We denote: B|X = {vval ∈ B ∣ v ∈ X} the set of atoms of B that have their
variables in X. If B is instead a function that outputs a set of atoms, we note B|X(params)
instead of

(
B(params)

)|X , where params is the sequence of parameters of B.

With Definition 13, we define semantics which for any DMVLP produce the same
behavior using the corresponding optimal program, that is, any semantics DS such that for
any DMVLP P,DS(P) = DS(PO(DS(P))) . This kind of semantics is of particular inter-
est since they are “stable” through learning, that is, learning the optimal program from
the dynamics of a system that relies on such a semantics allows to exactly reproduce the
observed behavior.

Definition 13 (Pseudo-idempotent Semantics) Let DS be a dynamical semantics. DS is
said pseudo-idempotent if, for all P a DMVLP:

Theorem 1 gives another characterisation of a semantics that also ensures that it is
pseudo-idempotent, and that especially applies to the semantics we are interested in this
paper and formally defined later: synchronous, asynchronous and general.

Such a semantics must produce new states based on the initial state s and the heads of
matching rules of the given program �����������(s,P) , as stated by point (2).

DS(PO(DS(P)))) = DS(P).

Machine Learning

1 3

Intuitively, the semantics must be defined according to an arbitrary function ���� that
picks target states among ST considering observed feature atoms and potential target atoms
(what was and what could be). When given the atoms of the target states it outputs, this
function must output the same set of target states as stated by point (1), i.e., it must pro-
duce the same states given the program conclusion or given its decision over the program
conclusion.

Moreover, PO(DS(P)) being consistent with DS(P), given a state s ∈ S
F ,

�����������(s,PO(DS(P))) =
⋃

s�∈DS(P)(s)

s� , i.e., all the target atoms observed in a target state

of DS(P)(s) must be the head of some rule that matches s in the optimal program. In other
words, it must be given to the semantics to choose from when the program PO(DS(P)) is
used with semantics DS.

Thus the semantics should produce the same states, when being given the atoms of all
those next states as possibilities, as stated by point (1).

Those two conditions are sufficient to ensure that DS is pseudo-idempotent and thus car-
ries “stability” through learning.

Theorem 1 (Characterisation of Pseudo-idempotent Semantics of Interest) Let DS be a
dynamical semantics.

If, for all P a DMVLP , there exists 𝗉𝗂𝖼𝗄 ∈ (SF ×℘(A|T) → ℘(ST) ⧵ {�}) so that:

(1) ∀D ⊆ A�T, ����(s, ⋃
s�∈����(s,D)

s�) = ����(s,D) , and

(2) ∀s ∈ S
F,
(
DS(P)

)
(s) = ����(s,�����������(s,P)),

then DS is pseudo-idempotent.
Example 12 Let DS be a dynamical semantics, s ∈ S

F be a feature state such that
s = {a0

t−1
, b1

t−1
, st0} , P be a DMVLP such that �����������(P, s) = {a1

t
, b1

t
, ch0, ch2} . In

Fig. 3, from s and �����������(P, s) , DS produces three different target states, i.e.,
(DS(P))(s) = ����(s,�����������(s,P)) = {{a0

t
, b1

t
, ch2}, {a0

t
, b0

t
, ch2}, {a1

t
, b0

t
, ch2}} . Let

D = �����������(P, s) , here, the set of occurring atoms in the states produced by ����(s,D)
is D� =

⋃
s�∈����(s,D)

= {��
�
, a1

t
, ��

�
, b1

t
, ch2} . In this example, the function ���� uses all target

atoms of D except ch0 and introduces two additional atoms ��
�
 , ��

�
 , it also only produces 3 of

the 4 possible target states composed of those atoms: this semantics does not allows a1
t
 and

b1
t
 to appear together in transition from s. If we call the function ���� by replacing the pro-

gram conclusions by the semantics conclusions we observe the same resulting states, i.e.,
����(s,D�) = ����(s,D) . Given the target atoms selected by the semantics, it reproduces the
same set of target states in this example; if the semantics has this behavior for any feature
state s and any program P, it is pseudo-idempotent.

Up to this point, no link has been made between corresponding feature (in F) and target
(in T) variables or atoms. In other words, the formal link between the two atoms vval

t
 and

vval
t−1

 with the same value has not been made yet. This link, called projection, is established
in Definition 14, under the only assumption that ���(vt) = ���(vt−1) . It has two purposes:

 Machine Learning

1 3

• When provided with a set of transitions, for instance by using a dynamical semantics,
one can describe dynamical paths, that is, successions of next states, by using each next
state to generate the equivalent initial state for the next transition;

• Some dynamical semantics (such as the asynchronous one, see Definition 16) make use
of the current state to build the next state, and as such need a way to convert target vari-
ables into feature variables.

However, such a projection cannot be defined on the whole sets of target (T) and feature
(F) variables, but only on two subsets F ⊆ F and T ⊆ T . Note that we require the projec-
tion to be a bijection, thus: |F| = |T| . These subsets T and F contain variables that we call
afterwards regular variables: they correspond to variables that have an equivalent in both
the initial states (at t − 1) and the next states (at t). Variables in F ⧵ F can be considered
as stimuli variables: they can only be observed in the previous state but we do not try to
explain their next value in the current state; this is typically the case of external stimuli
(sun, stress, nutriment…) that are unpredictable when observing only the studied system.
Variables in T ⧵ T can be considered as observation variables: they are only observed in
the present state as the result of the combination of other (regular and stimuli) variables;
they can be of use to assess the occurrence of a specific configuration in the previous state
but cannot be used to generate the next step. For the rest of this section, we suppose that F
and T are given and that there exists such projection functions, as given by Definition 14.
Figure 4 gives a representation of these sets of variables.

It is noteworthy that projections on states are not bijective, because of stimuli variables
that have no equivalent in target variables, and observation variables that have no equiva-
lent in feature variables (see Fig. 4). Therefore, the focus is often made on regular variables
(in F and T). Especially, for any pair of states (s, s�) ∈ S

F × S
T , having 𝗌𝗉

T→F
(s�) ⊆ s ,

which is equivalent to 𝗌𝗉
F→T

(s) ⊆ s� , means that the regular variables in s and their projec-
tion in s′ (or conversely) hold the same value, modulo the projection.

Definition 14 (Projections) A projection on variables is a bijective function
𝗏𝗉

T→F
∶ T → F so that T ⊆ T , F ⊆ F , and: ∀v ∈ T, 𝖽𝗈𝗆(𝗏𝗉

T→F
(v)) = 𝖽𝗈𝗆(v).

The projection on atoms (based on 𝗏𝗉
T→F

) is the bijective function:

The inverse function of 𝗏𝗉
T→F

 is denoted 𝗏𝗉
F→T

 and the inverse function of 𝖺𝗉
T→F

 is
denoted 𝖺𝗉

F→T
.

The projections on states (based on 𝖺𝗉
T→F

 and 𝖺𝗉
F→T

) are the functions:

Example 13 In Example 12, there are three feature variables (at−1 , bt−1 , st) and three target
variables (at , bt , ch). If we consider that the regular variables are T = {at, bt} and

𝖺𝗉
T→F

∶ A|
T
→ A|

F

vval ↦
(
𝗏𝗉

T→F
(v)

)val
.

𝗌𝗉
T→F

∶ S
T → S

F

s� ↦ {𝖺𝗉
T→F

(vval) ∈ A ∣ vval ∈ s� ∧ v ∈ T}

𝗌𝗉
F→T

∶ S
F → S

T

s ↦ {𝖺𝗉
F→T

(vval) ∈ A ∣ vval ∈ s ∧ v ∈ F}.

Machine Learning

1 3

F = {at−1, bt−1} , we can define the following (bijective) projection on variables:

𝗏𝗉
T→F

∶

{
at ↦ at−1
bt ↦ bt−1

 . Following Definition 14, we have, for instance:

• 𝖺𝗉
T→F

(a1
t
) = a1

t−1,
• 𝖺𝗉

F→T
(b0

t−1
) = b0

t ,
• 𝗌𝗉

T→F
({a0

t
, b0

t
, ch0}) = {a0

t−1
, b0

t−1
} , and

• 𝗌𝗉
F→T

({a1
t−1

, b0
t−1

, st1}) = {a1
t
, b0

t
}.

3.1 Synchronous, asynchronous and general semantics

In the following, we present a formal definition and a characterization of three particular
semantics that are widespread in the field of complex dynamical systems: synchronous,
asynchronous and general.

Note that some points in these definitions are arbitrary and could be discussed
depending on the modeling paradigm. For instance, the policy about rules R so that
∃s ∈ S

F,R ⊓ s ∧ 𝖺𝗉
T→F

(head(R)) ∈ s , which model stability in the dynamics, could be to
include them (such as in the synchronous and general semantics) or exclude them (such as
in the asynchronous semantics) from the possible dynamics.

The modeling method presented so far in this paper is independent to the considered
semantics as long as it respects Definition 10 and the capacity of the optimal program to
reproduce the observed behavior is ensured as long as the semantics respects Theorem 1.

Definition 15 introduces the synchronous semantics, consisting in updating all variables
at once in each step in order to compute the next state. The value of each variable in the
next state is taken amongst a “pool” of atoms containing all conclusions of rules that match
the current state (using �����������) and atoms produced by a “default function” d that
is explained below. However, this is taken in a loose sense: as stated above, atoms that
make a variable change its value are not prioritized over atoms that don’t. Furthermore,
if several atoms on the same variable are provided in the pool (as conclusions of different
rules or provided by the default function), then several transitions are possible, depending
on which one is chosen. Thus, for a self-transition (s, s�) ∈ S

F × S
T with 𝗌𝗉

T→F
(s�) ⊆ s to

occur, there needs to be, for each atom vval ∈ s� so that v ∈ T , either a rule that matches s
and whose head is vval or that the default function gives the value vval.

Note however that such a loop is not necessarily a point attractor (that is, a state for
which the only possible transition is the self-transition); it is only the case if all atoms in
the pool are also in 𝗌𝗉

T→F
(s).

As explained above, for a given state s and a given set of variables W, the function d
provides a set of “default atoms” added to the pool of atoms used to build the next state,
along with rules conclusions.

This function d, however, is not explicitly given; the only constraints are that:

• d produces atoms at least for a provided set of variables W, specifically, the set of vari-
ables having no conclusion in a given state, which is necessary in the case of an incom-
plete program,

• d(s, �) is a subset of d(s, W) for all W, as it intuitively represents a set of default atoms
that are always available.

Note that d(s, �) = � always respects these constraints and is thus always a possible value.
In the case of a complete program, that is, a program providing conclusions for every

 Machine Learning

1 3

variables in every state, d is always called with W = � and the other cases can thus be
ignored. Another typical use for d is the case of a system with Boolean variables (i.e.,
such that ∀v ∈ V, ���(v) = {0, 1}) where a program P is built by importing only the posi-
tive rules of the system, that is, only rules with atoms v1

t
 as heads. This may happen when

importing a model from another formalism featuring only Boolean formulas, such as
Boolean networks. In this case, d can be used to provide a default atom w0

t
 for all variables

w that do not appear in �����������(s,P) , thus reproducing the dynamics of the original
system.

Definition 15 (Synchronous semantics) Let d ∈ (SF ×℘(T) → ℘(A|T)) , so that
∀s ∈ S

F,∀W ⊆ T,W ⊆ var(d(s,W)) ∧ d(s, �) ⊆ d(s,W) . The synchronous semantics Tsyn is
defined by:

Example 14 It is possible to reproduce classical Boolean network dynamics using the syn-
chronous semantics (Tsyn) with a well-chosen default function. Indeed, Boolean models are
classically defined as a set of Boolean function providing conditions in which each vari-
able becomes active, thus implying that all the other cases make them inactive. A straight-
forward translation of a Boolean model into a program is thus to encode the active state
of a variable with state 1 and the inactive state with 0. If the Boolean functions are rep-
resented as disjunctive normal forms, the clauses can be considered as a set of Boolean
atoms of the form v or ¬v . Each clause c of the DNF of a variable v can directly be con-
verted into a rule R such that, head(R) = v1

t
 and ∀v�

t−1
∈ F , v�1

t−1
∈ body(R) ⟺ v� ∈ c

and v�0
t−1

∈ body(R) ⟺ (¬v�) ∈ c . Finally, the following default function allows to force
the variables back to 0 when the original Boolean function should not be true:

In Definition 16, we formalize the asynchronous semantics that imposes that no more
than one regular variable can change its value in each transition. The observation vari-
ables are not counted since they have no equivalent in feature variables to be compared
to. As for the previous synchronous semantics, we use here a “pool” of atoms, made
of rules conclusions and default atoms, that may be used to build the next states. The
default function d used here is inspired from the previous synchronous semantics, with
an additional constraint: its result always contains the atoms of the initial state. Con-
strains are also added on the next state to limit to at most one regular variable change.
Moreover, contrary to the synchronous semantics, the asynchronous semantics prior-
itizes the changes. Thus, for a self-transition (s, s�) ∈ S

F × S
T with 𝗌𝗉

T→F
(s�) ⊆ s to

occur, it is required that all atoms of regular variables in the pool are in 𝗌𝗉
F→T

(s) :
𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌|

T
(s,P) ∪ d|

T
(s, T ⧵ var(𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P))) = 𝗌𝗉

F→T
(s) , which here implies:

|𝗌𝗉
F→T

(s) ⧵ s�| = 0 . This only happens when (s, s�) is a point attractor, in the sense that all
regular variables cannot change their value.

It is different from Example 11 where the asynchronous semantics is more permissive
and allows self-loops in every state. The asynchronous semantics of Definition 16, although
more complex, is more widespread in the bioinformatics community (Chatain et al., 2020;
Fauré et al., 2006; Klarner et al., 2014; Thieffry & Thomas, 1995); the only difference are

Tsyn ∶ P ↦{(s, s�) ∈ S
F × S

T ∣ s� ⊆ 𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P)∪

d(s, T ⧵ var(𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P)))}

d ∶ S
F ×℘(T) → ℘(A|T)

(s,Z) ↦ {v0
t
∣ vt ∈ Z}

Machine Learning

1 3

terminal states modeled instead as (terminal) self-transitions because all states must have a
successor following our definition of semantics (see Definition 10).

Definition 16 (Asynchronous semantics) Let d ∈ (SF ×℘(T) → ℘(A|T)) , so that
∀s ∈ S

F,∀W ⊆ T,W ⊆ var(d(s,W)) ∧ 𝗌𝗉
F→T

(s) ⊆ d(s, �) ⊆ d(s,W) . The asynchronous
semantics Tasyn is defined by:

where the notations A|T , �����������|
T

 and d|
T

 come from Definition 12.

A typical mapping for d is: d ∶ (s,W) ↦ 𝗌𝗉
F→T

(s) ∪ O , where O is a set of atoms on
observation variables with arbitrary values, thus conserving the previous values for regular
variables and ignoring the second argument.

In Definition 17, we formalize the general semantics as a more permissive version of
the synchronous one: any subset of the variables can change their value in a transition.
This semantics uses the same “pool” of atoms than the synchronous semantics containing
conclusions of P and default atoms provided by d, and no constraint. However, as for the
asynchronous semantics, the atoms of the initial state must always be featured as default
atoms. Thus, a self-transition (s, s�) ∈ S

F × S
T with 𝗌𝗉

F→T
(s) ⊆ s� occurs for each state s

because, intuitively, the empty set of variables can always be selected for update. However,
as for the synchronous semantics, such a self-transition is a point attractor only if all atoms
of regular variables in the “pool” are in 𝗌𝗉

F→T
(s).

Finally, we note that the general semantics contains the dynamics of both the synchro-
nous and the asynchronous semantics, but also other dynamics not featured in these two
other semantics.

Definition 17 (General semantics) Let d ∈ (SF ×℘(T) → ℘(A|T)) , so that
∀s ∈ S

F,∀W ⊆ T,W ⊆ var(d(s,W)) ∧ 𝗌𝗉
F→T

(s) ⊆ d(s, �) ⊆ d(s,W) . The general seman-
tics Tgen is defined by:

Figure 5 gives an example of the transitions corresponding to these three semantics on a
simple Boolean network of two variables inhibiting each other. The corresponding optimal
DMVLP is given below each transition graph. In this example, the three programs share
the rules corresponding to the inhibitions: a0

t
← b1

t−1
 and a1

t
← b0

t−1
 model the inhibition of

a by b, while b0
t
← a1

t−1
 and b1

t
← a0

t−1
 model the inhibition of b by a. However, generally

speaking, there may not always exist such shared rules, for instance if the interactions they
represent are somehow ignored by the semantics behavior.

Furthermore, in this example, we observe additional rules (w.r.t. the synchronous case)
that appear in both the asynchronous and general semantics cases. Those rules capture the
default behavior of both semantics, that is, the projection of the feature state as possible
target atoms. Again, such rules may not appear generally speaking, because the dynamics

Tasyn ∶ P ↦ {(s, s�) ∈ S
F × S

T ∣ s� ⊆ 𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P) ∪

d(s, T ⧵ var(𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P))) ∧(|𝗌𝗉
F→T

(s) ⧵ s�| = 1 ∨ 𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌|
T
(s,P) ∪

d|
T
(s, T ⧵ var(𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P))) = 𝗌𝗉

F→T
(s)

)
}

Tgen ∶ P ↦ {(s, s�) ∈ S
F × S

T ∣ s� ⊆ 𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P)∪

d(s,T ⧵ var(𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P)))}.

 Machine Learning

1 3

of the system might combine with the dynamics semantics, thus possibly merging multi-
ple rules into more general ones (for example, conservation rules becoming rules with an
empty body).

Example 15 As for the synchronous semantics, it is possible to reproduce classical Boolean
network dynamics using the asynchronous (Tasyn) and general semantics (Tgen) with the
same encoding of rules, and a similar default function where the projection of the current
state is added:

Finally, with Theorem 2, we state that the definitions and method developed in the pre-
vious section are independent of the chosen semantics as long as it respect Theorem 1.

Theorem 2 (Semantics-Free Correctness) Let P be a DMVLP.

• Tsyn(P) = Tsyn(PO(Tsyn(P))),
• Tasyn(P) = Tasyn(PO(Tasyn(P))),
• Tgen(P) = Tgen(PO(Tgen(P))).

The next section focuses on methods and algorithm to learn the optimal program.

4 GULA

In Algorithm 1 we presented a trivial algorithm to obtain the optimal program. In this sec-
tion we present a more efficient algorithm based on inductive logic programming.

Until now, the LF1T algorithm (Inoue et al., 2014; Ribeiro & Inoue, 2015; Ribeiro et al.,
2015b) only tackled the learning of synchronous deterministic programs. Using the formal-
ism introduced in the previous sections, it can now be revised to learn systems from transi-
tions produced from any semantics respecting Theorem 1 like the three semantics defined
above. Furthermore, both deterministic and non-deterministic systems can now be learned.

4.1 Learning operations

This section focuses on the manipulation of programs for the learning process. Definition
18 and Definition 19 formalize the main atomic operations performed on a rule or a pro-
gram by the learning algorithm, whose objective is to make minimal modifications to a
given DMVLP in order to be consistent with a new set of transitions.

Definition 18 (Rule least specialization) Let R be a MVL rule and s ∈ S
F such that R ⊓ s .

The least specialization of R by s according to F and A is:

d ∶ S
F ×℘(T) → ℘(A|T)

(s,Z) ↦ {v0
t
∣ vt ∈ Z} ∪ 𝗌𝗉

F→T
(s)

Lspe(R, s,A,F) ∶= {head(R) ← body(R) ∪ {vval} ∣

v ∈ F ∧ vval ∈ A ∧ vval ∉ s ∧ ∀val� ∈ ℕ, vval
�

∉ body(R)}.

Machine Learning

1 3

The least specialization Lspe(R, s,A,F) produces a set of rule which matches all states
that R matches except s. Thus Lspe(R, s,A,F) realizes all transitions that R realizes except the
ones starting from s. Note that ∀R ∈ P,R ⊓ s ∧ |body(R)| = |F| ⟹ Lspe(R, s,A,F) = � ,
i.e., a rule R matching s cannot be modified to make it not match s

if its body already contains all feature variables, because nothing can be added in its
body.

Example 16 Let F ∶= {at−1, bt−1, ct−1} and
���(at−1) ∶= {0, 1}, ���(bt−1) ∶= {0, 1, 2}, ���(ct−1) ∶= {0, 1, 2, 3} . We give below
three examples of least specialization on different initial rules and states. These situations
could very well happen in the learning of a same set of transitions, at different steps of the
process. The added conditions are highlighted in bold.

For a0
t
← ∅ , the rule having an empty body, all possible variable values (given by ���)

not appearing in the given state are candidate for a new condition. For b2
t
← b1

t−1
 , there

is a condition on b in the body, therefore only conditions on a and c can be added. For
c3
t
← a1

t−1
∧ c3

t−1
 , only conditions on b can be added. Finally we can consider a case like

Lspe(a
1
t
← a0

t−1
∧ b1

t−1
∧ c2

t−1
, {a0

t−1
, b1

t−1
, c2

t−1
},A,F) = � where a condition already exists

for each variable and thus no minimal specialization of the body can be produced, thus
resulting in an empty set of rules.

Definition 19 (Program least revision) Let P be a DMVLP , s ∈ S
F and T ⊆ S

F × S
T

such that f irst(T) = {s} . Let RP ∶= {R ∈ P ∣ Rconflicts withT} . The least revision of P by
T according to A and F is Lrev(P,T ,A,F) ∶= (P ⧵ RP) ∪

⋃
R∈RP

Lspe(R, s,A,F).

Note that according to Definition 19, f irst(T) = {s} implies that all transitions for T
have s as initial state.

Example 17 Let F ∶= {at−1, bt−1, ct−1} and
���(at−1) ∶= {0, 1}, ���(bt−1) ∶= {0, 1, 2}, ���(ct−1) ∶= {0, 1, 2, 3} . Let T be as set of
transitions and P a DMVLP as follows.

Lspe(a
0
t
← �,

{a0
t−1

, b1
t−1

, c2
t−1

},A,F) = {
a0
t
← �

�

�−�
,

a0
t
← �

�

�−�
,

a0
t
← �

�

�−�
,

a0
t
← �

�

�−�
,

a0
t
← �

�

�−�
,

a0
t
← �

�

�−�
}

Lspe(b
0
t
← b1

t−1
,

{a0
t−1

, b1
t−1

, c2
t−1

},A,F) = {
b0
t
← �

�

�−�
∧ b1

t−1
,

b0
t
← b1

t−1
∧ �

�

�−�
,

b0
t
← b1

t−1
∧ �

�

�−�
,

b0
t
← b1

t−1
∧ �

�

�−�
}

Lspe(c
0
t
← a0

t−1
∧ c2

t−1
,

{a0
t−1

, b1
t−1

, c2
t−1

},A,F) = {
c0
t
← a0

t−1
∧ �

�

�−�
∧ c2

t−1
,

c0
t
← a0

t−1
∧ �

�

�−�
∧ c2

t−1
}

 Machine Learning

1 3

Here, we have f irst(T) = {{a0
t−1

, b1
t−1

, c2
t−1

}} and thus the least revision of Definition 19
can be applied on P. Moreover, RP = {b0

t
← b1

t−1
, c0

t
← a0

t−1
∧ b1

t−1
∧ c2

t−1
, c0

t
← c2

t−1
} ;

these rules are highlighted in bold in P. The least revision of P by T over A and F ,
Lrev(P, T ,A,F) , is obtained by removing the rules of RP from P and adding their least spe-
cialization, added conditions are in bold in Lrev(P,T ,A,F) and are detailed in Example 16,
except for a0

t
← ∅ which does not need to be revised because it is consistent with T since a0

t

is observed in some target states.

Theorem 3 states properties on the least revision, in order to prove it suitable to be used
in the learning algorithm.

Theorem 3 (Properties of Least Revision) Let R be a MVL rule and s ∈ S
F such that

R ⊓ s . Let SR ∶= {s� ∈ S
F ∣ R ⊓ s�} and Sspe ∶= {s� ∈ S

F ∣ ∃R� ∈ Lspe(R, s,A,F),R� ⊓ s�}.

Let P be a DMVLP and T , T � ⊆ S
F × S

T such that
|f irst(T)| = 1 ∧ f irst(T) ∩ f irst(T �) = � . The following results hold:

1. Sspe = SR ⧵ {s},
2. Lrev(P, T ,A,F) is consistent with T,
3.

P

↪T �
⟹

Lrev(P,T ,A,F)

↪ T �,
4.

P

↪T ⟹

Lrev(P,T ,A,F)

↪ T ,
5. P is complete ⟹ Lrev(P,T ,A,F) is complete.

The next properties are directly used in the learning algorithm. Proposition 2 gives an
explicit definition of the optimal program for an empty set of transitions, which is the start-
ing point of the algorithm. Proposition 3 gives a method to obtain the optimal program
from any suitable program by simply removing the dominated rules; this means that the
DMVLP optimal for a set of transitions can be obtained from any DMVLP suitable for
the same set of transitions by removing all the dominated rules. Finally, in association
with these two results, Theorem 4 gives a method to iteratively compute PO(T) for any
T ⊆ S

F × S
T , starting from PO(�).

T ∶= {
({a0

t−1
, b1

t−1
, c2

t−1
}, {a1

t
, b1

t
, c2

t
}),

({a0
t−1

, b1
t−1

, c2
t−1

}, {a0
t
, b2

t
, c2

t
}),

({a0
t−1

, b1
t−1

, c2
t−1

}, {a0
t
, b1

t
, c1

t
}),

({a0
t−1

, b1
t−1

, c2
t−1

}, {a0
t
, b1

t
, c3

t
}),

}

P ∶= {
a0
t
← �,

a1
t
← �,

�
�

�
← �

�

�−�
,

b1
t
← �,

�
�

�
← �

�

�−�
∧ �

�

�−�
∧ �

�

�−�
,

�
�

�
← �

�

�−�
,

c1
t
← a0

t−1
,

c2
t
← a1

t−1
,

c2
t
← b1

t−1
,

c3
t
← c2

t−1
}

Lrev(P, T ,A,F) ∶= {
a0
t
← �,

a1
t
← �,

b0
t
← �

�

�−�
∧ b1

t−1
,

b0
t
← b1

t−1
∧ �

�

�−�
,

b0
t
← b1

t−1
∧ �

�

�−�
,

b0
t
← b1

t−1
∧ �

�

�−�
,

b1
t
← �,

c0
t
← �

�

�−�
∧ c2

t−1
,

c0
t
← �

�

�−�
∧ c2

t−1
,

c0
t
← �

�

�−�
∧ c2

t−1
,

c1
t
← a0

t−1
,

c2
t
← a1

t−1
,

c2
t
← b1

t−1
,

c3
t
← c2

t−1
}

Machine Learning

1 3

Proposition 2 (Optimal Program of Empty Set) PO(�) = {vval ← � ∣ v ∈ T ∧ vval ∈ A|T}.

Proposition 3 (From Suitable to Optimal) Let T ⊆ S
F × S

T . If P is a DMVLP suitable for
T, then PO(T) = {R ∈ P ∣ ∀R� ∈ P,R� ≥ R ⟹ R� = R}.

Theorem 4 (Least Revision and Suitability) Let s ∈ S
F and T , T � ⊆ S

F × S
T such that

|f irst(T �)| = 1 ∧ f irst(T) ∩ f irst(T �) = � . Lrev(PO(T),T
�,A,F) is a DMVLP suitable for

T ∪ T �.

4.2 Algorithm

In this section we present GULA: the General Usage LFIT Algorithm, a revision of the
LF1T algorithm (Inoue et al., 2014; Ribeiro & Inoue, 2015) to capture a set of multi-
valued dynamics that especially encompass the classical synchronous, asynchronous and
general semantics dynamics. For this learning algorithm to operate, there is no restriction
on the semantics. GULA learns the optimal program that, under the same semantics, is
able to exactly reproduce a complete set of observations, if the semantics respect Theo-
rem 1. Section 5 will be devoted to also learning the behaviors of the semantics itself, if it
is unknown.

GULA learns a logic program from the observations of its state transitions. Given as
input a set of transitions T ⊆ S

F × S
T , GULA iteratively constructs a DMVLP that mod-

els the dynamics of the observed system by applying the method formalized in the previous
section as shown in Algorithm 2. The algorithm can be used for both learning possibil-
ity or impossibility depending of its parameter learning_mode . When learning possibility
(learning_mode = “possibility”), the algorithm will learn the optimal logic program PO(T)
and this is what will be discussed in this section. The second mode is used in a heuristical
approach to obtain predictive model from partial observation and will be discussed in later
sections.

 Machine Learning

1 3

Algorithm 2 GULA

– INPUT: a set of atoms A′, a set of transitions T ⊆ SF ′ ×
ST ′

, two sets of variables F ′ and T ′, a string learning mode ∈
{“possibility”, “impossibility”}.

– For each atom vval ∈ A′ of each variable v ∈ T ′:
– if learning mode = “possibility”:

• Extract all states from which transition to vval does not exist:
Negvval := {s ∈ first(T) | �s′ ∈ ST , (s, s′) ∈ T ∧ vval ∈ s′}

– if learning mode = “impossibility”:
• Extract all states from which transition to vval do exist:

Negvval := {s ∈ first(T) | ∃s′ ∈ ST , (s, s′) ∈ T ∧ vval ∈ s′}
– Initialize Pvval := {vval ← ∅}.
– For each state s ∈ Negvval :

• Extract and remove the rules of Pvval that match s:
Mvval := {R ∈ P | body(R) ⊆ s} and Pvval := Pvval \Mvval .

• LS := ∅
• For each rule R ∈ Mvval :

· Compute its least specialization P ′ = Lspe(R, s,A′,F ′).
· Remove all the rules in P ′ dominated by a rule in Pvval .
· Remove all the rules in P ′ dominated by a rule in LS.
· Remove all the rules in LS dominated by a rule in P ′.
· LS := LS ∪ P ′.

• Add all remaining rules of LS to Pvval : Pvval := Pvval ∪ LS.
– P := P ∪ Pvval

– OUTPUT: P (P is PO(T) if learning mode = “possibility”).

From the set of transitions T, GULA learns the conditions under which each
vval ∈ A

� ⊆ A, v ∈ T
� ⊆ T may appear in the next state.

The algorithm starts by computing the set of all negative examples of the appearance of
vval in next state: all states such that v never takes the value val in the next state of a transi-
tion of T (Fig. 6). Those negative examples are then used during the following learning
phase to iteratively learn the set of rules PO(T) . The learning phase starts by initializing a
set of rules Pvval to {R ∈ PO(�) ∣ head(R) = vval} = {vval ← �}.

Fig. 6 Preprocessing of the general semantics state transitions of Fig. 5 (right) into positive/negative exam-
ple of the occurence of each value of variable a in next state. In blue (resp. red) are positive (resp. nega-
tives) examples of the occurence of a0

t
 (left) and a1

t
 (right) in next state (Color figure online)

Machine Learning

1 3

Pvval is iteratively revised against each negative example neg in Negvval . All rules Rm of
Pvval that match neg have to be revised. In order for Pvval to remain optimal, the revision of
each Rm must not match neg but still matches every other state that Rm matches.

To ensure that, the least specialization (see Definition 18) is used to revise each conflict-
ing rule Rm . For each variable of F′ so that body(Rm) has no condition over it, a condition
over another value than the one observed in state neg can be added. None of those revision
match neg and all states matched by Rm are still matched by at least one of its revisions.

Each revised rule can be dominated by a rule in Pvval or another revised rules and thus
dominance must be checked from both.

The non-dominated revised rules are then added to Pvval.
Once Pvval has been revised against all negatives example of Negvval ,

Pvval = {R ∈ PO(T) ∣ head(R) = vval} . Finally, Pvval is added to P and the loop restarts with
another atom. Once all values of each variable have been treated, the algorithm outputs P
which is then equal to PO(T) . More discussion of the implementation and detailed pseu-
docode are given in “Appendix”. The source code of the algorithm is available at https://
github. com/ Tony- sama/ pylfit under GPL-3.0 License.

Example 18 Execution of GULA(A, T ,F, T) on the synchronous state transitions of Fig. 5
(left):

• F = {at−1, bt−1},
• T = {at, bt},
• A = {a0

t−1
, b0

t−1
, a1

t−1
, b1

t−1
, a0

t
, b0

t
, a1

t
, b1

t
}

• T = { ({a0
t−1

, b0
t−1

}, {a1
t
, b1

t
}), ({a0

t−1
, b1

t−1
}, {a0

t
, b1

t
}), ({a1

t−1
, b0

t−1
}, {a1

t
, b0

t
}),

({a1
t−1

, b1
t−1

}, {a0
t
, b0

t
}) }

Table 1 Iterative evolution of Pvval over each element of Negvval for each vval ∈ A|T during the execution of
GULA(A,T ,F, T) over the transitions of Fig. 5 (left)

• Nega0
t
= {{a0t−1, b

0
t−1}, {a1t−1, b

0
t−1}}, Pa0

t
= {a0t ← ∅}

neg ∈ Nega0
t

M Least specializations Pa0
t

(a0t−1, b
0
t−1) {a0t ← ∅} {a0t ← a1t−1, a

0
t ← b1t−1} {a0t ← a1t−1, a

0
t ← b1t−1}

(a1t−1, b
0
t−1) {a0t ← a1t−1} {a0t ← a1t−1 ∧ b1t−1.} {a0t ← b1t−1}

• Nega1
t
= {{a0t−1, b

1
t−1}, {a1t−1, b

1
t−1}}, Pa1

t
= {a1t ← ∅}

neg ∈ Nega1
t

M Least specializations Pa1
t

(a0t−1, b
1
t−1) {a1t ← ∅} {a1t ← a1t−1, a

1
t ← b0t−1} {a1t ← a1t−1, a

1
t ← b0t−1}

(a1t−1, b
1
t−1) {a1t ← a1t−1} {a1t ← a1t−1 ∧ b0t−1} {a1t ← b0t−1}

• Negb0t
= {{a0t−1, b

1
t−1}, {a0t−1, b

0
t−1}}, Pb0t

= {b0t ← ∅}
neg ∈ Negb0t

M Least specializations Pb0t
(a0t−1, b

1
t−1) {b0t ← ∅} {b0t ← a1t−1, b

0
t ← b0t−1} {b0t ← a1t−1, b

0
t ← b0t−1}

(a0t−1, b
0
t−1) {b0t ← b0t−1} {b0t ← a1t−1 ∧ b0t−1} {b0t ← a1t−1}

• Negb1t
= {{a1t−1, b

0
t−1}, {a1t−1, b

1
t−1}}, Pb1t

= {b1t ← ∅}
neg ∈ Negb1t

M Least specializations Pb1t
(a1t−1, b

0
t−1) {b1t ← ∅} {b1t ← a0t−1, b

1
t ← b1t−1} {b1t ← a0t−1, b

1
t ← b1t−1}

(a1t−1, b
1
t−1) {b1t ← b1t−1} {b1t ← a0t−1 ∧ b1t−1} {b0t ← a1t−1}

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit

 Machine Learning

1 3

Table 1 provides each Negvval (first column) and shows the iterative evolution of Pvval (last
column) over each neg ∈ Negvval during the execution of GULA(A, T ,F, T). Rules in red
in Pvval of previous step match the current negative example neg and must be revised, while
rules in blue in the last column dominate rules in blue produced by the least specialization
(third column).

Example 19 Execution of GULA(A, T ,F, T) on the asynchronous state transitions of
Fig. 5 (middle):

• F = {at−1, bt−1},
• T = {at, bt},
• A = {a0

t−1
, b0

t−1
, a1

t−1
, b1

t−1
, a0

t
, b0

t
, a1

t
, b1

t
}

• T = { ({a0
t−1

, b0
t−1

}, {a0
t
, b1

t
}), ({a0

t−1
, b0

t−1
}, {a1

t
, b0

t
}), ({a0

t−1
, b1

t−1
}, {a0

t
, b1

t
}),

({a1
t−1

, b0
t−1

}, {a1
t
, b0

t
}), ({a1

t−1
, b1

t−1
}, {a0

t
, b0

t
}) ({a1

t−1
, b1

t−1
}, {a1

t
, b1

t
}) }

Table 2 provides each Negvval (first column) and shows the iterative evolution of Pvval (last
column) over each neg ∈ Negvval during the execution of GULA(A, T ,F, T). Rules in red
in the last column (Pvval) match the current negative example neg and must be revised,
while rules in blue in the last column dominate rules in blue produced by the least spe-
cialization (third column, next line). For the general semantics transitions of Fig. 5 (right),
the additional transitions that are observed compared to the asynchronous case do not alter
any Negvval , thus the learning process is the same as in Table 2 resulting in the same output
program.

Theorem 5 gives the properties of the algorithm: GULA terminates and GULA is
sounds, complete and optimal w.r.t. its input, i.e., all and only non-dominated consistent
rules appear in its output program which is the optimal program of its input.

Table 2 Example of the execution of GULA(A,T ,F, T) over the transitions of Fig. 5 (right) and, equiva-
lently, the transitions of Fig. 5 (right)

• Nega0
t
= {{a1t−1, b

0
t−1}}, Pa0

t
= {a0t ← ∅}

neg ∈ Nega0
t

M Least specializations Pa0
t

(a1t−1, b
0
t−1) {a0t ← ∅} {a0t ← a0t−1, a

0
t ← b1t−1} {a0t ← a0t−1, a

0
t ← b1t−1}

• Nega1
t
= {{a0t−1, b

1
t−1}}, Pa1

t
= {a1t ← ∅}

neg ∈ Nega1
t

M Least specializations Pa1
t

(a0t−1, b
1
t−1) {a1t ← ∅} {a1t ← a1t−1, a

1
t ← b0t−1} {a1t ← a1t−1, a

1
t ← b0t−1}

• Negb0t
= {{a0t−1, b

1
t−1}}, Pb0t

= {b0t ← ∅}
neg ∈ Negb0t

M Least specializations Pb0t
(a0t−1, b

1
t−1) {b0t ← ∅} {b0t ← a1t−1, b

0
t ← b0t−1} {b0t ← a1t−1, b

0
t ← b0t−1}

• Negb1t
= {{a1t−1, b

0
t−1}}, Pb1t

= {b1t ← ∅}
neg ∈ Negb1t

M Least specializations Pb1t
(a1t−1, b

0
t−1) {b1t ← ∅} {b1t ← a0t−1, b

1
t ← b1t−1} {b1t ← a1t−1, b

1
t ← b1t−1}

For each vval ∈ A|T is given the iterative evolution over each element of Negvval (1st col.) of the set of match-
ing rules M ⊆ Pvval (2nd col.), their least specializations (3rd col.) and Pvval final state

Machine Learning

1 3

Finally, Theorem 6 characterizes the algorithm time and memory complexities.

Theorem 5 (GULA Termination, Soundness, Completeness, Optimality) Let T ⊆ S
F × S

T .

(1) Any call to GULA on finite sets terminates,
(2) GULA(A, T ,F, T) = PO(T),
(3) ∀A� ⊆ A|T,����(AF ∪A

�, T ,F, T) = {R ∈ PO(T) ∣ head(R) ∈ A
�}.

Lemma 2 (Gula can learn from any pseudo-idempotent semantics) Let DS be a pseudo-
idempotent semantics, then

Lemma 2 is trivially proven from Theorem 5 since for any dynamical semantics DS and
any DMVLP P, ����(A,DS(P),F, T) = PO(DS(P)).

Lemma 3 (Gula can learn from synchronous, asynchronous and general semantics)

• Tsyn(����(A, Tsyn(P),F, T)) = Tsyn(PO(Tsyn(P))) = Tsyn(P)
• Tasyn(����(A, Tasyn(P),F, T)) = Tasyn(PO(Tasyn(P))) = Tasyn(P)
• Tgen(����(A, Tgen(P),F, T)) = Tgen(PO(Tgen(P))) = Tgen(P)

Lemma 3 is trivially proven from Theorem 2. Thus the algorithm can be used to learn
from transitions produced from both synchronous, asynchronous and general semantics.

Theorem 6 (GULA Complexity) Let T ⊆ S
F × S

T be a set of transitions, Let
n ∶= max(|F|, |T|) and d ∶= max({|���(v)|) ∈ ℕ ∣ v ∈ F ∪ T} . The worst-case time com-
plexity of GULA when learning from T belongs to O(|T|2 + |T| × (2n4d2n+2 + 2n3dn+1))
and its worst-case memory use belongs to O(d2n + 2ndn+1 + ndn+2).

The worst case complexity of GULA is higher than the brute force enumeration of
Algorithm 1. The complexity of brute force enumeration is bound by the operation of
removing the dominated rules (O(nd2n+2)), that also appear in GULA. This operation is
done once in the brute force enumeration with all consistent rules and multiple time (for
each negative example) in GULA, also GULA can generate several time the same rule.
But, in practice, GULA is expected to manage much less rules than the whole set of pos-
sibility at each step since it removes dominated rules of previous step, thus globally dealing
with less rules than all possibility and ending being more efficient in practice. Its scalabil-
ity is evaluated in Sect. 7 with brute force enumeration as baseline.

To use GULA for outputting predictions, we have to assume a semantics for the model.
In the next section, we will exhibit an approach to avoid such a preliminary assumption and
learn a whole system dynamics, including its semantics, in the form of a single proposi-
tional logic program.

DS(����(A,DS(P),F, T)) = DS(PO(DS(P))) = DS(P).

 Machine Learning

1 3

5 Learning from any dynamical semantics using constraints

Any non-deterministic (and thus deterministic) discrete memory-less dynamical system
can be represented by a MVLP with some restrictions and a dedicated dynamical seman-
tics. For this, programs must contain two types of rules: possibility rules which have con-
ditions on variables at t − 1 and conclusion on one variable at t, same as for DMVLP ;
and constraint rules which have conditions on both t and t − 1 but no conclusion. In the
following, we also re-use the same notations as for the MVL of Sect. 2.1 such as head(R) ,
body(R) and var(head(R)).

5.1 Constraints DMVLP

Definition 20 (Constrained DMVLP) Let P′ be a DMVLP on AF∪T
���

 , F and T two sets of
variables, and � a special variable with ���(�) = {0, 1} so that � ∉ T ∪ F . A CDMVLP P
is a MVLP such that P = P� ∪ {R ∈ MVL ∣ head(R) = �1 ∧ ∀vval ∈ body(R), v ∈ F ∪ T} .
A MVL rule R such that head(R) = �1 and ∀vval ∈ body(R), v ∈ F ∪ T is called a MVL
constraint.

Moreover, in the following we denote V = F ∪ T ∪ {�} . This V is different than the one of
P′ (which is F ∪ T , without the special variable �). From now, a constraint C is denoted:
⊥
←������� body(C).

Example 20
⊥
←������� a0

t
∧ a0

t−1
 is a constraint that can prevent a to take the value 0 in two suc-

cessive states.
⊥
←������� b1

t
∧ d2

t
∧ c2

t−1
 is a constraint that can prevent to have both b1 and d2 in the

next state if c2 appears in the initial state.
⊥
←������� a0

t
∧ b0

t
 is a constraint with only conditions in

T , it prevents a and b to take value 0 at same time.
⊥
←������� a0

t−1
∧ b0

t−1
 is a constraint with only

conditions in F , it prevents any transitions from a state where a and b have value 0, thus
creating final states.

Definition 21 (Constraint-transition matching) Let (s, s�) ∈ S
F × S

T . The constraint C
matches (s, s�) , written C ⊓ (s, s�) , iff body(C) ⊆ s ∪ s�.

Using the notion of rule and constraint matching we can use a CDMVLP to compute
the next possible states. Definition 22 provides such a method based on synchronous
semantics and constraints. Given a state, the set of possible next states is the Cartesian
product of the conclusion of all matching rules and default atoms. Constraints rules are
then used to discard states that would generate non-valid transitions.

Definition 22 (Synchronous constrained Semantics) The synchronous constrained seman-
tics Tsyn−c is defined by:

Figure 7 shows the dynamics of the Boolean network of Fig. 5 under three semantics
which dynamics cannot be reproduced using synchronous, asynchronous or general seman-
tics on a program learned using GULA. In the first example (left), either all Boolean func-
tions are applied simultaneously or nothing occurs (self-transition using projection). In the

Tsyn−c ∶ P ↦{(s, s�) ∈ S
F × S

T ∣ s� ⊆ 𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P) ∧

∄C ∈ P, head(C) = 𝜀1 ∧ C ⊓ (s, s�)}

Machine Learning

1 3

second example (center), the Boolean functions are applied synchronously but there is also
always a possibility for any variable to take value 0 in the next state. In the third example
(right), either the Boolean functions are applied synchronously, or each variable value is
reversed (0 into 1 and 1 into 0). The original transitions of each dynamics are in black and
the additional non-valid transitions in red. Using the original black transitions as input,
GULA learns programs which, under the synchronous semantics (Definition 15), would
realize the original black transitions plus the non-valid red ones. The idea is to learn con-
straints that would prevent those non-valid transitions to occur so that the observed dynam-
ics is exactly reproduced using the synchronous constrained semantics of Definition 22.
The CDMVLP s shown below each dynamics realize all original black transitions thanks to
their rules and none of the red transitions thanks to their constraints.

Fig. 7 States transitions diagrams corresponding to three semantics that do not respect Theorem 1 (in
black) applied on the Boolean network of Fig. 5. Using the synchronous semantics on the optimal program
of the black transitions will produce in addition the red ones. Below each diagram, a CDMVLP that can
reproduce the same behavior using synchronous constrained semantics (Color figure online)

 Machine Learning

1 3

Definition 23 (Conflict and Consistency of constraints)
The constraint C conflicts with a set of transitions T ⊆ S

F × S
T when

∃(s, s�) ∈ T ,C ⊓ (s, s�) . C is said to be consistent with T when C does not conflict with T.

Therefore, a constraint is consistent if it does not match any transitions of T.

Definition 24 (Complete set of constraints)
A set of constraints SC is complete with a set of transitions T if

∀(s, s�) ∈ S
F × S

T, (s, s�) ∉ T ⟹ ∃C ∈ SC,C ⊓ (s, s�).

Definition 25 groups all the properties that we want the learned set of constraints to
have: suitability and optimality, and Proposition 4 states that the optimal set of constraints
of a set of transitions is unique.

Definition 25 (Suitable and optimal constraints) Let T ⊆ S
F × S

T . A set of MVL con-
straints SC is suitable for T when:

• SC is consistent with T,
• SC is complete with T,
• for all constraints C not conflicting with T, there exists C� ∈ P such that C′ ≥ C.

If in addition, for all C ∈ SC , all the constraint rules C′ belonging to a set of constraints
suitable for T are such that C′ ≥ C implies C ≥ C′ , then SC is called optimal.
Proposition 4 Let T ⊆ S

F × S
T . The optimal set of constraints for T is unique and denoted

CO(T).

The subset of constraints of CO(T) that prevent transitions permitted by PO(T) but not
observed in T from happening, or, in other terms, constraints that match transitions in
Tsyn−c(PO(T))) ⧵ T , is denoted C�

O
(T) and given in Definition 26.

All constraints of CO(T) that are not in this set can never match a transition produced
by PO(T) with Tsyn−c and can thus be considered useless. Finally, Theorem 7 shows that
any set of transitions T can be reproduced, using the synchronous constrained semantics of
Definition 22 on the CDMVLP PO(T) ∪ C�

O
(T).

Definition 26 (Useful Constraints) Let T ⊆ S
F × S

T .
C�
O
(T) ∶= {C ∈ CO(T) ∣ ∃(s, s

�) ∈ S
F × S

T,C ⊓ (s, s�) ∧ s
PO(T)
���������������������→ s�}.

Theorem 7 (Optimal DMVLP and Constraints Correctness Under Synchronous Con-
strained Semantics) Let T ⊆ S

F × S
T , it holds that T = Tsyn−c(PO(T) ∪ C�

O
(T)).

5.2 Algorithm

In previous sections we presented a modified version of GULA: the General Usage LFIT
Algorithm from Ribeiro et al. (2018), which takes as arguments a different set of variables
for conditions and conclusions of rules. This modification allows to use this modified algo-
rithm to learn constraints and thus CDMVLP.

Machine Learning

1 3

Algorithm 3 show the Synchronizer algorithm, which given a set of transitions
T ⊆ S

F × S
T will output PO(T) ∪ C�

O
(T) using GULA and the properties introduced in the

previous section. With the new version of GULA it is possible to encode meaning in the
transitions we give as input to the algorithm. The constraints we want to learn are techni-
cally rules whose head is �1 with conditions on both F and T .

It is sufficient to make the union of the two states of each transition (Fig. 8) and feed it to
GULA to make it learn such rules. Constraints should match when an impossible transition
is generated by the rules of the optimal program of T. GULA learns from negative exam-
ples and negative examples of impossible transitions are just the possible transitions, thus
the transitions observed in T. Using the set of transitions T � ∶= {(s ∪ s�, {�0}) ∣ (s, s�) ∈ T}
we can use GULA to learn such constraints with GULA(A ∪ {�1}, T �,F ∪ T, {�}) . Note
that � , from the algorithmic viewpoint, is just a dummy variable used to make every tran-
sition of T ′ a negative example of �1 which will be the only head of the rule we will learn
here. The program produced will contain a set of rules that match none of the initial states
of T ′ and thus none of the transitions of T but matches all other possible transitions accord-
ing to GULA properties.

Their head being �1 , those rules are actually constraints over T. Since all and only such
minimal rules are output by this second call to GULA, it corresponds to CO(T) , which
prevents every transitions that are not in T to be produced using the constraint synchronous
semantics. Finally, the non-essential constraints can be discarded following Definition 26
and finally PO(T) ∪ C�

O
(T) is output.

The source code of the algorithm is available at https:// github. com/ Tony- sama/ pylfit
under GPL-3.0 License.

Fig. 8 Preprocessing of the state transitions of Fig. 7 (left) into negative examples of the application of
constraints

https://github.com/Tony-sama/pylfit

 Machine Learning

1 3

Algorithm 3 Synchronizer

– INPUT: a set of atoms A, a set of transitions T ⊆ SF × ST , two sets of
variables F and T .
// 1) Learn what is possible locally in a transition using GULA

– P := GULA(A, T,F , T)
// 2) Encode negative examples of constraints, i.e., observed transitions

– Let ε be a special variable not in the system: ε T∪F∈�
– T ′ := {(s ∪ s′, {ε0}) | (s, s′) ∈ T}

// 3) Learn what is impossible state-wise in form of constraint using GULA
– P ′ := GULA(A|F∪T ∪{ε1}, T

′,F ∪ T , {ε})
// 4) Keep only applicable constraints

– P ′′ := ∅
– For each C ∈ P ′

// 4.1) Extract compatible rules
– Ctargets := {v ∈ T | ∃val ∈ dom(v), vval ∈ body(C)}
– ∀v ∈ Ctargets, Crules(v) := {R ∈ P | var(head(R)) = v ∧ head(R) ∈

body(C) ∧ ∀w ∈ F ,∀val, val′ ∈ dom(w), wval ∈ body(R) ∧ wval′ ∈
body(C)

)
=⇒ val = val′}

// 4.2) Search for a combination of rules with no conflicting conditions
– For each combi ∈×v∈Ctargets

(Crules(v))
• If ∀v ∈ F , |{vval ∈ body(R) | val ∈ dom(v) ∧R ∈ combi}| ≤ 1

· P ′′ := P ′′ ∪ {C}
· break

– OUTPUT: PO(T) ∪ C ′
O(T) := P ∪ P ′′.

Theorem 8 (Synchronizer Correctness) Given any set of transitions T,

Synchronizer(A , T, F , T) outputs PO(T) ∪ C�
O
(T).

From Theorems 7 and 8, given a set of transitions T ⊆ S
F × S

T , it holds that
Tsyn−c(Synchronizer(A, T ,F, T)) = T , i.e., the algorithm can be used to learn a CDMVLP
that reproduces exactly the input transitions whatever the semantics that produced them.

The complexity of the Synchronizer is basically a regular call to GULA plus a special
one to learn constraints and the search for a compatible set of rules in the optimal pro-
gram which could be blocked by the constraint. Since constraint can have both features and
target variables in their body, the complexity of learning constraints with GULA is like
considering |F| + |T| features but only one target value �1 . The detailed complexity of the
Synchronizer is given in Theorem 9.

Theorem 9 (Synchronizer Complexity) Let T ⊆ S
F × S

T be a set of transitions, let
n ∶= max(|F|, |T|) and d ∶= max({|���(v)| ∈ ℕ ∣ v ∈ F ∪ T}) and m ∶= |F| + |T|.

The worst-case time complexity of Synchronizer when learning from T belongs to
O((d2n + 2ndn+1 + ndn+2) + (|T|2 + |T| × (2m4d2m+2 + 2m3dm+1)) + (dn

n

)) and its worst-
case memory use belongs to O((d2n + 2ndn+1 + ndn+2) + (d2m + 2mdm+1 + mdm+2) + (ndn))
.

Machine Learning

1 3

The Synchronizer algorithm does not need any assumption about the semantics of the
underlying model but require the full set of observations. However, when dealing with real
data, we may only get access to partial observations. That is why we propose in next sec-
tion a heuristic method to use GULA in such practical cases.

6 Predictions from partial observations with weighted DMVLPs

In this section, we present a heuristic method allowing to use GULA to learn from partial
observations and predict from unobserved feature states. Previous sections were focusing
on theoretical aspects of our method. The two algorithms presented in Sects. 4 and 5 are
sound regarding the observations they have been provided as input. Rules of an optimal
program provide minimal explanations and can reproduce what is possible over observed
transitions. If observation are incomplete, the optimal program will realize a transition to
every possible target state from unobserved feature state, i.e. all target atoms are always
possible for unobserved feature state. In practice, when observations are partial, to get pre-
dictions and explanations from our model on unobserved feature states, we also need to
model impossibilities.

Definition 27 (Rule of Impossibility) A rule of impossibility of T ⊆ S
F × S

T is a MVL
rule R such that ∀(s, s�) ∈ T ,R ⊓ s ⟹ head(R) ∉ s�.

A rule of impossibility is a rule that does not realise any transition of T: the conclusion
of a rule of impossibility is never observed in any transition from a feature state of f irst(T)
it matches, i.e., its body is a condition so that its head is not possible. Thus, such a rule
either conflicts with T (see Definition 7) for every feature states it matches or matches no
feature state of T (in f irst(T)). Note that all conflicting rules are not necessarily rules of
impossibility. Indeed, a conflicting rule can still realize some transitions of T.

Definition 28 (Optimal Program of Impossibility) Let T ⊆ S
F × S

T . A DMVLP P is
impossibility-suitable for T when:

• all rules in P are rules of impossibility of T, and
• for all rules of impossibility R of T, there exists R� ∈ P such that R′ ≥ R.

If in addition, for all R ∈ P , all the MVL rules R′ belonging to DMVLP impossibility-
suitable for T are such that R′ ≥ R implies R ≥ R′ then P is called impossibility-optimal
and denoted PO(T).
Proposition 5 (Uniqueness of Impossibility-Optimal Program) Let T ⊆ S

F × S
T . The

DMVLP impossibility-optimal for T is unique and denoted PO(T).

Rules of possibility and impossibility can be weighted according to the observations to
form a Weighted DMVLP as given in Definition 29.

Definition 29 (Weighted DMVLP) A weighted program is a set of weighted rules:
{(w,R) ∣ w ∈ ℕ ∧ R is a DMVLP rule} . A weighted DMVLP , or WDMVLP , is a pair of
weighted programs (P,P�) on the same set of atoms A , and the same feature and target
variables F and T .

 Machine Learning

1 3

Example 21 Let WP = (P,P�) be a WDMVLP , as follows.

Let s ∶= {a0
t−1

, b1
t−1

, c1
t−1

} . The rule of possibility a0
t
← b1

t−1
 matches s, and the rule of

impossibility a0
t
← c1

t−1
 also matches s. The weight of the rule of impossibility (30) being

greater than that of the rule of possibility (3), we can consider that a0
t
 is not likely to appear

in a transition from s according to WP.

Using GULA, we can learn both rules of possibility (by using parameter learning_mode
= “possibility”) and rules of impossibility (with parameter learning_mode = “impossibil-
ity”) from T ⊆ S

F × S
T . In Algorithm 4, GULA is used to learn two distinct DMVLP s:

a program of possibility and a program of impossibility. The rules of both programs are
then weighted by the number of observed feature states (that is, in T) they match to form
a weighted DMVLP . This WDMVLP can be used to make predictions from unobserved
feature states (s ∈ S

F, s ∉ first(T)) by confronting the learned rules of possibility and
impossibility according to their weights.

Algorithm 4 Learning WDMVLP with GULA

– INPUT: a set of atoms A′, a set of transitions T ⊆ SF ′ × ST ′
, two sets

of variables F ′ and T ′

– P := GULA(A′, T,F ′, T ′, “possible”)
– P ′ := GULA(A′, T,F ′, T ′, “impossible”)
– WP := {(|{s ∈ S | (s, s′) ∈ T ∧R � s}|, R) ∈ N× P}
– WP ′ := {(|{s ∈ S | (s, s′) ∈ T ∧R � s}|, R) ∈ N× P ′}
– OUTPUT: (WP,WP ′).

Given a feature state s ⊆ S
F we can predict and explain the likelihood of each target

atom by confronting the rules of possibility and impossibility that match s. The likelihoods
are computed as given in Definition 30.

Definition 30 (WDMVLP Prediction and Explanation)
(1) Let P be a weighted program, s ∈ S

F and vval ∈ A with v ∈ T . We define the best
rules of vval matching s in P as:

where:
{

wmax ∶= max({w ∈ ℕ ∣ (w,R) ∈ P} ∪ {0})
M ∶= {R ∣ (wmax,R) ∈ P ∧ head(R) = vval,R ⊓ s}

.

(2) Let WP = (P,P�) be a WDMVLP , s ∈ S
F and vval ∈ A with v ∈ T . We define the

best rules of possibility and best rules of impossibility of vval matching s in WP as:

P = {
(3, a0

t
← b1

t−1
)

(15, a1
t
← b0

t−1
)

…}

P� = {
(30, a0

t
← c1

t−1
)

(5, a1
t
← c0

t−1
)

…}

best_rules(P, s, vval) ∶= (wmax,M)

Machine Learning

1 3

(3) We define the prediction of likelihood of the occurrence of vval in a transition from s
according to WP as:

where:
{

best_rules_of_possibility(WP, s, vval) = (w,M)
best_rules_of_impossibility(WP, s, vval) = (w�,M�)

.

(4) We define the explanation of the prediction of the occurrence of vval in a transition
from s according to WP as:

where:

⎧⎪⎨⎪⎩

(w,R) ∶= arbitrary(best_rules_of_possibility(WP, s, vval))
(w�,R�) ∶= arbitrary(best_rules_of_impossibility(WP, s, vval)))
arbitrary((w��,M)) = (w��,R��)

best_rules_of_possibility(WP, s, vval) ∶= best_rules(P, s, vval)

best_rules_of_impossibility(WP, s, vval) ∶= best_rules(P�, s, vval).

predict(WP, s, vval) ∶=
1

2
×

(
1 +

w − w�

max({1,w + w�})

)

predict_and_explain(WP, s, vval) ∶=(
vval, predict(WP, s, vval), (w,R), (w�,R�)

)

Table 3 Example of prediction of a WDMVLP WP from a non-observed feature state s using Definition 30

Target
atom (vval)

Likelihood
(predict(WP, s, vval)
)

Possibility explanation ((w, R)) Impossibility explanation ((w�,R�))

a0
t

0.95 (54, a0
t
← a0

t−1
) (3, a0

t
← c0

t−1
∧ d0

t−1
∧ f 0

t−1
∧ g0

t−1
)

a1
t

0.05 (3, a1
t
← c0

t−1
∧ d0

t−1
∧ f 0

t−1
∧ g0

t−1
) (54, a1

t
← a0

t−1
)

b0
t

0.93 (58, b0
t
← d0

t−1
) (4, b0

t
← a0

t−1
∧ b0

t−1
∧ g0

t−1
∧ h1

t−1
)

b1
t

0.07 (4, b1
t
← a0

t−1
∧ b0

t−1
∧ g0

t−1
∧ h1

t−1
) (58, b1

t
← d0

t−1
)

c0
t

0.88 (28, c0
t
← d0

t−1
∧ h1

t−1
) (4, c0

t
← a0

t−1
∧ b0

t−1
∧ d0

t−1
∧ g0

t−1
)

c1
t

0.12 (4, c1
t
← a0

t−1
∧ b0

t−1
∧ d0

t−1
∧ g0

t−1
) (28, c1

t
← d0

t−1
∧ h1

t−1
)

d0
t

0.85 (50, d0
t
← i1

t−1
) (9, d0

t
← b0

t−1
∧ f 0

t−1
∧ g0

t−1
)

d1
t

0.15 (9, d1
t
← b0

t−1
∧ f 0

t−1
∧ g0

t−1
) (50, d1

t
← i1

t−1
)

e0
t

0.88 (51, e0
t
← f 0

t−1
) (7, e0

t
← b0

t−1
∧ g0

t−1
∧ i1

t−1
)

e1
t

0.12 (7, e1
t
← b0

t−1
∧ g0

t−1
∧ i1

t−1
) (51, e1

t
← f 0

t−1
)

f 0
t

0.42 (11, f 0
t
← a0

t−1
∧ b0

t−1
∧ f 0

t−1
) (15, f 0

t
← d0

t−1
∧ g0

t−1
∧ j1

t−1
)

f 1
t

0.58 (15, f 1
t
← d0

t−1
∧ g0

t−1
∧ j1

t−1
) (11, f 1

t
← a0

t−1
∧ b0

t−1
∧ f 0

t−1
)

g0
t

0.36 (9, g0
t
← b0

t−1
∧ g0

t−1
∧ h1

t−1
) (16, g0

t
← a0

t−1
∧ d0

t−1
∧ j1

t−1
)

g1
t

0.64 (16, g1
t
← a0

t−1
∧ d0

t−1
∧ j1

t−1
) (9, g1

t
← b0

t−1
∧ g0

t−1
∧ h1

t−1
)

h0
t

0.40 (8, h0
t
← b0

t−1
∧ c0

t−1
∧ d0

t−1
∧ i1

t−1
) (12, h0

t
← a0

t−1
∧ g0

t−1
∧ h1

t−1
)

h1
t

0.60 (12, h1
t
← a0

t−1
∧ g0

t−1
∧ h1

t−1
) (8, h1

t
← b0

t−1
∧ c0

t−1
∧ d0

t−1
∧ i1

t−1
)

i0
t

0.10 (4, i0
t
← a0

t−1
∧ b0

t−1
∧ g0

t−1
∧ h1

t−1
) (35, i0

t
← d0

t−1
∧ j1

t−1
)

i1
t

0.90 (35, i1
t
← d0

t−1
∧ j1

t−1
) (4, i1

t
← a0

t−1
∧ b0

t−1
∧ g0

t−1
∧ h1

t−1
)

j0
t

0.63 (12, j0
t
← e1

t−1
∧ f 0

t−1
∧ g0

t−1
) (7, j0

t
← a0

t−1
∧ c0

t−1
∧ d0

t−1
∧ j1

t−1
)

j1
t

0.37 (7, j1
t
← a0

t−1
∧ c0

t−1
∧ d0

t−1
∧ j1

t−1
) (12, j1

t
← e1

t−1
∧ f 0

t−1
∧ g0

t−1
)

 Machine Learning

1 3

so that R′′ is taken arbitrarily in M if M ≠ ∅ , or R�� ∶= ∅ if M = �.

Intuitively, predict(WP, s, vval) gives a normalized score between 0 and 1 of the like-
lihood to observe vval after state s, where 0.5 means that we are left inconclusive. In
predict_and_explain(WP, s, vval) , one of the best rules of possibility and rules of impossi-
bility with their respective weights are given as explanation to the prediction or a weight of
0 and no rule when no rules of possibility (resp. impossibility) match s. The weights of the
selected rules are used to compute the likelihood and the rules themselves are the explana-
tion of the predictions.

Table 3 shows an example of such predictions and explanations from a WDMVLP
WP from the feature state s = {a0

t−1
, b0

t−1
, c0

t−1
, d0

t−1
, e1

t−1
, f 0

t−1
, g0

t−1
, h1

t−1
, i1

t−1
, j1

t−1
} where

F = {at−1,… , jt−1}, T = {at,… , jt} and ∀v ∈ F ∪ T, ���(v) = {0, 1} . Each row of the
table provides the WDMVLP prediction of the occurrence of a target atom vval and the
corresponding explanation: predict_and_explain(WP, s, vval) . For example, i1

t
 is very likely

to be observed in a transition from s since its likelihood is almost 1 (0.90). This likelihood
comes from the best possibility rule of the WDMVLP : i1

t
← d0

t−1
∧ j1

t−1
 , whose weight is

35, and its best impossibility rule: i1
t
← a0

t−1
∧ b0

t−1
∧ g0

t−1
∧ h1

t−1
 , which only has a weight

of 4. This WDMVLP has been learned using Algorithm 4, thus the weights correspond to
the number of feature states that those rules match. Here, we can say that i1

t
 is very likely to

occur since 90% of the observed feature states that contain both d0
t−1

 and j1
t−1

 (like s) have
i1
t
 in a transition, according to the possibility rule R. We have the reverse case for a1

t
 in this

example, the best impossibility rule is much stronger than the best possibility rule leading
to the likelihood of 0.05, thus a1

t
 is very unlikely to be observed in a transition from s. In

this example, the likelihood probability of the two atoms of each target variable (for exam-
ple a0 and a1) sums to 1.0 because the observed transitions are deterministic, but in the
general case they are not related; for instance: both a0 and a1 could be very likely.

Regarding the choice of the rules for prediction, here we simply take the rules with the
biggest weight from each weighted program. The intuition behind this is that rules with
bigger weights are more likely to be consistent with unobserved transitions, thus the big-
gest weighted rule(s) is (are) the most likely to be part of the real optimal program. Note
that other heuristics are possible. One could for instance combine all matching rules, for
example by computing the sum or average of their weights; however, combining rules can
be more noise sensitive: a lot of small-weighted incorrect rules (on unobserved states)
might counter a single high-weighted rule that would happen to be optimal under all obser-
vations. This is why we chose to use a single-rule heuristics, which also happens to give a
unique pair of rules as explanation (why a target atom might be possible and why it might
not).

The capacity of this heuristic method to predict and explain from unobserved feature
states is evaluated in Sect. 7.

Machine Learning

1 3

7 Evaluation

In this section, both the scalability, accuracy and explanations of GULA are evaluated
using Boolean network benchmarks from the biological literature. The scalability of Syn-
chronizer is also evaluated (details are given in “Appendix”). All experiments1 were con-
ducted on one core of an Intel Core i3 (6157U, 2.4 GHz) with 4 Gb of RAM.

In our experiments we use Boolean networks2 from Boolenet (Dubrova & Teslenko,
2011) and Pyboolnet (Klarner et al., 2016). Benchmarks are performed on a wide range of
networks. Some of them are small toy examples, while the biggest ones come from biologi-
cal case study papers like the Boolean model for the control of the mammalian cell cycle
(Fauré et al., 2006) or fission yeast (Davidich & Bornholdt, 2008). Boolean networks are
converted to DMVLP where ∀v ∈ V, ���(v) = {0, 1} . In Dubrova and Teslenko (2011),
Klarner et al. (2016) file formats, for each variable, Boolean functions are given in dis-
junctive normal form (DNF), a disjunction of conjunction clauses that can be considered

Table 4 Number of variables and total number of transitions under the three semantics of the Boolean net-
works from Boolenet (Dubrova & Teslenko, 2011) and PyBoolNet (Klarner et al., 2016) used as benchmark
in this experimental section

Benchmark name Variables Transitions

Synchronous Asynchronous General

n3s1c1a 3 8 14 29
n3s1c1b 3 8 14 31
raf 3 8 13 29
n5s3 5 32 73 213
n6s1c2 6 64 230 1039
n7s3 7 128 451 2243
randomnet_n7k3 7 128 394 1580
xiao_wnt5a 7 128 324 972
arellano_rootstem 9 512 1940 11,472
davidich_yeast 10 1024 4364 38,720
faure_cellcycle 10 1024 4273 30,971
fission_yeast 10 1024 4157 33,727
budding_yeast 12 4096 19,975 260,557
n12c5 12 4096 30,006 1,122,079
tournier_apoptosis 12 4096 22,530 358,694
dinwoodie_stomatal 13 8192 53,249 1,521,099
multivalued 13 8192 49,156 1,049,760
saadatpour_guardcell 13 8192 53,249 1,521,099

1 Available at: https:// github. com/ Tony- sama/ pylfit. Using command “python3 evaluations/
mlj2020/mlj2020_all.py” from the repository’s tests folder, results will be in the tests/tmp
folder. All experiements were run with the release version 0.2.2 https:// github. com/ Tony- sama/ pylfit/ relea
ses/ tag/ v0.2.2.
2 Original Boolenet Boolean network files: https:// people. kth. se/ ~dubro va/ boole net. html. Original PyBool-
Net Boolean network files: https:// github. com/ hklar ner/ PyBoo lNet/ tree/ master/ PyBoo lNet/ Repos itory.

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit/releases/tag/v0.2.2
https://github.com/Tony-sama/pylfit/releases/tag/v0.2.2
https://people.kth.se/%7edubrova/boolenet.html
https://github.com/hklarner/PyBoolNet/tree/master/PyBoolNet/Repository

 Machine Learning

1 3

as a set of Boolean atoms of the form v or ¬v . Each clause c of the DNF of a variable v is
directly converted into a rule R such that, head(R) = v1

t
 and v�1

t−1
∈ body(R) ⟺ v� ∈ c

and v�0
t−1

∈ body(R) ⟺ ¬v� ∈ c . For each such DMVLP the set T of all transitions are
generated for the three considered semantics (see Sect. 3). For each generation, to simu-
late the cases where Boolean functions are false, each semantics uses a default function
that gives v0,∀v ∈ T when no rule R, v(head(R)) = v matches a state. Table 4 provides the
number of variables of each benchmark used in our experiments together with the number
of transitions under synchronous, asynchronous and general semantics.

7.1 GULA scalability

Figure 9 shows the run time (log scale) of GULA (Algorithm 2) and brute force enu-
meration (Algorithm 1) when learning a WDMVLP from Boolean networks (grouped
by number of variables) transitions of Table 4. Since we learn WDMVLP the run
time corresponds to the sum of two calls to GULA (resp. brute force enumera-
tion) (possibility and impossibility mode) and the computation of each rule weight
(see Algorithm 4). For the impossibility mode of the brute force enumeration
(Algorithm 1), we keep impossibility rules in place of consistent rules: it suffices to
replace P ∶= {R ∈ P ∣ ∀(s, s�) ∈ T , body(R) ⊆ s ⟹ ∃(s, s��) ∈ T , head(R) ∈ s��} by
P ∶= {R ∈ P ∣ ∀(s, s�) ∈ T , body(R) ⊆ s ⟹ ∄(s, s��) ∈ T , head(R) ∈ s��} . For each
benchmark, learning is performed on 10 random subsets of 1% , 5% , 10% , 25% , 50% , 75% ,
100% of the whole set of transitions with a time out of 1000 s.

Fig. 9 Run time in seconds (log scale) of two calls to GULA (in blue) and brute force enumeration (in
red) when learning a WDMVLP from a random set of 1% , 5% , 10% , 25% , 50% , 75% , 100% of the transi-
tions of a Boolean network from Boolenet and PyBoolNet with size varying from 3 to 13 variables. Time
out is set at 1000 s and 10 runs where performed for each setting (Color figure online)

Machine Learning

1 3

For all benchmarks, we clearly see that GULA is more efficient than the trivial brute
force enumeration, the difference exponentially increasing with the number of variables:
about 10 times faster with 6 variables and 100 times faster with 9 variables. The brute
force enumeration reaches the time out for 10 variables benchmarks and beyond.

For a given number of variables, we observe that for each benchmark the run time
increases with the number of transitions until some ratio (for example 50% for 7 variables)
at which point more transition can actually speed up the process. More transitions reduce
the probability for a rule to be consistent, thus both methods have less rules to check for
domination. This tendency is observed on the three semantics. It is important to note that
the systems are deterministic with the synchronous semantics and thus the number of tran-
sitions in the synchronous case is much lower than for the two other semantics and one
may expect better run time. But the quantity of transitions has little impact in fact and most
of the run time goes into rule domination check (see Theorem 6). Actually, more input
transitions can even imply less learning time for GULA. Having more diverse initial states
can also allow the sorting of the negatives example to reduce the quantity of specialization
made at each step, a freshly revised rule being revised again will not have much non-domi-
nated candidates to generate. For example, for the benchmarks with 13 variables, for some
variable values, given 25% of the transitions, the number of stored rules reached several
thousands. On the other hand, when given 100% of the transitions, it rarely exceeds hun-
dreds stored rules. Same logic can apply to the faster run time of general semantics with
“low” subset of transitions: the total number of transitions being higher, more diversity
appears in its subset thus higher chance for the sorting to have effect on reducing the need
for least specialization. The rules are simpler for the two other semantics since rules of the
form vval

t
← vval

t−1
 are always consistent and quickly obtained. Such simple rules have great

dominance power, reducing the quantity of stored rules and thus checked for domination at
each step.

GULA succeeds in learning a WDMVLP from the benchmarks with up to 10 variables
for all semantics before the time-out of 1, 000 seconds for all considered sub-sets of transi-
tions. Benchmarks from 12 variables need a substantial amount of input transitions to pre-
vent the explosion of consistent rules and thus reaching the time out. For both semantics,
the 12 variables benchmarks reached the time out several times when given less than 100%
of the transitions. Even if this may seem small compared to the intrinsic complexity of bio-
logical systems, ten components are sufficient to capture the dynamic behavior of critical,
yet significant, mechanisms like the cell cycle (Gibart et al., 2021).

Compared to our previous algorithm LF1T (Ribeiro & Inoue, 2015), GULA is slower
in the synchronous deterministic Boolean case (even when learning only PO(T)). This was
expected since it is not specifically dedicated to learning such networks: GULA learns both
values (0 and 1) of each variable and pre-processes the transitions before learning rules to
handle non-determinism. On the other hand, LF1T is optimized to only learn rules that
make a variable take the value 1 in the next state and assume only one transition from each
initial state. furthermore, LF1T only handles Boolean values and deterministic transitions
while GULA can deal with multi-valued variable and any pseudo-idempotent (Theorem 1)
semantics transitions.

The current implementation of the algorithm is rather naive and better performances are
expected from future optimizations. In particular, the algorithm can be parallelized into as
many threads as the number of different rule heads (one thread per target variable value).

 Machine Learning

1 3

We are also developing3 an approximated version of GULA that outputs a subset of PO(T)
(resp. PO(T)) sufficient to explain T (Ribeiro et al., 2020). The complexity of this new
algorithm is polynomial, greatly improving the scalability of our approach but to the sacri-
fice of completeness. However, this algorithm is still under development and is beyond the
scope of this paper.

Learning constraints is obviously more costly than learning regular rules since both
feature and target variables can appear in the body, i.e., the number of features becomes
|F| + |T| . Thus by running the Synchronizer on the Boolean network benchmark it implies
a call to GULA with double the number of variables to learn constraints. Under the same
experimental settings, the Synchronizer reached the time-out of 1, 000 seconds on the
benchmarks of 7 variables. The contribution regarding CDMVLP being focused on theo-
retical results, we provided the detailed evaluation of the Synchronizer in “Appendix” to
save space.

7.2 GULA predictive power

When addressing biological systems, a major challenge arises: even if the amount of pro-
duced data is increasing through the development of high-throughput RNA sequencing, it
is still low with regard to all the theoretical contexts.

In this experiment, we thus evaluate the quality of the models learned by GULA in their
ability to correctly predict possible values for each variable from unseen feature states, i.e.,
the capacity of the learned model to generalize to unobserved cases. Practically speaking,

Fig. 10 Experiments settings: data generation, train/test split

3 The polynomial approximation of GULA, currently named PRIDE is also available at: https:// github.
com/ Tony- sama/ pylfit

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit

Machine Learning

1 3

this ensures the resulting models can provide relevant information about biological experi-
ments that were (or could) not be performed.

For each Boolean network benchmark, we first generate the set of all possible feature
states. Those states are then randomly split into two sets: at least 20% will be test fea-
ture states and the remaining 80% will be potential training feature states. According to
the Boolean formula of the network and a given semantics, all transitions from test feature
states are generated to make the test set. All transitions are also computed from the training
feature states, but only x% of the transitions are randomly chosen to form the training set
with x ∈ {1, 5, 10, 20, 30,… , 100} . Figure 10 illustrates the construct of both training and
test sets for a Boolean network of 3 variables.

The training set is used as input to learn a WDMVLP using GULA. The learned WDM-
VLP WP is then used to predict from each feature state s of the test set, the possibility of
occurrence of each target atoms vval according to Proposition 30, i.e., predict(WP, s, vval) .
The forecast probabilities are compared to the observed values of the test set. Let T be the
set of all transitions, T ′ the training set of transitions and T ′′ the test set of transitions. For
all vval ∈ A|T and s ∈ first(T ��) , we define:

To evaluate the accuracy of prediction from the learned WDMVLP , WP, over the test set
T ′′ we consider a ratio of precision given by the complement to one of the mean absolute
error between its prediction and the actual value:

Formally, if T is the whole set of transitions of the Boolean network, this experi-
ment consists in learning the WDMVLP (PO(T

�),PO(T
�)) from the training set

T ′ ⊂ T and checking both the consistency and realization of the test set T ′′ ⊂ T , with
f irst(T �) ∩ f irst(T ��) = � . Here, we chose |T �| ≈ x × 0.8 × |T| and |T ��| ≈ 0.2 × |T| , where
x ∈ {0.01, 0.05, 0.1, 0.2, 0.3,… , 1.0} . Intuitively, the WDMVLP learned in these experi-
ments can be seen as an approximation of (PO(T),PO(T)) on partial observations: the
learned rules can be different. These experiments aim to evaluate the discrepancies in their
behaviors, i.e., we only measure the consequences of the use of the rules, not the quality of
the rules themselves (which is the subject of the next experiment).

Example 22 Let T ′′ be the test set of Fig. 10 and WP be the WDMVLP of Example 21. Let
s ∶= (a1

t−1
, b1

t−1
, c1

t−1
) (111).

• Expected prediction from s according to T ′′:
 {(vval, actual(vval, s, T ��))} = {(a0

t
, 1), (a1

t
, 0), (b0

t
, 1), (b1

t
, 1), (c0

t
, 1), (c1

t
, 1)}

• Predictions from s according to WP:
 {(vval, predict(WP, s, vval))} = {(a0

t
, 0.9), (a1

t
, 0.2), (b0

t
, 0.8), (b1

t
, 0.6), (c0

t
, 1.0),

(c1
t
, 0.0)}

• Accuracy (unique state): 1 − |1−0.9|+|0−0.2|+|1−0.8|+|1−0.6|+|1−1.0|+|1−0.0|
|A|T|=6 = 0.58

On state s, the model prediction mean absolute error w.r.t. T ′′ is 0.42, thus giving an accu-
racy of 0.58, meaning that in average, 58% of the predictions are correct.

actual(vval, s, T ��) =

{
1, if∃(s, s�) ∈ T ��, vval ∈ s�

0, otherwise
.

accuracy(WP,T ��) =
∑

s∈first(T ��)

∑
vval∈A|T

1 − |actual(vval, s, T ��) − predict(WP, s, vval)|
|A|T| × |f irst(T ��)|

 Machine Learning

1 3

Figure 11a–c show the accuracy of the predicted possible values w.r.t. the ratio of train-
ing data going from 1% to 100% with the three considered semantics.

Here, we also consider four trivial baselines that are random predictions and always pre-
dicting 0, 0.5 or 1.0, i.e., ∀s ∈ S

F,∀vval ∈ A|T :

• baseline_random(s, vval) = rand(0.0, 1.0)
• baseline_always_0.0(s, vval) = 0.0

• baseline_always_0.5(s, vval) = 0.5

• baseline_always_1.0(s, vval) = 1.0

Accuracy score for the random baseline is expected to be around 0.5 for every semantics
since the problem is equivalent to a binary classification, i.e., each atom can appear or not.
Accuracy score of the three fixed baselines is exactly 0.5 in synchronous case since transi-
tions are deterministic here: only one atom vval is possible (either v0 or v1) for each target
variable v for each feature state of the test set, i.e., always one of the two must be predicted
to 0.0 and the other one to 1.0. For asynchronous and general semantics the transitions
are non-deterministic, thus always predicting 0.0 or 1.0 for each target atoms will lead to
different accuracy score. Both semantics using previous value as default, it is more likely
for each atom to appear in a target state, thus always predicting 1.0 is expected to perform
better than 0.5 and always predicting 0.0 is expected to perform worst. That explain why, in
Fig. 11b, c we can observe an accuracy score of 0.6 to 0.8 for always predicting 1.0 and 0.2
to 0.4 for always predicting 0.0.

With synchronous semantics transitions, when given only 5% of the possible transitions,
GULA starts to clearly outperform the baseline on the test set for all benchmarks size. It
reaches more than 80% accuracy when given at least 40% of the transitions for benchmarks
with 6 variables and only 5% of input transitions is enough to obtain same performance
with 9 variables. These results show that the models learned by GULA effectively gener-
alise some meaningful behavior from training data over test data in a deterministic context.

For the non-deterministic case of asynchronous and general semantics the performance
of GULA are similar but the differences with the baselines that always predict 1.0 is
smaller. As stated before, since both semantics use previous value as default, it is more
likely for each atom to appear in a target state, thus predicting that all atoms are always
possible is less risky. Furthermore, the transition being non-deterministic, the way we
select the training set (see Fig. 10) may lead to have missing transitions from some feature
state in the training set, generating false negative example for GULA equivalent to noisy
data. Still, GULA start to outperforms the baseline that always predict 1.0 (and all others)
for the two semantics when given more than 50% of the possible transitions as input. The
performances of GULA also increase when considering more variables, with 9 variables
benchmarks 20% of transition is enough to obtain 80% accuracy over unseen test data for
asynchronous case and about 2% for general case. Performances are globally similar for
the three semantics, showing that our method can handle a bit of noise caused by missing
observations.

If one is only interested by prediction accuracy, it is certainly easier to achieve better
results using statistical machine learning methods like neural networks or random forest

Fig. 11 Accuracy of the WDMVLP learned by GULA and trivial baselines when predicting possible tar-
get atoms from unseen states with different amounts of training data of transitions from Boolean network
benchmarks with synchronous, asynchronous and general semantics

▸

Machine Learning

1 3

 Machine Learning

1 3

since prediction here is basically a binary classification for each target variables values.
In the cases where explainability is of interest, the rules used for the predictions and their
weights may be quite simple human readable candidates for explanations (i.e., exhibit
dynamic relations between biological interacting components). For a given feature state, a
WDMVLP provides (using Definition 30) for each target atom the likelihood of its occur-
rence in a transition but also the two rules (possibility/impossibility) that explain this pre-
diction as shown in Table 3. We consider the evaluation of explanation in the following
experiment.

7.3 GULA explanation quality

In this experiment, we evaluate the quality of the models learned by GULA in their ability
to correctly explain their predictions. Benchmarks and train/test sets generation is the same
as in previous experiment (see Fig. 10). The learned model must predict correctly the pos-
sibility for each target atom as previously, and also provide a rule that can explain the pre-
diction. When a target atom is possible (resp. impossible), we expect a rule of the optimal
program (resp. optimal program of impossibility) to be given as explanation. By computing
the Hamming distance between the rules used in the model learned from incomplete obser-
vations (PO(T

�),PO(T
�)) , and the optimal rules from the full observations (PO(T),PO(T)) ,

we can have an idea of how close we are from the theoretically optimal explanations. For
that, for each experiment, we compute the optimal program and the optimal program of
impossibility from the set of all transitions (T) before splitting it into train/test sets.

Fig. 11 (continued)

Machine Learning

1 3

A WDMVLP is then learned using GULA from the training set (T ′) as in previous
experiment. The learned WDMVLP is then used to predict from each feature state of the
test set (T ′′), the possibility of occurrence of each target atom according to Proposition 30
as well as a rule to explain this prediction. The forecast probabilities and explanations are
compared to the observed values of the test set and the rules of the optimal programs. For
all vval ∈ A|T and s ∈ first(T ��) , we define:

To compare the forecast rules and the ideal rules, we consider the Hamming distance over
their bodies:

We expect both correct forecast of possibility and explanation, in the sense that an incorrect
prediction yields the highest error (1.0) while a good prediction yields an error depending
on the quality of the explanation (0.0 when an ideal rule is used). This is summed up in the
following error function:

This allows to compute an explanation score, combining both accuracy and explanation
quality from the learned WDMVLP , WP, over the test set T ′′:

Example 23 Let F = {at−1, bt−1, ct−1} , T = {at, bt, ct} , a complete set of transitions
T ⊆ S

F × S
T , a train set of transitions T ′ ⊆ T and a test set of transitions T ′′ ⊆ T with

T � ∩ T �� = � such that:

• – P (T) = a1t a1t 1, a
1
t b1t 1 c1t 1, a

1
t b0t 1 c0t 1, a

0
t c0t 1, ...

• – P (T) = a1t a0t 1, a
1
t b0t 1, a

1
t c0t 1, a

0
t c1t 1, ...

• Let us suppose that from the test feature state s := a1t 1, b
1
t 1, c

1
t 1 , the target atom

a1
t
 is observed in some transitions from s in T ′′ thus we expect a probability of 1.0 and a

rule from PO(T) that matches s and produce a1
t
 (any of the blue rules) as explanation:

• – actual(a1t , s, T
′′) = (a1t , 1.0, a1t a1t 1, a

1
t b1t 1 c1t 1)

• Let WP be a WDMVLP learned from T ′ and we suppose that:

• predict_and_explain(WP, s, a1
t
) = (a1

t
, 1.0, a1

t
← b1

t−1
)

actual(vval, s, T ��) =

{
(1, {R ∈ PO(T) ∣ head(R) = vval ∧ R ⊓ s}), if∃(s, s�) ∈ T ��, vval ∈ s�

(0, {R ∈ PO(T) ∣ head(R) = vval ∧ R ⊓ s}), otherwise
.

distance(R,R�) = |(body(R) ∪ body(R�)) ⧵ (body(R) ∩ body(R�))|.

error((forecast_proba, forecast_rule),
(actual_proba, actual_rules)) =

⎧
⎪⎪⎨⎪⎪⎩

1.0 if forecast_rule = ∅
1.0 if forecast_proba = 0.5

1.0 if forecast_proba > 0.5 ∧ actual_proba = 0

1.0 if forecast_proba < 0.5 ∧ actual_proba = 1
min({distance(forecast_rule,R)∣R∈actual_rules})

�F� otherwise

explanation_score(WP,T ��) =

∑
s∈first(T ��)

∑
vval∈A|T

1 − |error(predict_and_explain(WP, s, vval), actual(vval, s, T ��))|
|A|T| × |f irst(T ��)|

 Machine Learning

1 3

Ta
bl

e
5

 E
xa

m
pl

e
of

 p
re

di
ct

io
n

of
 a

 W
D
M

V
L
P

 fr
om

 a
 n

on
-o

bs
er

ve
d

fe
at

ur
e

st
at

e
us

in
g

D
efi

ni
tio

n
30

 a
nd

 a
cc

ur
ac

y/
ex

pl
an

at
io

n
sc

or
in

g

Ta
rg

et
 a

to
m

A
ct

ua
l v

al
ue

Pr
ed

ic
te

d
va

lu
e

A
cc

ur
ac

y
A

ct
ua

l P
O
(T
) r

ul
es

A
ct

ua
l P

O
(T
) r

ul
es

Po
ss

ib
ili

ty
 e

xp
la

na
tio

n
Im

po
ss

ib
ili

ty
 e

xp
la

na
tio

n
Ex

pl
an

a-
tio

ns
co

re

a
0

1.
0

0.
95

0.
95

[a
0
←

a
0
]

[]
(5

4,
 a

0
←

a
0
)

(3
, a
0
←

c0
∧
d
0
∧
f0

∧
g
0
)

1.
0

a
1

0.
0

0.
05

0.
95

[]
[a

1
←

a
0
]

(3
, a
1
←

c0
∧
d
0
∧
f0

∧
g
0
)

(5
4,

 a
1
←

a
0
)

1.
0

b
0

1.
0

0.
93

0.
93

[b
0
←

d
0
]

[]
(5

8,
 b
0
←

d
0
)

(4
, b
0
←

a
0
∧
b
0
∧
g
0
∧
h
1

)

1.
0

b
1

0.
0

0.
07

0.
93

[]
[b

1
←

d
0
]

(4
, b
1
←

a
0
∧
b
0
∧
g
0
∧
h
1

)

(5
8,

 b
1
←

d
0
)

1.
0

c0
1.

0
0.

88
0.

88
[c

0
←

h
1
∧
i1

 ,
c0

←
c0

∧
f0

]
[]

(2
8,

 c
0
←

d
0
∧
h
1)

(4
, c0

←
a
0
∧
b
0
∧
d
0
∧
g
0

)

0.
8

c1
0.

0
0.

12
0.

88
[]

[c
1
←

h
1
∧
i1

 ,
c1

←
c0

∧
f0

]
(4

, c1
←

a
0
∧
b
0
∧
d
0
∧
g
0

)

(2
8,

 c
1
←

d
0
∧
h
1)

0.
8

d
0

1.
0

0.
85

0.
85

[d
0
←

i1
]

[]
(5

0,
 d

0
←

i1
)

(9
, d

0
←

b
0
∧
f0

∧
g
0
)

1.
0

d
1

0.
0

0.
15

0.
85

[]
[d

1
←

i1
]

(9
, d

1
←

b
0
∧
f0

∧
g
0
)

(5
0,

 d
1
←

i1
)

1.
0

e0
1.

0
0.

88
0.

88
[e

0
←

f0
]

[]
(5

1,
 e
0
←

f0
)

(7
, e

0
←

b
0
∧
g
0
∧
i1

)
1.

0

e1
0.

0
0.

12
0.

88
[]

[e
1
←

f0
]

(7
, e

1
←

b
0
∧
g
0
∧
i1

)
(5

1,
 e
1
←

f0
)

1.
0

f0
0.

0
0.

42
0.

58
[]

[f
0
←

c0
∧
d
0
∧
g
0
 ,

f0
←

d
0
∧
g
0
∧
j1

]
(1

1,
 f

0
←

a
0
∧
b
0
∧
f0

)
(1

5,
 f

0
←

d
0
∧
g
0
∧
j1

)
1.

0

f1
1.

0
0.

58
0.

58
[f

1
←

c0
∧
d
0
∧
g
0
 ,

f1
←

d
0
∧
g
0
∧
j1

]
[]

(1
5,

 f
1
←

d
0
∧
g
0
∧
j1

)
(1

1,
 f

1
←

a
0
∧
b
0
∧
f0

)
1.

0

g
0

0.
0

0.
36

0.
64

[]
[g

0
←

a
0
∧
d
0
∧
j1

]
(9

, g
0
←

b
0
∧
g
0
∧
h
1)

(1
6,

 g
0
←

a
0
∧
d
0
∧
j1

)
1.

0

g
1

1.
0

0.
64

0.
64

[g
1
←

a
0
∧
d
0
∧
j1

]
[]

(1
6,

 g
1
←

a
0
∧
d
0
∧
j1

)
(9

, g
1
←

b
0
∧
g
0
∧
h
1)

1.
0

h
0

1.
0

0.
40

0.
40

[h
0
←

b
0
∧
c0

∧
d
0
∧
i1

]
[]

(8
, h

0
←

b
0
∧
c0

∧
d
0
∧
i1

)
(1

2,
 h
0
←

a
0
∧
g
0
∧
h
1)

0.
0

h
1

0.
0

0.
60

0.
40

[]
[h

1
←

b
0
∧
c0

∧
d
0
∧
i1

]
(1

2,
 h
1
←

a
0
∧
g
0
∧
h
1)

(8
, h

1
←

b
0
∧
c0

∧
d
0
∧
i1

)
0.

0

Machine Learning

1 3

Ta
bl

e
5

 (c
on

tin
ue

d)

Ta
rg

et
 a

to
m

A
ct

ua
l v

al
ue

Pr
ed

ic
te

d
va

lu
e

A
cc

ur
ac

y
A

ct
ua

l P
O
(T
) r

ul
es

A
ct

ua
l P

O
(T
) r

ul
es

Po
ss

ib
ili

ty
 e

xp
la

na
tio

n
Im

po
ss

ib
ili

ty
 e

xp
la

na
tio

n
Ex

pl
an

a-
tio

ns
co

re

i0
0.

0
0.

10
0.

90
[]

[i0
←

c0
∧
d
0
 ,

i0
←

d
0
∧
j1

]
(4

, i
0
←

a
0
∧
b
0
∧
g
0
∧
h
1

)
(3

5,
 i0

←
d
0
∧
j1

)
1.

0

i1
1.

0
0.

90
0.

90
[i1

←
c0

∧
d
0
 ,

i1
←

d
0
∧
j1

]
[]

(3
5,

 i1
←

d
0
∧
j1

)
(4

, i
1
←

a
0
∧
b
0
∧
g
0
∧
h
1

)
1.

0

j0
0.

0
0.

63
0.

37
[]

[j
0
←

a
0
∧
c0

∧
d
0
∧
j1

]
(1

2,
 j
0
←

e1
∧
f0

∧
g
0
)

(7
, j

0
←

a
0
∧
c0

∧
d
0
∧
j1

)
0.

0

j1
1.

0
0.

37
0.

37
[j
1
←

a
0
∧
c0

∧
d
0
∧
j1

]
[]

(7
, j

1
←

a
0
∧
c0

∧
d
0
∧
j1

)
(1

2,
 j
1
←

e1
∧
f0

∧
g
0
)

0.
0

 Machine Learning

1 3

• The predicted possibility is correct, thus the explanation score will depend on the
explanation.

• The explanation a1
t
← b1

t−1
 has a Hamming distance of 2 with a1

t
← a1

t−1
 (the conditions

on at−1 and bt−1 are wrong, the condition on ct−1 is correct), thus the error will be 2

|F| =
2

3

.
• The Hamming distance is only of 1 with rule a1

t
← b1

t−1
∧ c1

t−1
 (the conditions on at−1

and bt−1 are correct, the condition on ct−1 is wrong), thus the error will be 1

|F| =
1

3
.

• The final score for target a1
t
 is 1 − min({ 2

3
,
1

3
}) ≈ 0.66

The prediction is correct for target a1
t
 from s, but the explanation a1

t
← a1

t−1
 is not perfect.

Still, 66% of its conditions correspond to an optimal rule a1t ← b1t−1 ∧ c1t−1 that can
explain this prediction.

• Now let us suppose that from the test feature state s := a0t 1, b
1
t 1, c

0
t 1 , the target

atom a1
t
 is never observed in any transition from s in T ′′ . Thus, we expect a predicted

probability of 0.0 and, as an explanation, a rule from PO(T) that matches s and has a1
t
 as

conclusion (any of the red rules):

– – actual(a1t , s, T
′′) = (a1t , 0.0, a1t a0t 1, a

1
t c0t 1)

• Let WP be a WDMVLP and suppose that:

• predict_and_explain(WP, s, a1
t
) = (a1

t
, 0.0, a1

t
← �)

• The explanation a1
t
← ∅ has an Hamming distance of 1 when compared with a1

t
← a0

t−1

(the condition on at−1 is wrong, the conditions on bt−1 and ct−1 are correct), thus the
error will be 1

|F| =
1

3
.

• We obtain the same Hamming distance of 1 when compared with a1
t
← c0

t−1
.

• The final score for target a1
t
 from s is 1 − min({ 1

3
,
1

3
}) ≈ 0.66.

The prediction is correct for target a1
t
 from s, but the explanation a1

t
← ∅ is not perfect.

Still, 66% of its conditions correspond to an optimal rules of impossibility (a1t a0t 1 and
a1t c0t 1) that can explain this prediction.

It is important to note that the metric we consider here only evaluates the quality of the
explanation in the predictions, not of the entire program. Also this metrics can only be used
when the actual real program is known and thus cannot be used to evaluate a model when
only observations are available. Table 5 shows an example of scoring of the predictions
of a WDMVLP (both accuracy and explanation score) from the feature state s = {a0

t−1
,

b0
t−1

, c0
t−1

, d0
t−1

, e1
t−1

, f 0
t−1

, g0
t−1

, h1
t−1

, i1
t−1

, j1
t−1

} where F = {at−1,… , jt−1}, T = {at,… , jt}
and ∀v ∈ F ∪ T, ���(v) = {0, 1} . This example was generated using the Boolean net-
work “faure_cellcycle” synchronous transitions (see Table 4) where we replaced variable
names by letters from a to j and omitted time subscript to make the table more compact
and easy to read. From the set of all transitions T are computed PO(T) and PO(T) . T is
also partitioned into a training set T ′ (about 10% of T) and a test set T ′′ (about 20% of T)
such that T � ∩ T �� = � . Here, in the test set, there is only one possible transition from s:

Fig. 12 Explanation score of the WDMVLP learned by GULA and trivial baselines when predicting pos-
sible target atoms from unseen states with different amounts of training data of the transitions from Boolean
network benchmarks with synchronous, asynchronous and general semantics

▸

Machine Learning

1 3

 Machine Learning

1 3

(s, s�), s� = {a0, b0, c0, d0, e0, f 1, g1, h0, i1, j1} (deterministic transition). Thus, for atoms that
appear in s′ , the model is expected to predict a probability of 1.0 (> 0.5) and 0.0 (< 0.5)
for the others. Furthermore, when correctly predicting the occurrence it should also pro-
vide one of the corresponding optimal rules (possibility rule if predicted possible, rule of
impossibility otherwise). For instance, for a0 , the model predicted a likelihood of 0.95, and
since the atom was effectively observed in s′ , a likelihood of 1.0 is expected, thus its accu-
racy is 0.95. For a1 , since it is not in s′ , we expect a likelihood of 0.0; because the predicted
likelihood is 0.05, its accuracy is also 0.95. Regarding the explanation score, the accu-
racy is checked before computing the rule distance with the expected optimal rules. For
a0 , the likelihood prediction is above 0.5, thus the model considers a0 possible and since it
is indeed observed in s′ , the explanation score depends of the prediction possibility rule R;
since R ∈ PO(T) , the explanation is considered perfect and the score is 1.0. For a0 , we have
another perfect case of explanation but for the impossibility scenario: the atom a0 is not in
s′ , it is predicted unlikely, and the impossibility rule of the prediction R′ is in PO(T) . When
considering instead h0 and h1 , we have a wrong likelihood prediction, thus the explanation
score is directly 0.0. Regarding c0 , the likelihood prediction is correct, and the provided
possibility rule R ∶= c0 ← d0 ∧ h1 has (at most) 8 conditions out of 10 that are in common
with a rule of PO(T) (that is, rule c0 ← h1 ∧ i1): indeed, both rules have h1 as condition,
but R misses i1 and contains a spurious d0 , while the 7 remaining feature variables do not
appear in both rules, leading to an explanation score of 8∕10 = 0.8 . We observe the same
for the impossibility rules of c1 , although the score could have been different than for c0 .
In this example, we see that optimal rules of the same target atoms matching the same

Fig. 12 (continued)

Machine Learning

1 3

feature state can be very different (for instance, the two actual PO(T) rules of c1 that have
no feature atom in common) that is why we consider the minimal Hamming distance in our
scoring.

As a final comment, we can observe that for a given target variable, the rules for one
value (for instance, a0) in PO(T) have exactly the same body than the rules for the other
value (for instance, a1) in PO(T) . This is due to the Boolean deterministic nature of the
example tackled here, but it could not be the case in general (multi-valued or non-deter-
ministic case).

Figure 12a–c show the results of the evolution of the explanation score when learning
a WDMVLP using GULA from approximately 1% to 80% of the transitions of a Boolean
network. We also use 4 trivial methods as baselines, each having a perfect value predic-
tion, thus their score is only influenced by their explanation. The baselines explanations are
trivial and take the form of a random rule, no rules, the most specific rule, the most general
rule, i.e., ∀s ∈ firstT ��,∀vval ∈ A|T, perfect_prediction = actual(vval, s, T ��):

• baseline_random_rules(s, vval) = (perfect_prediction, vval ← body ⊆ s)
• baseline_no_rules(s, vval) = (perfect_prediction,∅)
• baseline_most_general_rules(s, vval) = (perfect_prediction, vval ← �)
• baseline_most_specific_rules(s, vval) = (perfect_prediction, vval ← s)

The random baseline is expected to score around 0.5, while the no rule baseline will
always have a score of 0.0. The most specific rule baseline will have all conditions of each
expected rule, but also unnecessary ones. The most general rules will miss all specific con-
ditions but avoid all unnecessary ones. Since optimal rules rarely use more than half of the
total number of variable as conditions (at least for these Benchmarks), the most general
rule is expected to have a better score in average compared to most specific. That’s why
we observe random rule score around 0.4 to 0.5, most specific score around 0.1 to 0.4 and
most general score around 0.6 to 0.8 for all semantics considered.

With synchronous semantics transitions, when given only 50% of the possible transi-
tions, GULA start to clearly outperform the baselines on the test set for all benchmarks
size. It reaches more than 80% accuracy when given at least 25% of the transitions for
benchmarks with 6 variables and only 10% of input transitions is enough to obtain same
performance with 9 variables. These results show that GULA, in a deterministic context,
effectively learns rules that are close to the optimal ones even with a partial set of observa-
tions, showing its capacity in practice to generalize to unseen data. Such results will help to
validate, using the data, models that were previously built and designed by the sole expert
knowledge of the biological experts. Meanwhile we cannot rely only on deterministic
semantics, as well-known models from the literature (e.g., the switch between the lytic and
lysogenic cycles of the lambda phage (Thieffry and Thomas, 1995), which is composed of
four components in interaction) require non-determinism to be captured efficiently.

For the non-deterministic case of asynchronous and general semantics the performance
of GULA are similar but more observation are needed to obtain same performances. Like
for previous experiments, in those cases we can have missing transitions for some of the
observed feature states, leading to false negative examples extraction in GULA. This is
more likely to happen with asynchronous semantics, since only one transition will show
the change of a specific variable value from a given state while the general semantics will
have several subset of change combined in a transitions. It also makes transitions less valu-
able in quantity of information in the asynchronous case, i.e., only one variable changes

 Machine Learning

1 3

its value, starting from the second transition from the same state, all transitions only pro-
vide one positive example for the only variable that is changing its value. Still, GULA
starts to outperform the most general rule baseline (and all others) for the two semantics
when given more than 50% of the possible transitions as input. This shows again that our
method can handle a bit of noise caused by missing observations also at the explanation
level. The performances of GULA are similar when considering more variables here, the
gain observed in value precision compensating the additional possibility for explanation
error introduced by new variables.

It is important to recall that the baselines used here have perfect value prediction while
our method also need to predict proper value to have it’s explanation evaluated. As stated
before, it is certainly easier to achieve better prediction results using statistical machine
learning methods. Furthermore, when good prediction model can be built from training
data, it can replace our learned model to forecast the value but could be used to improve
the output of GULA. Indeed, one can use such models to directly generate positive/nega-
tive examples of each atom from observed and unseen states that can be given as input to

Fig. 13 Boolean functions of the “faure_cellcycle” Boolean network (Fauré et al., 2006), in .bnet file for-
mat from PyBoolNet (Klarner et al., 2016) (top) and the equivalent DMVLP (bottom). The rules colored in
red are missing from the final learned model of Fig. 14 (Color figure online)

Machine Learning

1 3

GULA in place of the raw observations. It can help to deal with noisy data and improve
the diversity of initial state that can speed up and improve the quality of the rules of GULA
and thus also its approximated version (Ribeiro et al., 2020). Actually, as long as feature
and target variables are discrete (or can be properly discretized), GULA (or its approxi-
mated version for big systems) could be used to generate rules that could explain in a more
human readable way the behavior of other less explainable models. Such a combination of
predictive statistical model and WDMVLP learning study is out of the scope of this paper
but will be an interesting application part of our future works. This would not only allow
to output relevant predictions w.r.t. dynamical trajectories of biological systems but also
help to get a precise understanding of the underlying key interactions between components.
Such an approach can also be considered for a broader range of applications. In Ortega
et al. (2020), the authors investigate the promises conveys to provide declarative explana-
tions in classical machine learning by neural networks in the context of automatic recruit-
ment algorithms.

7.4 Readability of the model

So far we formalized methods and proposed algorithms in order to learn models of dynam-
ical systems which predictions can be explained by human readable rules. Experiments and
metrics of the previous sections evaluate the use of the model regarding both accuracy of
predictions and quality of the explanation of the predictions. But one could also be inter-
ested about the explainability of the model itself: we could consider the readability of the
program learned not only its use. In this section we do a short case study of the program
learned by GULA on one of the benchmarks used in the previous experiments. Here we
consider again the “faure_cellcycle” Boolean network (Fauré et al., 2006) that is composed
of ten variables. Starting from the seminal contribution of Novak and Tyson, who proposed
a set of ordinary differential equations (ODE) to model the mammalian cell cycle (Novák
and Tyson, 2004, the authors of Fauré et al. (2006) synthesized the knowledge about the
core control of mammalian cell division into a single logical model. This model, whose
biological significance is high, appears as a good candidate to illustrate the impact of our
contribution. As in the previous experiment, the original Boolean network is converted into
its DMVLP equivalent as shown in Fig. 13.

A training set and test set are randomly produced from all its synchronous transitions as
in Fig. 10. Here we take about 10% of the transitions as the training set T ′ and 20% as the
test set T ′′ , with no common initial states in the two sets, as previously. The WDMVLP
(PO(T

�),PO(T
�)) learned by GULA using the training set T ′ as input achieves 87.97% accu-

racy and 94.85% explanation score. Each prediction explanation of the model is at most 40
rules: 10 Boolean variables make 20 possible atoms, and each target atom probability is
explained by a rule of possibility and impossibility, thus multiplying by 2. The prediction
explanation could arguably be considered readable but the program itself contains several
thousands rules, in this example run: |PO(T

�)| = 9439 and |PO(T
�)| = 4520.

To make the program more human readable, we can use a heuristic. What is readable or
not depends of the context; for this case study, we will consider that a total of 40 rules is
a reasonable number for our model and that rules with more than four conditions are not
readable (thus bounding the maximal size of clauses observed in the Boolean network). As
we have 10 variables in the studied Boolean network, we force to have no more than four
rules per variable to achieve at most 40 rules of activation (rule with value of 1 as head)
that will form our final readable model. For this, the best four rules for each possible head

 Machine Learning

1 3

Fig. 14 The set of activation rules of the WDMVLP (PO(T
�),PO(T

�)) learned by GULA after pruning for read-
ability. The rules that appear in the original DMVLP of Fig. 13 are colored in blue (Color figure online)

Machine Learning

1 3

are selected according to their weight, the others are filtered out. We end up with at most
80 rules of possibility (resp. impossibility).

Applying this heuristic on (PO(T
�),PO(T

�)) , we obtain a new WDMVLP
WP = (WP�,WP��) , with WP� ⊆ PO(T

�) and WP�� ⊆ PO(T
�) (given in “Appendix” in

Fig. 16). The accuracy of WP is 97.45% (+9.47%) and explanation score is 98.37%
(+3.52%). In this example, the heuristic improved both scores but it could also reduce it; an
important aspect of such a heuristic is to not lose too much prediction/explanation quality
for readability. Furthermore, the rules of impossibility can now be ignored since they are
only used for probabilistic predictions. Also, since we are considering only Boolean varia-
bles (and we know the system is determinist) we can also discard the rules with head atoms
encoding the false value (typically: all atoms x0). We end up with the 40 activation rules of
Fig. 14 and can compare them to the original rules of the Boolean network.

Here, 20 of the 22 original rules are in the final output, there are two missing rules
(shown in Fig. 13) and 20 spurious rules. Most of the original program is found and the
missing/spurious rules have a small impact as shown by the accuracy/explanation score.
The presence of spurious rules is due to the lack of training observations, a few more nega-
tive examples could specialize them enough so that they become dominated by the original
rules learned. For example, the three spurious rules of Cdc201

t
 will end up needing CycB1

t−1

as condition to remain consistent (since it is the only way to have Cdc201
t
 in the original

program) with the observation and will be dominated by Cdc201
t
← CycB1

t−1
 and discarded.

Discarding those spurious rules without the needed observation is not trivial, we could use
a minimal weight of 10 for example to discard most of them but we would lose some origi-
nal rules like the one of p271

t
 . The weight of the rules, which is already used as a degree

of confidence for the prediction of the dynamics, could also be used on the static model as
a degree of confidence of the correctness of the rules. More complex analysis of the rule
conditions and its relation with other rules could produce a better pruning, for example we
could detect rules that will never be used for prediction, i.e., when another rule with bet-
ter weight can always be applied. Developing such heuristics to ensure readability (in the
sense simplicity) of the model itself would be interesting and the subject of future works.

8 Related work

8.1 Modeling dynamics

In modeling of dynamical systems, the notion of concurrency is crucial. Historically, two
main dynamical semantics have been used in the field of systems biology: synchronous
[Boolean networks of Stuart Kauffman (1969)] and asynchronous [René Thomas’ networks
(1991)], although other semantics are sometimes proposed or used (Fages, 2020).

The choice of a given semantics has a major impact on the dynamical features of a
model: attractors, trap domains, bifurcations, oscillators, etc. The links between modeling
frameworks and their update semantics constitute the scope of an increasing number of
papers. In Inoue (2011), the author exhibited the translation from Boolean networks into
logic programs and discussed the point attractors in both synchronous and asynchronous
semantics. In Noual and Sené (2018), the authors studied the synchronism-sensitivity of
Boolean automata networks with regard to their dynamical behavior (more specifically
their asymptotic dynamics). They demonstrate how synchronism impacts the asymptotic
behavior by either modifying transient behaviors, making attractors grow or destroying

 Machine Learning

1 3

complex attractors. Meanwhile, the respective merits of existing synchronous, asynchro-
nous and generalized semantics for the study of dynamic behaviors has been discussed
by Chatain and Paulevé in a series of recent papers. In Chatain et al. (2015), they intro-
duced a new semantics for Petri nets with read arcs, called the interval semantics. Then
they adapted this semantics in the context of Boolean networks (Chatain et al., 2018), and
showed in Chatain et al. (2020) how the interval semantics can capture additional behav-
iors with regard to the already existing semantics. Their most recent work demonstrates
how the most common synchronous and asynchronous semantics in Boolean networks
have three major drawbacks that are to be costly for any analysis, to miss some behaviors
and to predict spurious behaviors. To overcome these limits, they introduce a new para-
digm, called Most Permissive Boolean Network which offers the guarantee that no realiz-
able behavior by a qualitative model will be missed (Paulevé et al., 2020).

The choice of a relevant semantics appears clearly not only in the recent theoretical
works bridging the different frameworks, but also in the features of the software provided
to the persons involved in Systems Biology modeling [e.g., the GinSIM tool offers two
updating modes, that are fully synchronous and fully asynchronous (Naldi et al. 2018)].
Analysis tools offer the modelers the choice of the most appropriate semantics with regard
to their own problem.

8.2 Learning dynamics

In this paper, we proposed new algorithms to learn the dynamics of a system independently
of its update semantics, and apply it to learn Boolean networks from the observation of
their states transitions. Learning the dynamics of Boolean networks has been considered
in bioinformatics in several works (Liang et al., 1998; Akutsu et al., 2003; Pal et al., 2005;
Lähdesmäki et al. 2003; Fages 2020). In biological systems, the notion of concurrency is
central. When modeling a biological regulatory network, it is necessary to represent the
respective evolution of each component of the system. One of the most debated issues with
regard to semantics targets the choice of a proper update mode of every component, that
is, synchronous [Boolean networks of Stuart Kauffman (1969)], or asynchronous [René
Thomas’ networks (1991)], or more complex ones. The differences and common features
of different semantics w.r.t. properties of interest (attractors, oscillators, etc.) have thus
resulted in an area of research per itself, especially in the field of Boolean networks (Noual
& Sené, 2018; Chatain et al. 2018, 2020).

In Fages (2020), Fages discussed the differential semantics, stochastic semantics,
Boolean semantics, hybrid (discrete and continuous) semantics, Petri net semantics, logic
programming semantics and some learning techniques. Rather than focusing on particular
semantics, our learning methods are complete algorithms that learn transition rules for any
memory-less discrete dynamical systems independently of the update semantics.

As in Pal et al. (2005), we can also deal with partial transitions, but will not need to
identify or enumerate all possible complete transitions. Pasula et al. (2007) learns a model
as a probability distribution for the next state given the previous state and an action. Here,
exactly one dynamic rule fires every time-step, which corresponds to the asynchronous
semantics of Definition 16.

In Schüller and Benz (2018), action rules are learned using inductive logic program-
ming but require as input background knowledge. In Bain and Srinivasan (2018), the
authors use logic program as a meta-interpreter to explain the behaviour of a system as
stepwise transitions in Petri nets. They produce new possible traces of execution, while our

Machine Learning

1 3

output is an interaction model of the system that aims to explain the observed behavior. In
practice, our learned programs can also be used to predict unobserved behavior using some
heuristics as shown in the experiments of Sect. 7.

Klarner et al. (2014) provide an optimization-based method for computing model reduc-
tion by exploiting the prime implicant graph of the Boolean network. This graph is simi-
lar to the rules of PO(T) that can be learned by GULA. But while Klarner et al. (2014)
requires an existing model to work, we are able to learn this model from observations.

Lähdesmäki et al. (2003) propose algorithms to infer the truth table of Boolean func-
tions of gene regulatory network from gene expression data.

Each positive (resp. negative) example represents a variable configuration that makes a
Boolean function true (resp. false).

The logic programs learned by GULA are a generalization of those truth tables.

8.3 Inductive logic programming

From the inductive logic programming point of view, GULA performs a general to spe-
cific search, also called top-down approach. Algorithmically, GULA shares similarities
with Progol (Muggleton, 1995, 1996) or Aleph (Srinivasan, 2001), two state-of-the-art ILP
top-down approaches. Progol combines inverse entailment with general-to-specific search
through a refinement graph. GULA is limited to propositional logic while those two meth-
ods handle first order predicates. Learning the equivalent of DMVLP rules should be pos-
sible using Progol or Aleph assuming some proper encoding. But both methods would only
learn enough rules to explain the positive examples, whereas GULA outputs all optimal
rules that can explain these examples. The completeness of the output program is criti-
cal when learning constraint of a CDMVLP to guarantee the exact reproduction of the
observed transitions. Thus, nor Progol or Aleph can replace GULA in the Synchronizer
algorithm to learn the optimal CDMVLP . But the completeness of the search of GULA
comes with a higher complexity cost w.r.t. Progol and Aleph. The search of Progol and
Aleph is guided by positives examples. Indeed, given a positive example, Progol performs
an admissible A*-like search, guided by compression, over clauses which subsume the
most specific clause (corresponding to the example). The search of GULA is guided by
negative examples. It can also be seen as an A*-like search but for all minimal clauses that
subsume none of the most specific clauses corresponding to the negative examples.

Evans et al. (2019, 2020) propose the Apperception Engine, a system able to learn pro-
grams from a sequence of state transitions. The first difference is that our approach is lim-
ited to propositional atoms while first order logic is considered in this approach. Further-
more, the Aperception Engine can predict the future, retrodict the past, and impute missing
intermediate values, while we only consider rules to explain what can happen in a next
state. But our input can represent transitions from multiple trajectories, while they consider
a single trajectory and thus our setting can be considered as a generalized apperception task
in the propositional case. Another major difference is that they only consider deterministic
inputs while we also capture non-deterministic behaviors. Given the same kind of single
trajectory and a DMVLP (or CDMVLP), it should be possible to produce candidates past
states or to try to fill in missing values. But in practice that would suppose to have many
other transitions to build such DMVLP using GULA while the Aperception Engine can
perform the task with only the given single trajectory. This system can also produce a set
of constraints as well as rules. The constraints perform double duty: on the one hand, they
restrict the sets of atoms that can be true at same time; on the other hand, they ensure what

 Machine Learning

1 3

they call the frame axiom: each atom remains true at the next time-step unless it is overrid-
den by a new fact which is incompatible with it. The constraints of CDMVLP can prevent
some combinations of atoms to appear, but only in next states, while in Evans et al. (2019,
2020), constraints can prevent some states to exist anywhere in the sequence, and ensure
the conservation of atoms. From Theorem 7, the conservation can also be reproduced by
CDMVLP by the right combination of optimal rules and constraints.

In Law et al. (2016) the authors propose a general framework named ILASP for learning
answer set programs. ILASP is able to learn choice rules, constraints and preferences over
answer sets. Our problem settings is related to what is called “context-dependant” tasks in
ILASP. Our input can be straightforwardly represented using ILASP when variables are
Boolean, but the learned program does not respect our notion of optimality, and thus our
learning goals differ, i.e., we guarantee to miss no potential dynamical influence. Indeed,
ILASP minimizes a program as a whole, i.e., the sum of the length of all rules and con-
straints; in contrast, we aim to minimize each rule and constraint individually and expect to
find as many of them in practice and all of them in theory to ensure good properties regard-
ing dynamical semantics.

Katzouris et al. (2015) proposes an incremental method to learn and revise event-based
knowledge in the form of Event Calculus programs using XHAIL (Ray, 2009), a system
that jointly abduce ground atoms and induce first-order normal logic programs. XHAIL
needs to be provided with a set of mode declarations to limit the search space of possible
induced rules, while our method do not require background knowledge. Still it is possible
to exploit background knowledge with GULA: for example one could add heuristic inside
the algorithm to discard rules with “too many” conditions; influences among variables, if
known, could also be exploited to reduce possible bodies. Finally, XHAIL does not model
constraints, thus is not able to prevent some combinations of atoms to appear in transitions,
which can be achieve using our Synchronizer.

General research about evaluation of explainability in AI systems has been led into
two major directions (Islam et al., 2020). One of them is about the evaluation of model
complexity, while the second one focuses on human evaluation of explainability based on
experimental studies involving a set of humans. Especially in the ILP litterature, Muggle-
ton et al. (2018) the authors study the comprehensibility of logic programs and provide a
definition of comprehensibility of hypotheses which can be estimated using human partici-
pant trials. In this work they evaluate the readability of entire programs while our explain-
ability metric only considers the quality of the rules used for a prediction in a learned
model. Furthermore, our metric evaluates a learned model against an ideal model that we
consider readable at least by the experts that build it by hand, i.e., the biologists who build
the Boolean network. Thus our metric cannot be used on a program alone contrary to the
study of Muggleton et al. (2018) but requires the knowledge of the original program. The
goal of our proposed explanation metric is to assess how the dynamics of a learned pro-
gram approaches an expected one, not to provide a readability measure. This is done by
considering both the choice taken (the value predicted) and the way the choice is made (the
rules used).

Machine Learning

1 3

9 Conclusions

While modeling a dynamical system, the choice of a proper semantics is critical for the
relevance of the subsequent analysis of the dynamics. The works presented in this paper
aim to widen the possibilities offered to a system designer in the learning phase. Until now,
the systems that the LFIT framework handles were restricted to synchronous deterministic
dynamics. However, many other dynamics exist in the field of logical modeling, in particu-
lar the asynchronous and generalized semantics which are of deep interest to model biolog-
ical systems. In this paper, we proposed a modeling of memory-less multi-valued dynamic
systems in the form of annotated logic programs and a first algorithm, GULA, that learns
optimal programs for a wide range of semantics (see Theorem 1) including notably the
asynchronous and generalized semantics. But the semantics need to be assumed to use the
learned model, in order to produce predictions for example. Our second proposition is a
new approach that makes a decisive step in the full automation of logical learning of mod-
els directly from time series, e.g., gene expression measurements along time (whose intrin-
sic semantics is unknown or even changeable). The Synchronizer algorithm that we pro-
posed is able to learn a whole system dynamics, including its semantics, in the form of a
single propositional logic program. This logic program explains the behavior of the system
in the form of human readable propositional logic rules, as well as, be able to reproduce the
behavior of the observed system without the need of knowing its semantics. Furthermore,
the semantics can be explained, without any previous assumption, in the form of human
readable rules inside the logic program.

This provides a precious output when dealing with real-life data coming from, e.g., biol-
ogy. Typically, time series data capturing protein (i.e., gene) expressions come without any
assumption on the most appropriate semantics to capture the relevant dynamical behaviors
of the system. The methods introduced in this paper generate a readable view of the rela-
tionships between the different biological components at stake. GULA can be used when
biological collaborators provide partial observations (as shown by our experiments), for
example when addressing gene regulatory networks. Meanwhile the Synchronizer algo-
rithm is of interest for systems with the full set of observations, e.g., when refining a model
that was manually built by experts.

We took care to show the benefits of our approach on several benchmarks. While sys-
tems with ten components are able to capture the behavior of complex biological systems,
we exhibit that our implementation is scalable to systems up to 10 components on a com-
puter as simple as a single-core computer with a 1000 seconds time-out. Further work will
consist in a practical use of our method on open problems coming from systems biology.

An approximate version of the method is a necessity to tackle large systems and is under
development (Ribeiro et al., 2020). In addition, lack of observations and noise handling
is also an issue when working with biological data. Data science methodologies and deep
learning techniques can then be good candidates to tackle this challenge.

The combination of such techniques to improve our method may be of prime interest to
tackle real data.

Appendix 1: Proofs of Sect. 2

Lemma 1 (Double Domination Is Equality) Let R1,R2 be two MVL rules. If R2 ≥ R1 and
R1 ≥ R2 then R1 = R2.

 Machine Learning

1 3

Proof Let R1,R2 be two MVL rules such that R2 ≥ R1 and R1 ≥ R2 . Then
head(R1) = head(R2) and body(R1) ⊆ body(R2) and body(R2) ⊆ body(R1) , hence
body(R1) ⊆ body(R2) ⊆ body(R1) thus body(R1) = body(R2) and R1 = R2 . ◻

Proposition 1 (Uniqueness of Optimal Program) Let T ⊆ S
F × S

T . The MVLP optimal
for T is unique and denoted PO(T).

Proof Let T ⊆ S
F × S

T . Assume the existence of two distinct MVLP s optimal for T,
denoted by PO1

(T) and PO2
(T) respectively. Then w.l.o.g. we consider that there exists a

MVL rule R such that R ∈ PO1
(T) and R ∉ PO2

(T) . By the definition of a suitable pro-
gram, R is not conflicting with T and there exists a MVL rule R2 ∈ PO2

(T) , such that
R2 ≥ R . Using the same definition, there exists R1 ∈ PO1

(T) such that R1 ≥ R2 since R2 is
not conflicting with T. Thus R1 ≥ R and by the definition of an optimal program R ≥ R1 .
By Lemma 1, R1 = R , thus R2 ≥ R and R ≥ R2 hence R2 = R , a contradiction. ◻

Appendix 2: Proofs of Sect. 3

Theorem 1 (Characterisation of Pseudo-idempotent Semantics of Interest) Let DS be a
dynamical semantics.

If, for all P a DMVLP , there exists 𝗉𝗂𝖼𝗄 ∈ (SF ×℘(A|T) → ℘(ST) ⧵ {�}) so that:

(1) ∀D ⊆ A�T, ����(s, ⋃
s�∈����(s,D)

s�) = ����(s,D) , and

(2) ∀s ∈ S
F,
(
DS(P)

)
(s) = ����(s,�����������(s,P)),

then DS is pseudo-idempotent.
Proof Let DS be a dynamical semantics, P a DMVLP , ���� a function from SF ×℘(AT)
to ℘(ST) ⧵ {�} with the properties described in (1) and (2).

In this proof, we use the following equivalent notations, for all (s, s�) ∈ S
F × S

T :
(s, s�) ∈ DS(P) ⟺ s� ∈

(
DS(P)

)
(s).

By Definition 10, f irst(DS(P)) = S
F (∗).

By Definition 9, PO(DS(P)) realizes DS(P). Therefore, according to Definition 5, for all
(s, s�) in DS(P) and vval in s′ , because v ∈ T , there exists R in PO(DS(P)) so that
var(head(R)) = v ∧ R ⊓ s ∧ head(R) ∈ s� . Because of Definition 3, a discrete state cannot
contain two different atoms on the same variable: from
var(head(R)) = v ∧ vval ∈ s� ∧ head(R) ∈ s� , it comes: head(R) = vval . Moreover, by defini-
tion of ����������� , because R ∈ P ∧ R ⊓ s , we have: vval ∈ �����������(s,PO(DS(P))) . By
generalizing on all vval , it comes: s� ⊆ �����������(s,PO(DS(P))) . By generalizing on all s′ ,
it comes: ∀s ∈ S

F,
⋃

s�∈(DS(P))(s)

s� ⊆ �����������(s,PO(DS(P))) (†).

By Definition 9, PO(DS(P)) is also consistent with DS(P). Therefore, according to Defi-
nition 7: ∀R ∈ PO(DS(P)),∀s ∈ first(DS(P)),R ⊓ s ⟹ ∃s� ∈

(
DS(P)

)
(s), head(R) ∈ s� .

From (∗), f irst(DS(P)) = S
F , thus

∀s ∈ S
F,∀vval ∈ �����������(s,PO(DS(P))),∃s

� ∈ DS(P)(s), vval ∈ s� . Thus:
∀s ∈ S

F,�����������(s,PO(DS(P))) ⊆
⋃

s�∈(DS(P))(s)

s� (§).

From (†) and (§): ∀s ∈ S
F,�����������(s,PO(DS(P))) =

⋃
s�∈(DS(P))(s)

s� (⋆).

From (⋆) and (2): ∀s ∈ S
F,�����������(s,PO(DS(P))) =

⋃
s�∈����(s,�����������(s,P))

s� (◊).

Machine Learning

1 3

Let s in SF .

• From (2):
(
DS(PO(DS(P)))

)
(s) = ����(s,�����������(s,PO(DS(P)))).

• From (◊):
�
DS(PO(DS(P)))

�
(s) = ����(s,

⋃
s�∈����(s,�����������(s,P))

s�)

• From (1):
(
DS(PO(DS(P)))

)
(s) = ����(s,�����������(s,P))

• From (2):
(
DS(PO(DS(P)))

)
(s) =

(
DS(P)

)
(s).

Thus: ∀s ∈ S
F,
(
DS(PO(DS(P)))

)
(s) =

(
DS(P)

)
(s) , QED. ◻

Theorem 2 (Semantics-Free Correctness) Let P be a DMVLP.

• Tsyn(P) = Tsyn(PO(Tsyn(P))),
• Tasyn(P) = Tasyn(PO(Tasyn(P))),
• Tgen(P) = Tgen(PO(Tgen(P))).

Proof Let d ∈ (SF ×℘(T) → ℘(AT)) , so that ∀s ∈ S
F
,∀W ⊆ T,

W ⊆ var(d(s,W)) ∧ d(s, �) ⊆ d(s,W).
Let p be a function from S

F ×℘(AT) to ℘(ST) ⧵ {�} so that
∀s ∈ S

F,∀D ⊆ AT, p(s,D) = {s� ∈ S
T ∣ s� ⊆ D ∪ d(s, T ⧵ var(D))} .

Since T ⧵ var(D) ⊆ var(d(s,W)), � ∉ p(s,D) . Thus from Definition 15,
∀s ∈ S

F, Tsyn(P)(s) = p(s,�����������(s,P)) (property 1).
Since ∀W ⊆ T, d(s, �) ⊆ d(s,W) , ∀D ⊆ AT, d(s, �) ⊆ D ∪ d(s, T ⧵ var(D)) , thus

d(s, �) ⊆
⋃

s�∈p(s,D)

s� (property 2).

Moreover, ∀D ⊆ AT , let D� ∶=
⋃

s�∈p(s,D)

s� . Straightforwardly: D� = D ∪ d(s, T ⧵ var(D))

because we can always create a state with any atom in D ∪ d(s, T ⧵ var(D)) , thus all atoms
of this set are in D′ , and conversely (property 3).
p(s,D�) = {s� ∈ S

T ∣ s� ⊆ D� ∪ d(s, T ⧵ var(D�))} by definition of p.
p(s,D�) = {s� ∈ S

T ∣ s� ⊆ D� ∪ d(s, �)} since var(D�) = T by definition of D′ and p.
p(s,D�) = {s� ∈ S

T ∣ s� ⊆ D�} from property 2.
p(s,D�) = {s� ∈ S

T ∣ s� ∈ D ∪ d(s, T ⧵ var(D))} = p(s,D) from property 3. Therefore p
respects (1). Since Tsyn(P) = p(s,�����������(s,P)) , p also respects (2). Thus,
Tsyn(P) = Tsyn(PO(Tsyn(P))) according to Theorem 1.

By definition of Tgen :
∀s ∈ S

F, (Tgen(P))(s) = {s� ∈ S
T ∣ s� ⊆ �����������(s,P) ∪ d(s,T ⧵ var(�����������(s,P)))}

with 𝗌𝗉
F→T

(s) ⊆ d(s, �) . Thus, the same proof gives Tgen(P) = Tgen(PO(Tgen(P))) according
to Theorem 1.

Tasyn(P) = Tasyn(PO(Tasyn(P))) Let p be a function from SF ×℘(AT) to ℘(ST) ⧵ {�} so
that ∀s ∈ S

F,∀D ⊆ AT :

where AT and D
T

 are restriction notations from Definition 12. From Definition 16, we
have: TasynP = p(s,�����������(s,P)).

∀D ⊆ AT, p(s,
⋃

s�∈p(s,D)

s�) = p(s,D) Let D in AT .

p(s,D) = {s� ∈ S
T ∣ s� ⊆ D ∪ d(s, T ⧵ var(D)) ∧

(|s� ⧵ 𝗌𝗉
F→T

(s)| − |T ⧵ T| = 1 ∨ (D ∪ d(s, T ⧵ var(D)))
T
= 𝗌𝗉

F→T
(s))}

 Machine Learning

1 3

• If (D ∪ d(s, T ⧵ var(D)))
T
= 𝗌𝗉

F→T
(s) , then

⋃
s�∈p(s,D)

s� = D and thus

p(s,
⋃

s�∈p(s,D)

s�) = p(s,D).

• If there exists vval ∈ A
T

 so that var(D ∪ d(s, T ⧵ var(D)) ⧵ 𝗌𝗉
F→T

(s)) ∩ T = {v} , then
for all state s� ∈ p(s,D) , s′ differs from s on the regular variable v and on variables in
T ⧵ T . Thus,

⋃
s�∈p(s,D)

s� = (D ∪ d(s, T ⧵ var(D))) ⧵ {vval
�

∣ vval
�

∈ s} . By construction of

p, it comes: p(s,
⋃

s�∈p(s,D)

s�) = p(s,D) because vval� ∈ s� would contradict the condition

|s� ⧵ 𝗌𝗉
F→T

(s)| − |T ⧵ T| = 1.
• Otherwise, |var(D ∪ d(s, T ⧵ var(D)) ⧵ 𝗌𝗉

F→T
(s)) ∩ T| > 1 then there exists two states

s�
1
, s�

2
∈ p(s,D) , so that they differ from s on a different regular variable each. Espe-

cially, by construction of p, 𝗌𝗉
F→T

(s) ⊆ s�
1
∪ s�

2
⊆ D ∪ d(s, T ⧵ var(D)) . Therefore, ⋃

s�∈p(s,D)

s� ⊆ D ∪ d(s, T ⧵ var(D)) . Finally, and by definition of p,

D ∪ d(s, T ⧵ var(D)) ⊆
⋃

s�∈p(s,D)

s� because for each atom in D ∪ d(s, T ⧵ var(D)) , it is pos-

sible to build a state s′ containing it: either as the projection of the initial state s or as
the only variable changing its value in s′ compared to 𝗌𝗉

F→T
(s) . In conclusion:

D ∪ d(s, T ⧵ var(D)) =
⋃

s�∈p(s,D)

s� , which gives: p(s,
⋃

s�∈p(s,D)

s�) = p(s,D).

Thus, Tasyn(P) = Tasyn(PO(Tasyn(P))) , according to Theorem 1. ◻

Appendix 3: Proofs of Sect. 4

Theorem 3 (Properties of Least Revision) Let R be a MVL rule and s ∈ S
F such that

R ⊓ s . Let SR ∶= {s� ∈ S
F ∣ R ⊓ s�} and Sspe ∶= {s� ∈ S

F ∣ ∃R� ∈ Lspe(R, s,A,F),R� ⊓ s�}.

Let P be a DMVLP and T , T � ⊆ S
F × S

T such that
|f irst(T)| = 1 ∧ f irst(T) ∩ f irst(T �) = � . The following results hold:

1. Sspe = SR ⧵ {s},
2. Lrev(P, T ,A,F) is consistent with T,
3.

P

↪T �
⟹

Lrev(P,T ,A,F)

↪ T �,
4.

P

↪T ⟹

Lrev(P,T ,A,F)

↪ T ,
5. P is complete ⟹ Lrev(P,T ,A,F) is complete.

Proof

1. First, let us suppose that ∃s�� ∉ SR ⧵ {s} such that ∃R� ∈ Lspe(R, s,A,F),R� ⊓ s�� .
By definition of matching R� ⊓ s�� ⟹ body(R�) ⊆ s�� . By definition of least spe-
cialization, body(R�) = body(R) ∪ {vval}, vval

�

∈ s, vval ∉ body(R), val ≠ val� . Let
us suppose that s�� = s , then body(R�) ⊈ s�� since vval ∈ body(R�) and vval ∉ s , this
is a contradiction. Let us suppose that s′′ ≠ s then ¬(R ⊓ s��) , thus body(R) ⊈ s�� and
body(R�) ⊈ s�� , this is a contradiction. Second, let us assume that ∃s�� ∈ SR ⧵ {s}
such that ∀R� ∈ Lspe(R, s,A,F),¬(R� ⊓ s��) . By definition of SR , R ⊓ s′′ . By defi-
nition of matching ¬(R� ⊓ s��) ⟹ body(R�) ⊈ s�� . By definition of least spe-
cialization, body(R�) = body(R) ∪ {vval}, vval

�

∈ s, val ≠ val� . By definition of

Machine Learning

1 3

m a t c h i n g R ⊓ s�� ⟹ body(R) ⊆ s�� ⟹ s�� = body(R) ∪ I, body(R) ∩ I = �
and t hus body(R�) ⊈ s�� ⟹ vval ∉ I . The assumpt ion impl ies t ha t
∀vval

�

∈ I,∀R� ∈ Lspe(R, s,A,F), vval ∈ body(R�), val ≠ val� . By definition of least spe-
cialization, it implies that vval� ∈ s and thus I = s ⧵ body(R) making s�� = s , which is a
contradiction. Conclusion: Sspe = SR ⧵ {s}

2. By definition of a consistent program, if two sets of MVL rules SR1, SR2 are consistent
w i t h T t h e n SR1 ∪ SR2 i s c o n s i s t e n t w i t h T . L e t
RP = {R ∈ P ∣ R ⊓ s,∀(s, s�) ∈ T , head(R) ∉ s�} be the set of rules of P that conflict with
T. By definition of least revision Lrev(P,T ,A,F) = (P ⧵ RP) ∪

⋃
R∈RP

Lspe(R, s,A,F) . The

first part of the expression P ⧵ RP is consistent with T since ∄R� ∈ P ⧵ RP such that R′
conflicts with T. The second part of the expression

⋃
R∈RP

Lspe(R, s,A,F) is also consistent

with T: ∄R� ∈ Lspe(R, s,A,F),R� ⊓ s thus ∄R� ∈ Lspe(R, s,A,F) that conflict with T and ⋃
R∈RP

Lspe(R, s,A,F) is consistent with T. Conclusion: Lrev(P, T ,A,F) is consistent with

T.
3. L e t (s1, s2) ∈ T � t h u s s1 ≠ s . F r o m d e f i n i t i o n o f r e a l i z a t i o n ,

vval ∈ s2 ⟹ ∃R ∈ P, head(R) = vval,R ⊓ s1 . If ¬R ⊓ s then R ∈ Lrev(P, T ,A,F) and
Lrev(P,T ,A,F)

↪ (s1, s2) . If R ⊓ s , from the first point ∃R� ∈ Lspe(R, s,A,F),R� ⊓ s1 and since
head(R�) = head(R) = vval,

Lrev(P,T ,A,F)

↪ (s1, s2) . Applying this reasoning on all elements
of T ′ implies that

P

↪T �
⟹

Lrev(P,T ,A,F)

↪ T �.
4. L e t (s1, s2) ∈ T , s i n c e P

↪T b y d e f i n i t i o n o f r e a l i z a t i o n
∀vval ∈ s2,∃R ∈ P,R ⊓ s1, head(R) = vval . By definition of conflict, R is not in conflict
with T thus R ∈ Lrev(P, T ,A,F) and Lrev(P,T ,A,F)

↪ T .
5. Let (s1, s2) ∈ S

F × S
T , if P is complete, then by definition of a complete program

∀v ∈ V,∃R ∈ P,R ⊓ s1, var(head(R)) = v . If ¬(R ⊓ s) then R ∈ Lrev(P, T ,A,F) . If R ⊓ s ,
from the first point ∃R� ∈ Lspe(R, s,A,F),R� ⊓ s1 and thus R� ∈ Lrev(P,T ,A,F) and since
var(head(R�)) = var(head(R)) = v , Lrev(P, T ,A,F) is complete.

 ◻

Proposition 2 (Optimal Program of Empty Set) PO(�) = {vval ← � ∣ vval ∈ AT}.

Proof Let P = {vval ← � ∣ vval ∈ AT} . The MVLP P is consistent and complete by con-
struction. Like all MVLP s,

P

↪ ∅ and there is no transition in ∅ to match with the rules in P.
In addition, by construction, the rules of P dominate all MVL rules. ◻

Proposition 3 (From Suitable to Optimal) Let T ⊆ S
F × S

T . If P is a DMVLP suitable
for T, then PO(T) = {R ∈ P ∣ ∀R� ∈ P,R� ≥ R ⟹ R ≥ R�}.

Proof Since any possible MVL rule consistent with T is dominated, all the rules of the
optimal program are dominated. Since the only rules dominating a rule of the optimal
program is the rule itself, the optimal program is a subset of any suitable program. If we
remove the dominated rules, only remains the optimal program. ◻

Theorem 4 (Least Revision and Suitability) Let s ∈ S
F and T , T � ⊆ S

F × S
T such that

|f irst(T �)| = 1 ∧ f irst(T) ∩ f irst(T �) = � . Lrev(PO(T),T
�,A,F) is a DMVLP suitable for

T ∪ T �.

 Machine Learning

1 3

Proof Let P = Lrev(PO(T), T
�) . Since PO(T) is consistent with T, by Theorem 3, P is also

consistent with T and thus consistent with T � ∪ T . Since PO(T) realizes T by Theorem 3,
P

↪T . Since s ∉ first(T) , a MVL rule R such that body(R) = s does not conflict with T. By
definition of suitable program ∃R� ∈ PO(T),R

� ≥ R , thus PO(T)
↪ T � . Since PO(T)

↪ T � by Theo-
rem 3 P

↪T ′ and thus
P

↪T ∪ T � . Since PO(T) is complete, by Theorem 3, P is also complete.
To prove that P verifies the last point of the definition of a suitable MVLP , let R be a
MVL rule not conflicting with T ∪ T � . Since R is also not conflicting with T, there exists
R� ∈ PO(T) such that R′ ≥ R . If R′ is not conflicting with T ′ , then R′ will not be revised and
R� ∈ P , thus R is dominated by a rule of P. Otherwise, R′ is in conflict with T ′ , thus R′ ⊓ s
and ∀(s, s�) ∈ T �, head(R�) ∉ s� . Since R is not in conflict with T ′ and head(R) = head(R�) ,
since R′ ≥ R then body(R) = body(R�) ∪ I,∃vval ∈ I, vval ∉ s . By definition of least revi-
sion and least specialization, there is a rule R�� ∈ Lspe(R

�, s) such that vval ∈ body(R��) and
since R�� = head(R�) ← body(R�) ∪ vval thus R′′ ≥ R . Thus R is dominated by a rule of P.
 ◻

Theorem 5 (GULA Termination, Soundness, Completeness, Optimality) Let T ⊆ S
F × S

T .

(1) Any call to GULA on finite sets terminates,
(2) GULA(A, T ,F, T) = PO(T),
(3) ∀A� ⊆ A|T,����(AF ∪A

�, T ,F, T) = {R ∈ PO(T) ∣ head(R) ∈ A
�}.

Proof In this proof we refer to the detailed pseudo-code of GULA given in “Appendix” in
Algorithm 5 and Algorithm 6.

(1) The algorithm of GULA iterates on finite sets, and thus terminates.
(3) Let T ⊆ S

F × S
T . The algorithm iterates over each atom vval ∈ A

� ,
A

′ ⊆ AT iteratively to extract all states s such that (s, s�) ∈ T ⟹ vval ∉ s� .
This is equivalent to group the transitions by initial state: generate the set
TT = {T �

s
⊆ T ∣ s ∈ S

F, f irst(T �
s
) = {s} ∧ ∀s� ∈ S

T, (s, s�) ∈ T ⟹ (s, s�) ∈ T �
s
}.

To prove that ∀A� ⊆ AT,����(AF ∪A
�, T ,F, T) = {R ∈ PO(T) ∣ head(R) ∈ A

�} and
thus GULA(A, T ,F, T) = PO(T) , it suffices to prove that the main loop (Algorithm 5, lines
23-50) preserves the invariant Pval

v
= {R ∈ PO(Ti) ∣ head(R) = vval ∈ A

�} after the ith itera-
tion where Ti is the union of all set of transitions of TT already selected line 23 after the ith
iteration for all i from 0 to |TT|.

Line 22 initializes Pvval to {vval ← �} . Thus by Proposition 2, after line 22,
Pvval = {R ∈ PO(�) ∣ head(R) = vval}.

Let us assume that before the (i + 1)th iteration of the main loop,
Pvval = {R ∈ PO(Ti) ∣ head(R) = vval} . Through the loop of lines 25-28,
P� = {R ∈ PO(Ti) ∣ R does not conflict with Ti+1 ∧ head(R) = vval} is computed.
Then the set P�� =

⋃
R∈PO(Ti)�P

�∧head(R)=vval Lspe(R, s,A,F) is iteratively build through
the calls to least_specialization (Algorithm 6) at line 31 and the dominated rules
are pruned as they are detected by the loop of lines 32-49. Each revised rule can
be dominated by a rule in {R ∈ PO(Ti)�P

�} or another revised rule and thus domi-
nance must be checked from both. But only a revised rule (R ∈ P��) can be domi-
nated by a revised rule: if a rule in {R ∈ PO(Ti)�P

�} is dominated by a revised rule,
then it was dominated by its original rule in {R ∈ PO(Ti)} which is impossible since
Pvval = {R ∈ PO(Ti) ∣ head(R) = vval} . Thus it is safe to only check domination of
the revised rules by previous rules (PO(Ti) ⧵ P

�) or by other revised rules (P′′). Thus

Machine Learning

1 3

by Theorem 4 and Proposition 3, Pvval = {R ∈ PO(Ti+1) ∣ head(R) = vval} after the
(i + 1)th iteration of the main loop. By induction, at the end of all the loop lines 23-50,
Pvval = {R ∈ PO(

⋃
T �∈TT T

�) ∣ head(R) = vval} = {R ∈ PO(T) ∣ head(R) = vval} since
it has iterated on all elements of TT. Since the same operation holds for each vval ∈ A

� ,
P =

⋃
vval∈A� Pvval = {R ∈ PO(T) ∣ head(R) = vval ∧ vval ∈ A

�} after all iterations of the loop
of line 6. Finally: ∀A� ⊆ AT,����(AF ∪A

�, T ,F, T) = {R ∈ PO(T) ∣ head(R) ∈ A
�}.

(2) Thus
����(A,T ,F, T) = ����(AF ∪AT, T ,F, T) = {R ∈ PO(T) ∣ head(R) ∈ AT} = PO(T) .
 ◻

Theorem 6 (GULA Complexity) Let T ⊆ S
F × S

T be a set of transitions, Let
n ∶= max(|F|, |T|) and d ∶= max({|���(v)|) ∈ ℕ ∣ v ∈ F ∪ T} . The worst-case time com-
plexity of GULA when learning from T belongs to O(|T|2 + |T| × (2n4d2n+2 + 2n3dn+1))
and its worst-case memory use belongs to O(d2n + 2ndn+1 + ndn+2).

Proof Let df ∶= max({|���(v)| ∈ ℕ ∣ v ∈ F}) (resp. dt ∶= max({|���(v)| ∈ ℕ ∣ v ∈ T}))
be the maximal number of values of features (resp. target) variables.

The algorithm takes as input a set of transition T ⊆ S
F × S

T bounding the memory use
to O(d|F|

f
) × d

|T|
t) = O(d2n) . The learning is performed iteratively for each possible rule

head vval ∈ A
� ⊆ AT .

The extraction of negative example requires to compare each transition of T one to one
and thus has a complexity of op1 = O(|T|2) . Those transitions are stored in Negvval which
size is at most |SF| extending the memory use to O(d|F|

f
× d

|T|
t + d

|F|
f

) which is bounded by
O(d2n + dn).

The learning phase revises a set of rule Pvval where each rule has the same head
vval . There are at most d|F|

f
≤ dn possible rule bodies and thus |Pvval | ≤ d

|F|
t ≤ dn ,

the memory use of |Pvval | is then O(d|F|t) extending the memory bound to
O(d|F|

f
× d

|T|
t + d

|F|
f

) + d
|F|
f

) = O(d|F|
f

× d
|T|
t + 2d

|F|
f

)) , which is bound by O(d2n + 2dn).
For each state s of Negvval , each rule of Pvval that matches s are extracted into a set of

rules Rm . This operation has a complexity of op2 = O(d|F|
f

× |F|) bound by O(ndn) .
Each rule of Rm are then revised using least specialization, this operation has a complex-
ity of O(|F|2) bound by O(n2) . |Rm| ≤ d

|F|
f

≤ dn thus the revision of all matching rules
is op3 = O(d|F|

f
× n2) bounded by O(dn × n2) . All revisions are stored in LS and there

are at most df × |F| ≤ dn revisions for each rule, thus |LS| ≤ d
|F|
f

× df |F| ≤ dn × dn
extending the memory bound to O(d|F|

f
× d

|T|
t + 2d

|F|
f

) + df |F| × d
|F|
f

) bounded by
O(d2n + 2dn + ndn+1).

Learning is performed for each vval ∈ A
� ⊆ T , thus the memory

usage of GULA is therefore O(d|F|
f

× d
|T|
t + |A�|(2d|F|

f
+ df |F| × d

|F|
f

)) ,
bounded by O(d|F|

f
× d

|T|
t + tdt(2d

|F|
f

) + df |F| × d
|F|
f

)) wich is bounded by
O(d2n + dn(2dn + ndn+1)) = O(d2n + 2ndn+1 + ndn+2).

The worst-case memory use of GULA is thus O(d2n + 2ndn+1 + ndn+2).
All rules of LS are compared to the rule of Pvval for dom-

ination check, this operation has a complexity of
op4 = O(2 × |LS| × |Pvval | × |F|2) = O(2 × d

|F|
f

× df |F| × dn × n2) = O(2 × |F|3 × d
2|F|+1
f

)
which is bounded by O(2 × n3 × d2n+1).

Learning is performed for each vval ∈ A
� ⊆ T , |A′| ≤ |T|dt , thus the complex-

ity is bound by O(op1 + |T| × |T| × dt(op2 + op3 + op4)) = O(|T|2 + |T| times|T|
×d

t
(d|F|

f
× |F| + d

|F|
f

× n
2 + 2 × |F|3 × d

2|F|+1
f

)) which is bounded by

 Machine Learning

1 3

O(|T|2 + |T| × nd(dn × n
2 + d

n × n
2 + 2 × n

3 × d
2n+1)) = O(|T|2 + |T| × nd(2n3d2n+1 + 2n2dn))

= O(|T|2 + |T| × (2n4d2n+2 + 2n3dn+1)).
The computational complexity of GULA is thus O(|T|2 + |T| × (2n4d2n+2 + 2n3dn+1)).
 ◻

Appendix 4: Proofs of Sect. 5

Theorem 7 (Optimal DMVLP and Constraints Correctness Under Synchronous Con-
strained Semantics) Let T ⊆ S

F × S
T , it holds that T = Tsyn−c(PO(T) ∪ C�

O
(T)).

Proof From Definition 9, ∀(s, s�) ∈ T , s� ⊆ �����������(s,PO(T)) thus according to Defini-
tion 22, s� ∈ Tsyn−c(PO(T))(s) , thus T ⊆ Tsyn−c(PO(T)) (property 1).

By Definition 25, ∀(s, s�) ∈ T ,∄C ∈ CO(T),C ⊓ (s, s�) , thus since
C�
O
(T) ⊆ CO(T),∄C ∈ C�

O
(T),C ⊓ (s, s�) and then T ⊆ Tsyn−c(PO(T) ∪ C�

O
(T)) (property 2).

Let us suppose ∃(s, s�) ∈ Tsyn−c(PO(T) ∪ C�
O
(T)), (s, s�) ∉ T . From Defi-

nition 22, ∀vval ∈ s�,∃R ∈ PO(T), body(R) ⊓ s, head(R) = vval . From
Definition 25, ∃C� ∈ CO(T),C

� ⊓ (s, s�) since (s, s�) ∉ T . But since
∃(s, s�) ∈ Tsyn−c(PO(T) ∪ C�

O
(T)) , thus C� ∉ C�

O
(T) . From Definition 26, it implies that

∃vval ∈ s
�,∄R ∈ PO(T), head(R) = vval,∀w ∈ F,∀val�, val�� ∈ ���(w),wval

�
∈ body(R) ∧ wval

��

∈ body(C) ⟹ val
� = val

�� . Since body(C�) ⊆ (s ∪ s
�) , ∄R ∈ PO(T), head(R) = vval, body(R) ⊆ s ,

thus s� ⊈ �����������(s,PO(T)) and by Definition 22, (s, s�) ∉ Tsyn−c(PO(T) ∪ C�
O
(T)) , con-

tradiction, thus Tsyn−c(PO(T) ∪ C�
O
(T)) ⊆ T (property 3).

From property 2 and 3: Tsyn−c(PO(T) ∪ C�
O
(T)) = T . ◻

Theorem 8 (Synchronizer Correctness) Given any set of transitions T,

Synchronizer(A , T, F , T) outputs PO(T) ∪ C�
O
(T).

Proof Let G1 = GULA(A, T ,F, T) and G2 = GULA(AF∪T∪{�1}, T
�,F ∪ T, {�}) . From The-

orem 5, P = G1 = PO(T) (property 1).
Let P� = G2 . By definition of T ′ : ∀(s, s�) ∈ T �, s� = {�0} . Thus ∀R ∈ P� , R is con-

sistent with T ′ by Theorem 5, thus ∄(s, s�) ∈ T �,R ⊓ s , since head(R) = �1 because
∀(s, s�) ∈ T �, s� = {�0} (property 2).

From Theorem 5, P� = {R ∈ PO(T
�) ∣ head(R) = �1} . From Definition 9, PO(T

�) is com-
plete thus ∀(s, s�) ∈ S

F × S
T, ss� ∶= s ∪ s�, ss� ∉ f irst(T �),∃R ∈ P�,R ⊓ ss� (property 3).

From definition of T ′ , (s, s�) ∈ T ⟹ (s ∪ s�, {�0}) ∈ T � , thus ∀C ∈ P�,C is a con-
straint (property 4).

• From property 2 and 4: (s, s�) ∈ T ⟹ (s ∪ s�, {𝜀0}) ∈ T �
⟹ ∄C ∈ P�,C ⊓ (s, s�) ,

P′ consistent with T.
• From property 3 and 4: (s, s�) ∉ T ⟹ (s ∪ s�) ∉ f irst(T �) ⟹ ∃R ∈ P�,R ⊓ (s, s�) ,

P′ is complete with T.
• If there exists a constraint consistent with T that is not dominated by a constraint in P′ it

implies that a rule consistent with T ′ whose head is �1 is not dominated by a rule in G2
wich is in contradiction with Theorem 5. All constraint consistent with T are dominated
by a constraint in P′.

Machine Learning

1 3

• From Theorem 5, the rules of G2 do not dominate eachover, thus the same hold for the
constraint of P′.

• From Definition 25, P� = CO(T) (property 5).

Now let us prove that P�� = C�
O
(T) . Let us suppose that P�� ≠ C�

O
(T) . Since P�� ⊆ CO(T) ,

according to Definition 26, therefore P′′ is missing a useful optimal constraint
(C�

O
(T) ⧵ P�� ≠ �), or contains a useless optimal constraint (P�� ⧵ C�

O
(T) ≠ �).

1) Suppose that C ∉ P�� but C ∈ C�
O
(T) , meaning that P′′ misses a useful con-

straint C. Since C ∈ C�
O
(T) , ∃(s, s�)s

PO(T)
���������������������→ s� , C ⊓ (s, s�) . Since s

PO(T)
���������������������→ s� , accord-

ing to Definition 5 ∃S ⊆ PO(T), s
� = {head(R) ∣ R ∈ S} ∧ ∀R ∈ S,R ⊓ s . By Definition

21, C ⊆ s ∪ s� thus body(C) ∩AF ⊆ s and body(C) ∩AT ⊆ s� . By definition of Crules ,
∀vval ∈ body(C) ∩AT,∀R ∈ S,

(
var(head(R)) = v ∧ head(R) ∈ body(C) ⟹ R ∈ Crules(v)

)

and since s
PO(T)
���������������������→ s� , ∀v ∈ Ctargets,Crules(v) ≠ � . Thus there exists a combi such that

∀v ∈ F, |{vval ∈ body(R) ∣ val ∈ ���(v) ∧ R ∈ combi}| ≤ 1 , contradiction.
2) Suppose that C ∉ C�

O
(T) but C ∈ P�� , meaning that P′′ contains a useless con-

straint C. Thus, {(s, s�) ∈ S
F × S

T ∣ s
PO(T)
���������������������→ s� ∧ C ⊓ (s, s�)} = � . Since C ∈ P��

there is a combi such that |{vval ∈ body(R) ∣ val ∈ ���(v) ∧ R ∈ combi}| ≤ 1 ,
thus ∃s ∈ S

F, body(C) ∩AT ⊆ s ∧ ∀R ∈ combi,R ⊓ s . Let
S ∶= {s� ∈ S

T ∣ s
PO(T)
���������������������→ s�} . Because PO(T) is complete, S ≠ ∅ . Since

∀R ∈ combi,R ∈ PO(T),∃s
� ∈ S,∀R ∈ combi, head(R) ∈ s� . Since

body(C) ∩AT = {head(R) ∣ R ∈ combi} ⊆ s� , C ⊓ (s, s�).
Thus P�� = C�

O
(T) (property 6).

From property 1 and 6, Synchronizer(A, T ,F, T) = PO(T) ∪ C�
O
(T).

 ◻

Theorem 9 (Synchronizer Complexity)) Let T ⊆ S
F × S

T be a set of transitions, let
n ∶= max(|F|, |T|) and d ∶= max({|���(v)| ∈ ℕ ∣ v ∈ F ∪ T}) and m ∶= |F| + |T|.

The worst-case time complexity of Synchronizer when learning from T belongs to
O((d2n + 2ndn+1 + ndn+2) + (|T|2 + |T| × (2m4d2m+2 + 2m3dm+1)) + (dn

n

)) and its worst-
case memory use belongs to O((d2n + 2ndn+1 + ndn+2) + (d2m + 2mdm+1 + mdm+2) + (ndn))
.

Proof Let df ∶= max({|���(v)| ∈ ℕ ∣ v ∈ F}) (resp. dt ∶= max({|���(v)| ∈ ℕ ∣ v ∈ T}))
be the maximal number of values of features (resp. target) variables. Let n ∶= max(|F|, |T|)
and d ∶= max({|���(v)| ∈ ℕ ∣ v ∈ F ∪ T}) and m ∶= |F| + |T|.

The first call to GULA has complexity of O(|T|2 + |T| × (2n4d2n+2 + 2n3dn+1)) and the
memory is bound by O(d2n + 2ndn+1 + ndn+2) according to Theorem 6.

Computing T � ∶= {(s ∪ s�, {�0}) ∣ (s, s�) ∈ T} has a linear complex-
ity of O(|T|) . The call GULA(AF∪T∪{�1}, T

�,F ∪ T, {�}) considers target vari-
ables as features variables to learn constraints, i.e., the body of constraints
can have m conditions. Thus the complexity of this call to GULA is bound by
O(|T �|2 + |T �| × (2m4d2m+2 + 2m3dm+1)) = O(|T|2 + |T| × (2m4d2m+2 + 2m3dm+1)) since
|T �| = |T| and the memory is bound by O(d2m + 2mdm+1 + mdm+2) according to Theorem 6.

To discard useless constraints, Algorithm 3 searches for a set of rules
that can be applied at the same time as the constraint: first it extract the con-
straint target variables Ctargets ∶= {v ∈ T ∣ ∃val ∈ ���(v), vval ∈ body(C)}
and search for compatible rules with the constraint
∀v ∈ Ctargets,Crules(v) ∶= {R ∈ P ∣ var(head(R)) = v ∧ head(R) ∈ body(C) ∧ ∀w ∈ F,∀val,

 Machine Learning

1 3

val
� ∈ ���(w),

(
wval ∈ body(R) ∧ wval

�

∈ body(C)
)

⟹ val = val
�} . The constraint con-

tains at most |T| target conditions. For each target variable, there is at most d|F|
f

 rules in P.
Thus, computing the Cartesian product of rules grouped by head variables has a time com-
plexity of O(d|F|

|T|
f

) which is bound by O(dn
n

) and a memory complexity of O(|P|) which is
bound by O(ndn).

The computational complexity of Synchronizer is thus
O((d2n + 2ndn+1 + ndn+2) + (|T|2 + |T| × (2m4d2m+2 + 2m3dm+1)) + (dn

n

)) and its memory
is bound by O((d2n + 2ndn+1 + ndn+2) + (d2m + 2mdm+1 + mdm+2) + (ndn)) . ◻

Appendix 5: Proofs of Sect. 6

Proposition 4 (Uniqueness of Impossibility-Optimal Program) Let T ⊆ S
F × S

T . The
DMVLP impossibility-optimal for T is unique and denoted PO(T).

Proof Same proof than for Proposition 1 by replacing “suitable” by “impossibility-suita-
ble”. ◻

Fig. 15 Run time of Synchronizer from a random set of 1%, 5%, 10%, 25%, 50%, 75%, 100% of the transi-
tions of a Boolean network from Boolenet and PyBoolNet with size varying from 3 to 10 variables. Time
out is set at 1000 s and 10 runs where performed for each setting

Machine Learning

1 3

Appendix 6: Detailed pseudo‑code of Sect. 4

Algorithms 5 and 6 provide the detailed pseudocode of GULA. Algorithm 5 learns from a
set of transitions T the conditions under which each value val of each variable v may appear
in the next state. Here, learning is performed iteratively for each value of variable to keep
the pseudo-code simple. But the process can easily be parallelized by running each loop in
an independent thread, bounding the run time to the variable for which the learning is the
longest. In the case where we are not interested about the dynamics of some variables, the
parameter A′ and T′ can be reduced accordingly.

The algorithm starts by the pre-processing of the input transitions. Lines 7-18 of
Algorithm 5 correspond to the extraction of Negvval , the set of all negative examples of
the appearance of vval in next state: all states such that v never takes the value val in the
next state of a transition of T. For efficiency purpose, it is important that the negatives
examples are ordered in a way that reduce the difference between nearby elements, for
example lexicographically. Indeed, it increase the proportion of revised rules (produced
to satisfy a previous example) still consistent with the following examples, reducing the
average number of rules stored and thus checked in the following processes. Those nega-
tive examples are then used during the following learning phase (lines 21-50) to iteratively
learn the set of rules PO(T) . The learning phase starts by initializing a set of rules Pvval to
{R ∈ PO(�) ∣ head(R) = vval} = {vval ← �} (see Proposition 2).

Pvval is iteratively revised against each negative example neg in Negvval . All rules Rm of
Pvval that match neg have to be revised. In order for Pvval to remain optimal, the revision of
each Rm must not match neg but still matches every other state that Rm matches.

To ensure that, the least specialization (see Definition 18) is used to revise each conflict-
ing rule Rm . Algorithm 6 shows the pseudo code of this operation. For each variable of
F

′ so that body(Rm) has no condition over it, a condition over another value than the one
observed in state neg can be added (lines 3-8). None of those revision match neg and all
states matched by Rm are still matched by at least one of its revisions.

Each revised rule can be dominated by a rule in Pvval or another revised rules and thus
dominance must be checked from both. But only revised rule can be dominated by a revised
rule: if a rule in Pvval is dominated by a revised rule, then it was dominated by its original
rule and thus could not be part of Pvval since it would have been discard in a previous step.
Thus we can safely only check the revised rules to discard the ones dominated by the new
current revised rule. The non-dominated revised rules are then added to Pvval.

Once Pvval has been revised against all negatives example of Negvval ,
Pvval = {R ∈ PO(T) ∣ head(R) = vval} , that is, Pvval is the subset of rules of the final optimal
program having vval as head. Finally, Pvval is added to P and the loop restarts with another
atom. Once all values of each variable have been treated, the algorithm outputs P which is
then equal to PO(T).

 Machine Learning

1 3

Algorithm 5 GULA(A′,T ,F ′,T ′, learning mode)

1: INPUT: A set of atoms A′, a set of transitions T ⊆ SF′
× ST ′

, two sets of variables F′ and T ′, a
string learning mode ∈ {“possibility”, “impossibility”}.

2: OUTPUT: PO(T) if learning mode = “possibility” or PO(T) if learning mode = “impossibility”.

3: T := {(s1, {s2 | (s1, s2) ∈ T}) | s1 ∈ first(T)} // Group transitions by initial state
4: T := sort(T) // Sort the transitions in Lexicographical order over feature states
5: P := ∅
6: for each vval ∈ A′ such that v ∈ T ′ do
7: // 1) Extraction of positives and negative examples of possibility
8: Posvval := ∅
9: Negvval := ∅
10: for each (s1, S) ∈ T do
11: negative example := true
12: for each s2 ∈ S do
13: if vval ∈ s2 then
14: negative example := false
15: Posvval := Posvval ∪ {s1}
16: break
17: if negative example == true then
18: Negvval := Negvval ∪ {s1}
19: if learning mode == “impossibility” then
20: Negvval = Posvval // Positive examples of possibility are negatives examples of impossibility.

21: // 2) Revision of the rules of vval to avoid matching of negative examples
22: Pvval := {vval ← ∅}
23: for each neg ∈ Negvval do

24: M := ∅ // Set of rules of Pvval that are in conflict
25: for each R ∈ Pvval do // Extract all rules that conflict and remove them from P

26: if body(R) ⊆ neg then
27: M := M ∪ {R}
28: Pval

v := Pval
v \ {R}

29: LS := ∅
30: for each Rm ∈ M do // Revise each conflicting rule
31: P ′ := least specialization(Rm, neg,A′,F′)

32: for each Rls ∈ P ′ do
33: dominated := false
34: for each Rp ∈ Pvval do // Check if the revision is dominated by Pvval

35: if body(Rp) ⊆ body(Rls) then
36: dominated := true
37: break
38: if dominated == true then
39: continue

40: for each Rp ∈ LS do // Check if the revision is dominated by LS

41: if body(Rp) ⊆ body(Rls) then
42: dominated := true
43: break
44: if dominated == true then
45: continue

46: for each Rp ∈ LS do// Remove previous specialization that are now dominated
47: if body(Rls) ⊆ body(Rp) then
48: LS := LS \ {Rp}

49: LS := LS ∪ {Rls} // Add the revision
50: Pvval := Pvval ∪ LS // Add non-dominated revisions

51: P := P ∪ Pvval

52: return P

Machine Learning

1 3

Algorithm 6 least specialization(R, s, A′, F ′) : specialize R to avoid matching of s

1: INPUT: a rule R, a state s, a set of atoms A′ and a set of variables F′

2: OUTPUT: a set of rules LS which is the least specialization of R by s according to F′ and A′.

3: LS := ∅
// Revise the rules by least specialization

4: for each vval ∈ s do
5: if v /∈ var(body(R)) then // Add condition for all values not appearing in s

6: for each vval′ ∈ A′, v ∈ F′, val′ �= val do

7: R′ := head(R) ← (body(R) ∪ {vval′})
8: LS := LS ∪ {R′}
9: return LS

Appendix 7: Synchronizer scalability

Figure 15 shows the run time of Synchronizer when learning from transitions
of Boolean networks from Boolenet (Dubrova & Teslenko, 2011) and PyBool-
net (Klarner et al., 2016) with same settings as in the experiements of Table 4. For the
synchronous and general semantics, it is only when we are given a subset of all possi-
ble transitions that the algorithm output constraints, since all combination of heads
of matching rules are allowed for those two semantics. Those constraint at least pre-
vent transitions from unseen states and also some combination of atoms that are miss-
ing in next states but that are observed individually. Even when it outputs an empty set
of constraint, the learning process needs to produce and revises constraint until its
no more possible, so run time of full set of transitions is also considered. In the asyn-
chronous case, given a set of transitions T, it needs to learn the constraints ensuring at
most one change per transitions, i.e., {

⊥
←������� ai

t
, b

j

t, a
i�

t−1
, b

j�

t−1
∣ a, b ∈ A

T
, i ≠ i� ∧ j ≠ j�}

and the ones preventing the projection when only one variable can be updated:
{C ∣ {ai

t
, ai

t−1
} ∈ body(C), a ∈ A

T
,∄(s, s�) ∈ T , body(C) ⊆ s ∪ s�} . Those second kind of

constraint will be specific to the few states this limitation occurs and show the limits of
propositional representation for the explanation of the dynamics.

Learning constraints is obviously more costly than learning regular rules since both
features and targets variables can appear in the body, i.e., number of features becomes
|F| + |T| . The algorithm reached the time out of 1000 s with benchmarks of 10 nodes for
synchronous semantics and 7 nodes for asynchronous and general semantics. Scalability
of the algorithm can be greatly improved by using the approximated version of GULA for
learning both rules and constraints. If learning rules can be done in polynomial time, learn-
ing constraints remains exponential. Since we do not present this approximated algorithm in
this paper we will not go into the details. In short, this approximated version needs positives
examples and thus require to generate the Cartesian product of all applicable rules heads
for each initial state observed which is exponential. Scalability, readability and applicability
could be improved by considering first order generalization of both rule and constraints but
those generalization are application dependant and thus remains as future work. Such gen-
eralization is required to perform proper prediction from unseen states, thus application of
the synchronizer output for prediction from unseen states are out of the scope of this paper.

Appendix 8: Complete pruned WDMVLP of Sect. 7.4

See Fig. 16.

 Machine Learning

1 3

Fig. 16 Final learned
WDMVLP WP = (WP�,WP��)
of Sect. 7.4 after pruning of
(PO(T

�),PO(T
�)) for readabil-

ity, |WP�| = |WP��| = 80 . The
rules that appear in the original
DMVLP of Fig. 13 are colored
in blue (Color figure online)

WP ′ = {
(54, CycD t0 ← CycD t 10),
(10, CycD t0 ← CycA t 11 ∧ UbcH10 t 10 ∧ cdh1 t 11),
(8, CycD t0 ← Cdc20 t 11 ∧ Rb t 11 ∧ UbcH10 t 10 ∧ cdh1 t 11),
(8, CycD t0 ← Cdc20 t 11 ∧ CycE t 10 ∧ UbcH10 t 10 ∧ cdh1 t 11),
(48, CycD t1 ← CycD t 11),
(6, CycD t1 ← E2F t 11 ∧ Rb t 11 ∧ UbcH10 t 11 ∧ p27 t 11),
(6, CycD t1 ← CycA t 10 ∧ CycE t 10 ∧ UbcH10 t 11 ∧ p27 t 11),
(6, CycD t1 ← Cdc20 t 10 ∧ CycB t 10 ∧ CycE t 10 ∧ UbcH10 t 11),
(58, Cdc20 t0 ← CycB t 10),
(8, Cdc20 t0 ← Cdc20 t 10 ∧ E2F t 11 ∧ UbcH10 t 10 ∧ p27 t 11),
(8, Cdc20 t0 ← Cdc20 t 11 ∧ CycA t 11 ∧ cdh1 t 10 ∧ p27 t 11),
(7, Cdc20 t0 ← Cdc20 t 10 ∧ CycE t 11 ∧ UbcH10 t 10 ∧ p27 t 11),
(44, Cdc20 t1 ← CycB t 11),
(6, Cdc20 t1 ← Cdc20 t 11 ∧ E2F t 10 ∧ UbcH10 t 10 ∧ p27 t 10),
(6, Cdc20 t1 ← CycA t 10 ∧ E2F t 10 ∧ Rb t 10 ∧ UbcH10 t 10),
(6, Cdc20 t1 ← CycD t 10 ∧ Cdc20 t 11 ∧ E2F t 10 ∧ cdh1 t 11),
(57, CycA t0 ← Rb t 11),
(53, CycA t0 ← Cdc20 t 11),
(28, CycA t0 ← CycB t 10 ∧ UbcH10 t 11),
(28, CycA t0 ← UbcH10 t 11 ∧ cdh1 t 11),
(7, CycA t1 ← Cdc20 t 10 ∧ CycA t 11 ∧ Rb t 10 ∧ cdh1 t 10),
(7, CycA t1 ← Cdc20 t 10 ∧ CycA t 11 ∧ Rb t 10 ∧ p27 t 11),
(7, CycA t1 ← Cdc20 t 10 ∧ CycB t 10 ∧ Rb t 10 ∧ UbcH10 t 10),
(6, CycA t1 ← Cdc20 t 10 ∧ E2F t 11 ∧ Rb t 10 ∧ UbcH10 t 10),
(53, CycB t0 ← Cdc20 t 11),
(50, CycB t0 ← cdh1 t 11),
(17, CycB t0 ← CycA t 11 ∧ UbcH10 t 11 ∧ p27 t 10),
(16, CycB t0 ← CycD t 10 ∧ CycA t 11 ∧ CycE t 11),
(25, CycB t1 ← Cdc20 t 10 ∧ cdh1 t 10),
(9, CycB t1 ← Cdc20 t 10 ∧ E2F t 10 ∧ Rb t 10),
(7, CycB t1 ← Cdc20 t 10 ∧ CycA t 11 ∧ CycE t 10 ∧ p27 t 11),
(7, CycB t1 ← CycD t 11 ∧ Cdc20 t 10 ∧ CycA t 11 ∧ p27 t 11),
(57, CycE t0 ← Rb t 11),
(51, CycE t0 ← E2F t 10),
(15, CycE t0 ← Cdc20 t 11 ∧ CycE t 11 ∧ cdh1 t 10),
(15, CycE t0 ← CycD t 11 ∧ CycE t 11 ∧ cdh1 t 10),
(21, CycE t1 ← E2F t 11 ∧ Rb t 10),
(7, CycE t1 ← Cdc20 t 10 ∧ Rb t 10 ∧ cdh1 t 11),
(6, CycE t1 ← CycA t 10 ∧ CycB t 10 ∧ Rb t 10 ∧ UbcH10 t 10),
(5, CycE t1 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ Rb t 10),
(57, E2F t0 ← Rb t 11),
(44, E2F t0 ← CycB t 11),
(26, E2F t0 ← CycA t 11 ∧ p27 t 10),
(15, E2F t0 ← Cdc20 t 10 ∧ CycA t 11 ∧ UbcH10 t 11),
(15, E2F t1 ← CycB t 10 ∧ Rb t 10 ∧ p27 t 11),
(11, E2F t1 ← CycA t 10 ∧ CycB t 10 ∧ Rb t 10),
(9, E2F t1 ← CycB t 10 ∧ E2F t 11 ∧ Rb t 10 ∧ UbcH10 t 10),
(7, E2F t1 ← Cdc20 t 11 ∧ CycB t 10 ∧ E2F t 10 ∧ Rb t 10),
(48, Rb t0 ← CycD t 11),
(44, Rb t0 ← CycB t 11),
(26, Rb t0 ← CycE t 11 ∧ p27 t 10),
(26, Rb t0 ← CycA t 11 ∧ p27 t 10),
(16, Rb t1 ← CycD t 10 ∧ CycB t 10 ∧ p27 t 11),
(6, Rb t1 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ CycE t 10),
(5, Rb t1 ← CycD t 10 ∧ Cdc20 t 11 ∧ CycA t 10 ∧ CycB t 10),
(5, Rb t1 ← CycD t 10 ∧ Cdc20 t 11 ∧ cdh1 t 10 ∧ p27 t 11),
(22, UbcH10 t0 ← UbcH10 t 10 ∧ cdh1 t 11),
(8, UbcH10 t0 ← Cdc20 t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ cdh1 t 11),
(8, UbcH10 t0 ← Cdc20 t 10 ∧ CycB t 10 ∧ cdh1 t 11 ∧ p27 t 11),
(6, UbcH10 t0 ← CycB t 10 ∧ CycE t 10 ∧ E2F t 11 ∧ cdh1 t 11),
(52, UbcH10 t1 ← cdh1 t 10),
(33, UbcH10 t1 ← CycA t 11 ∧ UbcH10 t 11),
(27, UbcH10 t1 ← Cdc20 t 11 ∧ UbcH10 t 11),
(25, UbcH10 t1 ← CycB t 11 ∧ UbcH10 t 11),
(19, cdh1 t0 ← Cdc20 t 10 ∧ CycB t 11),
(11, cdh1 t0 ← Cdc20 t 10 ∧ CycA t 11 ∧ p27 t 10),
(8, cdh1 t0 ← Cdc20 t 10 ∧ CycA t 11 ∧ UbcH10 t 11 ∧ cdh1 t 11),
(6, cdh1 t0 ← CycD t 10 ∧ Cdc20 t 10 ∧ CycE t 10 ∧ Rb t 10),
(53, cdh1 t1 ← Cdc20 t 11),
(35, cdh1 t1 ← CycB t 10 ∧ p27 t 11),
(26, cdh1 t1 ← CycA t 10 ∧ CycB t 10),
(20, cdh1 t1 ← CycB t 10 ∧ E2F t 11 ∧ UbcH10 t 10),
(48, p27 t0 ← CycD t 11),
(44, p27 t0 ← CycB t 11),
(29, p27 t0 ← CycA t 11 ∧ CycE t 11),
(26, p27 t0 ← CycE t 11 ∧ p27 t 10),
(7, p27 t1 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ p27 t 11),
(6, p27 t1 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ CycE t 10),
(6, p27 t1 ← CycD t 10 ∧ CycB t 10 ∧ CycE t 10 ∧ p27 t 11),
(5, p27 t1 ← CycD t 10 ∧ Cdc20 t 11 ∧ CycA t 10 ∧ CycB t 10),
}

Machine Learning

1 3

WP ′′ = {
(48, CycD t0 ← CycD t 11),
(6, CycD t0 ← E2F t 11 ∧ Rb t 11 ∧ UbcH10 t 11 ∧ p27 t 11),
(6, CycD t0 ← CycA t 10 ∧ CycE t 10 ∧ UbcH10 t 11 ∧ p27 t 11),
(6, CycD t0 ← Cdc20 t 10 ∧ CycB t 10 ∧ CycE t 10 ∧ UbcH10 t 11),
(54, CycD t1 ← CycD t 10),
(10, CycD t1 ← CycA t 11 ∧ UbcH10 t 10 ∧ cdh1 t 11),
(8, CycD t1 ← Cdc20 t 11 ∧ Rb t 11 ∧ UbcH10 t 10 ∧ cdh1 t 11),
(8, CycD t1 ← Cdc20 t 11 ∧ CycE t 10 ∧ UbcH10 t 10 ∧ cdh1 t 11),
(44, Cdc20 t0 ← CycB t 11),
(6, Cdc20 t0 ← Cdc20 t 11 ∧ E2F t 10 ∧ UbcH10 t 10 ∧ p27 t 10),
(6, Cdc20 t0 ← CycA t 10 ∧ E2F t 10 ∧ Rb t 10 ∧ UbcH10 t 10),
(6, Cdc20 t0 ← CycD t 10 ∧ Cdc20 t 11 ∧ E2F t 10 ∧ cdh1 t 11),
(58, Cdc20 t1 ← CycB t 10),
(8, Cdc20 t1 ← Cdc20 t 10 ∧ E2F t 11 ∧ UbcH10 t 10 ∧ p27 t 11),
(8, Cdc20 t1 ← Cdc20 t 11 ∧ CycA t 11 ∧ cdh1 t 10 ∧ p27 t 11),
(7, Cdc20 t1 ← Cdc20 t 10 ∧ CycE t 11 ∧ UbcH10 t 10 ∧ p27 t 11),
(7, CycA t0 ← Cdc20 t 10 ∧ CycA t 11 ∧ Rb t 10 ∧ cdh1 t 10),
(7, CycA t0 ← Cdc20 t 10 ∧ CycA t 11 ∧ Rb t 10 ∧ p27 t 11),
(7, CycA t0 ← Cdc20 t 10 ∧ CycB t 10 ∧ Rb t 10 ∧ UbcH10 t 10),
(6, CycA t0 ← Cdc20 t 10 ∧ E2F t 11 ∧ Rb t 10 ∧ UbcH10 t 10),
(57, CycA t1 ← Rb t 11),
(53, CycA t1 ← Cdc20 t 11),
(28, CycA t1 ← CycB t 10 ∧ UbcH10 t 11),
(28, CycA t1 ← UbcH10 t 11 ∧ cdh1 t 11),
(25, CycB t0 ← Cdc20 t 10 ∧ cdh1 t 10),
(9, CycB t0 ← Cdc20 t 10 ∧ E2F t 10 ∧ Rb t 10),
(7, CycB t0 ← Cdc20 t 10 ∧ CycA t 11 ∧ CycE t 10 ∧ p27 t 11),
(7, CycB t0 ← CycD t 11 ∧ Cdc20 t 10 ∧ CycA t 11 ∧ p27 t 11),
(53, CycB t1 ← Cdc20 t 11),
(50, CycB t1 ← cdh1 t 11),
(17, CycB t1 ← CycA t 11 ∧ UbcH10 t 11 ∧ p27 t 10),
(16, CycB t1 ← CycD t 10 ∧ CycA t 11 ∧ CycE t 11),
(21, CycE t0 ← E2F t 11 ∧ Rb t 10),
(7, CycE t0 ← Cdc20 t 10 ∧ Rb t 10 ∧ cdh1 t 11),
(6, CycE t0 ← CycA t 10 ∧ CycB t 10 ∧ Rb t 10 ∧ UbcH10 t 10),
(5, CycE t0 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ Rb t 10),
(57, CycE t1 ← Rb t 11),
(51, CycE t1 ← E2F t 10),
(15, CycE t1 ← Cdc20 t 11 ∧ CycE t 11 ∧ cdh1 t 10),
(15, CycE t1 ← CycD t 11 ∧ CycE t 11 ∧ cdh1 t 10),
(15, E2F t0 ← CycB t 10 ∧ Rb t 10 ∧ p27 t 11),
(11, E2F t0 ← CycA t 10 ∧ CycB t 10 ∧ Rb t 10),
(9, E2F t0 ← CycB t 10 ∧ E2F t 11 ∧ Rb t 10 ∧ UbcH10 t 10),
(7, E2F t0 ← Cdc20 t 11 ∧ CycB t 10 ∧ E2F t 10 ∧ Rb t 10),
(57, E2F t1 ← Rb t 11),
(44, E2F t1 ← CycB t 11),
(26, E2F t1 ← CycA t 11 ∧ p27 t 10),
(15, E2F t1 ← Cdc20 t 10 ∧ CycA t 11 ∧ UbcH10 t 11),
(16, Rb t0 ← CycD t 10 ∧ CycB t 10 ∧ p27 t 11),
(6, Rb t0 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ CycE t 10),
(5, Rb t0 ← CycD t 10 ∧ Cdc20 t 11 ∧ CycA t 10 ∧ CycB t 10),
(5, Rb t0 ← CycD t 10 ∧ Cdc20 t 11 ∧ cdh1 t 10 ∧ p27 t 11),
(48, Rb t1 ← CycD t 11),
(44, Rb t1 ← CycB t 11),
(26, Rb t1 ← CycE t 11 ∧ p27 t 10),
(26, Rb t1 ← CycA t 11 ∧ p27 t 10),
(52, UbcH10 t0 ← cdh1 t 10),
(33, UbcH10 t0 ← CycA t 11 ∧ UbcH10 t 11),
(27, UbcH10 t0 ← Cdc20 t 11 ∧ UbcH10 t 11),
(25, UbcH10 t0 ← CycB t 11 ∧ UbcH10 t 11),
(22, UbcH10 t1 ← UbcH10 t 10 ∧ cdh1 t 11),
(8, UbcH10 t1 ← Cdc20 t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ cdh1 t 11),
(8, UbcH10 t1 ← Cdc20 t 10 ∧ CycB t 10 ∧ cdh1 t 11 ∧ p27 t 11),
(6, UbcH10 t1 ← CycB t 10 ∧ CycE t 10 ∧ E2F t 11 ∧ cdh1 t 11),
(53, cdh1 t0 ← Cdc20 t 11),
(35, cdh1 t0 ← CycB t 10 ∧ p27 t 11),
(26, cdh1 t0 ← CycA t 10 ∧ CycB t 10),
(20, cdh1 t0 ← CycB t 10 ∧ E2F t 11 ∧ UbcH10 t 10),
(19, cdh1 t1 ← Cdc20 t 10 ∧ CycB t 11),
(11, cdh1 t1 ← Cdc20 t 10 ∧ CycA t 11 ∧ p27 t 10),
(8, cdh1 t1 ← Cdc20 t 10 ∧ CycA t 11 ∧ UbcH10 t 11 ∧ cdh1 t 11),
(6, cdh1 t1 ← CycD t 10 ∧ Cdc20 t 10 ∧ CycE t 10 ∧ Rb t 10),
(7, p27 t0 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ p27 t 11),
(6, p27 t0 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ CycE t 10),
(6, p27 t0 ← CycD t 10 ∧ CycB t 10 ∧ CycE t 10 ∧ p27 t 11),
(5, p27 t0 ← CycD t 10 ∧ Cdc20 t 11 ∧ CycA t 10 ∧ CycB t 10),
(48, p27 t1 ← CycD t 11),
(44, p27 t1 ← CycB t 11),
(29, p27 t1 ← CycA t 11 ∧ CycE t 11),
(26, p27 t1 ← CycE t 11 ∧ p27 t 10),
}

Fig. 16 (continued)

 Machine Learning

1 3

Appendix 9: Information about this paper

History of the paper

This paper is a substantial extension of Ribeiro et al. (2018) where a first version of GULA
was introduced. In Ribeiro et al. (2018), there was no distinction between feature and target
variables, i.e., variables at time step t and t + 1 . From this consideration, interesting prop-
erties arise and allow to characterize the kind of semantics compatible with the learning
process of the algorithm (Theorem 1). It also allows to represent constraints and to propose
an algorithm (Synchronizer, Sect. 5) to learn programs whose dynamics can mimic any
given set of transitions with optimal properties on both rules and constraints. It also allows
to use GULA to learn human readable explanations in form of rules on static classification
problems (as long as all variables are discrete), which will be one of the focus of our future
works.

Main contributions of the paper

The main contributions of this paper are:

• A modeling of discrete memory-less dynamics system as multi-valued propositional
logic. This modeling is independent of the dynamical semantics the system relies on,
as long as it respects some given properties we provided in this paper. The main con-
tributions of this formalism is the characterization of optimality and the study of which
semantics are compatible with this formalism (which includes notably synchronous,
asynchronous and general semantics).

• A first algorithm named GULA, to learn such optimal programs.
• The formalism is also extended to represent and use constraints. This allows to repro-

duce any discrete memory-less dynamical semantics behaviors inside the logic program
when the original semantics is unknown.

• A second algorithm named Synchronizer, that exploits GULA to learn a logic pro-
gram with constraints that can reproduce any given set of state transitions. The method
we proposed is able to learn a whole system dynamics, including its semantics, in the
form of a single propositional logic program. This logic program not only explains the
behavior of the system in the form of human readable propositional logic rules but also
is able to reproduce the behavior of the observed system without the need of know-
ing its semantics. Furthermore, the semantics can be explained, without any previous
assumption, in the form of human readable rules inside the logic program. In other
words, the approach allows to learn all the previously cited semantics, as well as new
ones.

• A heuristic method allowing to use GULA to learn a model able to predict from unseen
case.

• Evaluation of these methods on benchmarks from biological litterature regarding scal-
ability, prediction accuracy and explanation quality.

What evidence is provided

We show through theoretical results the correctness of our approach for both modeling
and algorithms (see above contribution for details). Empirical evaluation is performed on

Machine Learning

1 3

benchmarks coming from biological literature. It shows the capacity of GULA to produce
correct models when all transitions are available. Also, we observe that learned models
generalize to unseen data when given a partial input in those experiments.

Related work

The paper refers to relevant related work. As we discussed in the related work section, our
approach is quite related to Bain and Srinivasan (2018), Evans et al. (2019, 2020), Kat-
zouris et al. (2015), Fages (2020).

The techniques we propose in this paper are a continuation of the works on the LFIT
framework from Inoue et al. (2014), Ribeiro and Inoue (2015), Ribeiro et al. (2018).

In Inoue (2011), Inoue and Sakama (2012), state transitions systems are represented
with logic programs, in which the state of the world is represented by a Herbrand inter-
pretation and the dynamics that rule the environment changes are represented by a logic
program P. The rules in P specify the next state of the world as a Herbrand interpretation
through the immediate consequence operator (also called the TPoperator) (Van Emden &
Kowalski, 1976; Apt et al., 1988) which mostly corresponds to the synchronous semantics
we present in Sect. 3. In this paper, we extend upon this formalism to model multi-valued
variables and any memory-less discrete dynamic semantics including synchronous, asyn-
chronous and general semantics.

Inoue et al. (2014) proposed the LFIT framework to learn logic programs from traces
of interpretation transitions. The learning setting of this framework is as follows. We
are given a set of pairs of Herbrand interpretations (I, J) as positive examples such that
J = TP(I), and the goal is to induce a normal logic program (NLP) P that realizes the given
transition relations. As far as we know, this concept of learning from interpretation tran-
sition (LFIT) has never been considered in the ILP literature before (Inoue et al., 2014).
In this paper, we propose two algorithms that extend upon this previous work: GULA to
learn the minimal rules of the dynamics from any semantics states transitions that respect
Theorem 1 and Synchronizer that can capture the dynamics of any memory-less discrete
dynamic semantics.

Funding This work was supported by JSPS KAKENHI Grant Number JP17H00763 and by the “Pays de la
Loire” Region through RFI Atlanstic 2020.

Availability of data and materials Experiments data and sources code is available at https:// github. com/
Tony- sama/ pylfit under GPL-3.0 License.

Code availability Algorithms and experiments sources code is available at https:// github. com/ Tony- sama/
pylfit under GPL-3.0 License.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit

 Machine Learning

1 3

References

Akutsu, T., Kuhara, S., Maruyama, O., & Miyano, S. (2003). Identification of genetic networks by strate-
gic gene disruptions and gene overexpressions under a boolean model. Theoretical Computer Science,
298(1), 235–251.

Apt, K. R., Blair, H. A., & Walker, A. (1988). Towards a theory of declarative knowledge. Foundations of
deductive databases and logic programming p. 89

Bain, M., & Srinivasan, A. (2018). Identification of biological transition systems using meta-interpreted
logic programs. Machine Learning, 107(7), 1171–1206.

Blair, H. A., & Subrahmanian, V. (1988). Paraconsistent foundations for logic programming. Journal of
Non-classical Logic, 5(2), 45–73.

Blair, H. A., & Subrahmanian, V. (1989). Paraconsistent logic programming. Theoretical Computer Science,
68(2), 135–154. https:// doi. org/ 10. 1016/ 0304- 3975(89) 90126-6

Chatain, T., Haar, S., Kolčák, J., Paulevé, L., & Thakkar, A. (2020). Concurrency in boolean networks.
Natural Computing, 19(1), 91–109.

Chatain, T., Haar, S., Koutny, M., & Schwoon, S. (2015). Non-atomic transition firing in contextual nets.
In International conference on applications and theory of petri nets and concurrency (pp. 117–136).
Springer.

Chatain, T., Haar, S., & Paulevé, L. (2018). Boolean networks: Beyond generalized asynchronicity. In
AUTOMATA 2018. Springer.

Cropper, A., Dumančić, S., & Muggleton, S.H. (2020). Turning 30: New ideas in inductive logic program-
ming. In Bessiere, C. (Ed.), Proceedings of the twenty-ninth international joint conference on artifi-
cial intelligence, IJCAI-20 (pp. 4833–4839). International Joint Conferences on Artificial Intelligence
Organization. https:// doi. org/ 10. 24963/ ijcai. 2020/ 673. Survey track

Davidich, M. I., & Bornholdt, S. (2008). Boolean network model predicts cell cycle sequence of fission
yeast. PLoS ONE, 3(2), e1672.

Dubrova, E., & Teslenko, M. (2011). A SAT-based algorithm for finding attractors in synchronous boolean
networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 8(5),
1393–1399.

Evans, R., Hernandez-Orallo, J., Welbl, J., Kohli, P., & Sergot, M. (2019). Making sense of sensory input.
arXiv preprint arXiv: 1910. 02227

Evans, R., Hernandez-Orallo, J., Welbl, J., Kohli, P., & Sergot, M. (2020). Evaluating the apperception
engine. arXiv preprint arXiv: 2007. 05367

Fages, F. (2020). Artificial intelligence in biological modelling. In A guided tour of artificial intelligence
research (pp. 265–302). Springer.

Fauré, A., Naldi, A., Chaouiya, C., & Thieffry, D. (2006). Dynamical analysis of a generic boolean model
for the control of the mammalian cell cycle. Bioinformatics, 22(14), e124–e131.

Fitting, M. (1991). Bilattices and the semantics of logic programming. The Journal of Logic Programming,
11(2), 91–116. https:// doi. org/ 10. 1016/ 0743- 1066(91) 90014-G

Gibart., L., Bernot., G., Collavizza., H., & Comet., J. (2021) Totembionet enrichment methodology: Appli-
cation to the qualitative regulatory network of the cell metabolism. In Proceedings of the 14th interna-
tional joint conference on biomedical engineering systems and technologies (BIOINFORMATICS) (pp.
85–92). INSTICC, SciTePress. https:// doi. org/ 10. 5220/ 00101 86200 850092.

Ginsberg, M. L. (1988). Multivalued logics: A uniform approach to reasoning in artificial intelligence. Com-
putational Intelligence, 4(3), 265–316.

Inoue, K. (2011). Logic programming for boolean networks. In Proceedings of the twenty-second interna-
tional joint conference on artificial intelligence, IJCAI’11 (Vol. 2, pp. 924–930). AAAI Press.

Inoue, K., Ribeiro, T., & Sakama, C. (2014). Learning from interpretation transition. Machine Learning,
94(1), 51–79.

Inoue, K., & Sakama, C. (2012). Oscillating behavior of logic programs. Correct Reasoning (pp. 345–362).
Springer.

Islam, S. R., Eberle, W., & Ghafoor, S. K. (2020). Towards quantification of explainability in explainable
artificial intelligence methods. In The thirty-third international flairs conference.

Kaplan, S., Bren, A., Dekel, E., & Alon, U. (2008). The incoherent feed-forward loop can generate non-
monotonic input functions for genes. Molecular Systems Biology, 4(1), 203.

Katzouris, N., Artikis, A., & Paliouras, G. (2015). Incremental learning of event definitions with inductive
logic programming. Machine Learning, 100(2–3), 555–585.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of
Theoretical Biology, 22(3), 437–467.

https://doi.org/10.1016/0304-3975(89)90126-6
https://doi.org/10.24963/ijcai.2020/673
http://arxiv.org/abs/1910.02227
http://arxiv.org/abs/2007.05367
https://doi.org/10.1016/0743-1066(91)90014-G
https://doi.org/10.5220/0010186200850092

Machine Learning

1 3

Kifer, M., & Subrahmanian, V. (1992). Theory of generalized annotated logic programming and its applica-
tions. Journal of Logic Programming, 12(4), 335–367.

Klarner, H., Bockmayr, A., & Siebert, H. (2014). Computing symbolic steady states of boolean networks. In
Cellular automata (pp. 561–570). Springer.

Klarner, H., Streck, A., & Siebert, H. (2016). PyBoolNet: A python package for the generation, analysis and
visualization of boolean networks. Bioinformatics, 33(5), 770–772. https:// doi. org/ 10. 1093/ bioin forma
tics/ btw682

Lähdesmäki, H., Shmulevich, I., & Yli-Harja, O. (2003). On learning gene regulatory networks under the
boolean network model. Machine Learning, 52(1–2), 147–167.

Law, M., Russo, A., & Broda, K. (2016). Iterative learning of answer set programs from context depend-
ent examples. Theory and Practice of Logic Programming, 16(5–6), 834–848. https:// doi. org/ 10. 1017/
S1471 06841 60003 51

Liang, S., Fuhrman, S., & Somogyi, R. (1998). Reveal, a general reverse engineering algorithm for infer-
ence of genetic network architectures. In Proceedings of the 3rd pacific symposium on biocomputing
(pp. 18–29).

Martınez, D., Alenya, G., Torras, C., Ribeiro, T., & Inoue, K. (2016). Learning relational dynamics of sto-
chastic domains for planning. In Proceedings of the 26th international conference on automated plan-
ning and scheduling.

Martínez Martínez, D., Ribeiro, T., Inoue, K., Alenyà Ribas, G., & Torras, C. (2015). Learning probabilistic
action models from interpretation transitions. In Proceedings of the technical communications of the
31st international conference on logic programming (ICLP 2015) (pp. 1–14).

Muggleton, S. (1995). Inverse entailment and progol. New Generation Computing, 13(3–4), 245–286.
Muggleton, S. (1996). Learning from positive data. In International conference on inductive logic program-

ming (pp. 358–376). Springer.
Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., & Srinivasan, A. (2012). Ilp turns

20. Machine learning, 86(1), 3–23.
Muggleton, S. H., Schmid, U., Zeller, C., Tamaddoni-Nezhad, A., & Besold, T. (2018). Ultra-strong machine

learning: Comprehensibility of programs learned with ILP. Machine Learning, 107(7), 1119–1140.
Naldi, A., Hernandez, C., Abou-Jaoudé, W., Monteiro, P. T., Chaouiya, C., & Thieffry, D. (2018). Logical

modeling and analysis of cellular regulatory networks with Ginsim 3.0. Frontiers in Physiology, 9,
646.

Noual, M., & Sené, S. (2018). Synchronism versus asynchronism in monotonic boolean automata networks.
Natural Computing, 17(2), 393–402.

Novák, B., & Tyson, J. J. (2004). A model for restriction point control of the mammalian cell cycle. Journal
of Theoretical Biology, 230(4), 563–579.

Ortega, A., Fierrez, J., Morales, A., Wang, Z., & Ribeiro, T. (2020). Symbolic AI for XAI: Evaluating LFIT
inductive programming for fair and explainable automatic recruitment. Target, 1(v1), 1.

Pal, R., Ivanov, I., Datta, A., Bittner, M. L., & Dougherty, E. R. (2005). Generating boolean networks with a
prescribed attractor structure. Bioinformatics, 21(21), 4021–4025.

Pasula, H. M., Zettlemoyer, L. S., & Kaelbling, L. P. (2007). Learning symbolic models of stochastic
domains. Journal of Artificial Intelligence Research, 29, 309–352.

Paulevé, L., Kolčák, J., Chatain, T., & Haar, S. (2020). Reconciling qualitative, abstract, and scalable mod-
eling of biological networks. bioRxiv.

Ray, O. (2009). Nonmonotonic abductive inductive learning. Journal of Applied Logic, 7(3), 329–340.
Ribeiro, T., Folschette, M., Magnin, M., Roux, O., & Inoue, K. (2018). Learning dynamics with synchro-

nous, asynchronous and general semantics. In International conference on inductive logic program-
ming (pp. 118–140). Springer.

Ribeiro, T., Folschette, M., Trilling, L., Glade, N., Inoue, K., Magnin, M., & Roux, O. (2020). Les enjeux
de l’inférence de modèles dynamiques des systèmes biologiques à partir de séries temporelles. In C.
Lhoussaine & E. Remy (Eds.), Approches symboliques de la modélisation et de l’analyse des systèmes
biologiques. ISTE Editions. In edition.

Ribeiro, T., & Inoue, K. (2015). Learning prime implicant conditions from interpretation transition. In
Inductive logic programming (pp. 108–125). Springer.

Ribeiro, T., Magnin, M., Inoue, K., & Sakama, C. (2015a). Learning delayed influences of biological sys-
tems. Frontiers in Bioengineering and Biotechnology, 2, 81.

Ribeiro, T., Magnin, M., Inoue, K., & Sakama, C. (2015b). Learning multi-valued biological models with
delayed influence from time-series observations. In 2015 IEEE 14th international conference on
machine learning and applications (ICMLA) (pp. 25–31). https:// doi. org/ 10. 1109/ ICMLA. 2015. 19

https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1017/S1471068416000351
https://doi.org/10.1017/S1471068416000351
https://doi.org/10.1109/ICMLA.2015.19

 Machine Learning

1 3

Ribeiro, T., Tourret, S., Folschette, M., Magnin, M., Borzacchiello, D., Chinesta, F., Roux, O., & Inoue, K.
(2018). Inductive learning from state transitions over continuous domains. In N. Lachiche & C. Vrain
(Eds.), Inductive logic programming (pp. 124–139). Cham: Springer International Publishing.

Schüller, P., & Benz, M. (2018). Best-effort inductive logic programming via fine-grained cost-based
hypothesis generation. Machine Learning, 107(7), 1141–1169.

Srinivasan, A. (2001). The aleph manual.
Thieffry, D., & Thomas, R. (1995). Dynamical behaviour of biological regulatory networks-II. Immunity

control in bacteriophage lambda. Bulletin of Mathematical Biology, 57(2), 277–297.
Thomas, R. (1991). Regulatory networks seen as asynchronous automata: A logical description. Journal of

Theoretical Biology, 153(1), 1–23.
Van Emden, M. H. (1986). Quantitative deduction and its fixpoint theory. The Journal of Logic Program-

ming, 3(1), 37–53.
Van Emden, M. H., & Kowalski, R. A. (1976). The semantics of predicate logic as a programming language.

Journal of the ACM (JACM), 23(4), 733–742.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Learning any memory-less discrete semantics for dynamical systems represented by logic programs
	Abstract
	1 Introduction
	2 Logical modeling of dynamical systems
	2.1 Multi-valued logic program
	2.2 Dynamic multi-valued logic program

	3 Dynamical semantics
	3.1 Synchronous, asynchronous and general semantics

	4 GULA
	4.1 Learning operations
	4.2 Algorithm

	5 Learning from any dynamical semantics using constraints
	5.1 Constraints
	5.2 Algorithm

	6 Predictions from partial observations with weighted s
	7 Evaluation
	7.1 GULA scalability
	7.2 GULA predictive power
	7.3 GULA explanation quality
	7.4 Readability of the model

	8 Related work
	8.1 Modeling dynamics
	8.2 Learning dynamics
	8.3 Inductive logic programming

	9 Conclusions
	References

