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Abstract
Learning from interpretation transition (LFIT) automatically constructs a model of the 
dynamics of a system from the observation of its state transitions. So far the systems 
that LFIT handled were mainly restricted to synchronous deterministic dynamics. How-
ever, other dynamics exist in the field of logical modeling, in particular the asynchronous 
semantics which is widely used to model biological systems. In this paper, we propose 
a modeling of discrete memory-less multi-valued dynamic systems as logic programs in 
which a rule represents what can occur rather than what will occur. This modeling allows 
us to represent non-determinism and to propose an extension of LFIT to learn regardless 
of the update schemes, allowing to capture a large range of semantics. We also propose a 
second algorithm which is able to learn a whole system dynamics, including its seman-
tics, in the form of a single propositional logic program with constraints. We show through 
theoretical results the correctness of our approaches. Practical evaluation is performed on 
benchmarks from biological literature.

Keywords Inductive logic programming · Dynamic systems · Logical modeling · Dynamic 
semantics

1 Introduction

Learning the dynamics of systems with many interactive components becomes more and 
more important in many applications such as physics, cellular automata, biochemical sys-
tems as well as engineering and artificial intelligence systems. In artificial intelligence 
systems, knowledge like action rules is employed by agents and robots for planning and 
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scheduling. In biology, learning the dynamics of biological systems corresponds to the 
identification of influence of genes, signals, proteins and molecules that can help biologists 
to understand their interactions and biological evolution.

In modeling of dynamical systems, the notion of concurrency and non-determinism is 
crucial. When modeling a biological regulatory network, it is necessary to represent the 
respective evolution of each component of the system. One of the most debated issues with 
regard to semantics targets the choice of a proper update mode of every component, that is, 
synchronous (Kauffman, 1969), asynchronous (Thomas, 1991) or more complex ones. The 
differences and common features of different semantics w.r.t. properties of interest (attrac-
tors, oscillators, etc.) have thus resulted in an area of research per itself (Inoue, 2011; Naldi 
et al., 2018; Chatain et al., 2020). But the biologists often have no idea whether a model 
of their system of interest should intrinsically be synchronous, asynchronous, generalized, 
or another semantics. It thus appears crucial to find ways to model systems from raw data 
without burdening the modelers with an a priori choice of the proper semantics.

For a decade, learning dynamics of systems has raised a growing interest in the field of 
inductive logic programming (ILP) (Muggleton et al., 2012; Cropper et al., 2020). ILP is a 
form of logic-based machine learning where the goal is to induce a hypothesis (a logic pro-
gram) that generalises given training examples and background knowledge. Whereas most 
machine learning approaches learn functions, ILP frameworks learn relations.

In the specific context of learning dynamical systems, previous works proposed an ILP 
framework entitled learning from interpretation transition (LFIT) (Inoue et  al. 2014) to 
automatically construct a model of the dynamics of a system from the observation of its 
state transitions. Figure  1 shows this learning process. Given some raw data, like time-
series data of gene expression, a discretization of those data in the form of state transitions 
is assumed. From those state transitions, according to the semantics of the system dynam-
ics, several inference algorithms modeling the system as a logic program have been pro-
posed. The semantics of a system’s dynamics can indeed differ with regard to the synchro-
nism of its variables, the determinism of its evolution and the influence of its history. The 
LFIT framework (Inoue et al., 2014; Ribeiro & Inoue, 2015; Ribeiro et al., 2018) proposed 
several modeling and learning algorithms to tackle those different semantics.

In Inoue (2011), Inoue and Sakama (2012), state transitions systems are represented 
with logic programs, in which the state of the world is represented by a Herbrand inter-
pretation and the dynamics that rule the environment changes are represented by a logic 
program P. The rules in P specify the next state of the world as a Herbrand interpretation 
through the immediate consequence operator (also called the TP operator) (Van Emden & 

Fig. 1  Assuming a discretization of time series data of a system as state transitions, we propose a method to 
automatically model the system dynamics
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Kowalski, 1976; Apt et al., 1988) which mostly corresponds to the synchronous semantics 
we present in Sect. 3. In this paper, we extend upon this formalism to model multi-valued 
variables and any memory-less discrete dynamic semantics including synchronous, asyn-
chronous and general semantics.

Inoue et al. (2014) proposed the LFIT framework to learn logic programs from traces of 
interpretation transitions. The learning setting of this framework is as follows. We are given 
a set of pairs of Herbrand interpretations (I, J) as positive examples such that J = TP(I), and 
the goal is to induce a normal logic program (NLP) P that realizes the given transition rela-
tions. As far as we know, this concept of learning from interpretation transition (LFIT) has 
never been considered in the ILP literature before (Inoue et al. 2014).

To date, the following systems have been tackled: memory-less deterministic systems 
(Inoue et  al., 2014), systems with memory (Ribeiro et  al., 2015a), probabilistic systems 
(Martínez Martínez et al., 2015) and their multi-valued extensions (Ribeiro et al. 2015b; 
Martınez et al., 2016). Ribeiro et al. (2018) proposes a method that allows to deal with con-
tinuous time series data, the abstraction itself being learned by the algorithm. As a sum-
mary, the systems that LFIT handled so far were restricted to synchronous deterministic 
dynamics.

In this paper, we extend this framework to learn systems dynamics independently of 
its update semantics. For this purpose, we propose a modeling of discrete memory-less 
multi-valued systems as logic programs in which each rule represents that a variable pos-
sibly takes some value at the next state, extending the formalism introduced in Inoue et al. 
(2014), Ribeiro and Inoue (2015). Research in multi-valued logic programming has pro-
ceeded along three different directions (Kifer & Subrahmanian, 1992): bilattice-based log-
ics (Fitting, 1991; Ginsberg, 1988), quantitative rule sets (Van Emden, 1986) and annotated 
logics (Blair & Subrahmanian, 1989, 1988). Our representation is based on annotated log-
ics. Here, to each variable corresponds a domain of discrete values. In a rule, a literal is an 
atom annotated with one of these values. It allows us to represent annotated atoms simply 
as classical atoms and thus to remain at a propositional level. This modeling allows us to 
characterize optimal programs independently of the update semantics, allowing to model 
the dynamics of a wide range of discrete systems. To learn such semantic-free optimal pro-
grams, we propose GULA: the General Usage LFIT Algorithm. We show from theoretical 
results that this algorithm can learn under a wide range of update semantics including syn-
chronous (deterministic or not), asynchronous and generalized semantics.

Ribeiro et al. (2018) proposed a first version of GULA that we substantially extend in 
this manuscript. In Ribeiro et al. (2018), there was no distinction between feature and target 
variables, i.e., variables at time step t and t + 1 . From this consideration, interesting prop-
erties arise and allow to characterize the kind of semantics compatible with the learning 
process of the algorithm (Theorem 1). It also allows to represent constraints and to propose 
a new algorithm (Synchronizer, Sect. 5). We show through theoretical results that this sec-
ond algorithm can learn a program able to reproduce any given set of discrete state transi-
tions and thus the behavior of any discrete memory-less dynamical semantics.

Empirical evaluation provided in Ribeiro et  al. (2018) was limited to scalability in 
complete observability cases. With the goal to process real data, we introduce a heuristic 
method allowing to use GULA to learn from partial observations and predict from unob-
served data. It allows us to apply the method on more realistic cases by evaluating both 
scalability, prediction accuracy and explanation of prediction on partial data. Evaluation is 
performed over the three aforementioned semantics for Boolean network benchmarks from 
biological literature (Klarner et al., 2016; Dubrova & Teslenko, 2011). These experiments 
emphasize the practical usage of the approach: our implementation reveals to be tractable 
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on systems up to a dozen components, which is sufficient enough to capture a large variety 
of complex dynamic behaviors in practice.

The organization of the paper is as follows. Section 2 provides a formalization of dis-
crete memory-less dynamics system as multi-valued logic program. Section 3 formalizes 
dynamical semantics under logic programs. Section 4 presents the first algorithm, GULA, 
which learns optimal programs regardless of the semantics. Section 5 provides extension 
of the formalization and a second algorithm, the Synchronizer, to represent and learn the 
semantics behavior itself. In Sect. 6, we propose a heuristic method allowing to use GULA 
to learn from partial observations and predict from unobserved data. Section 7 provides 
experimental evaluations regarding scalability, prediction accuracy and explanation of pre-
dictions. Section 8 discusses related work and Sect. 9 concludes the paper. All proofs of 
theorems and propositions are given in “Appendix”.

2  Logical modeling of dynamical systems

In this section, the concepts necessary to understand the learning algorithms we propose 
are formalized. In Sect. 2.1, the basic notions of multi-valued logic ( MVL ) are presented. 
Then, Sect. 2.2 presents a modeling of dynamics systems using this formalism.

In the following, we denote by ℕ ∶= {0, 1, 2,…} the set of natural numbers, and for 
all k, n ∈ ℕ , [[k;n]] ∶= {i ∈ ℕ ∣ k ≤ i ≤ n} is the set of natural numbers between k and n 
included. For any set S, the cardinality of S is denoted |S| and the power set of S is denoted 
℘(S).

2.1  Multi‑valued logic program

Let V = {v1,⋯ , vn} be a finite set of n ∈ ℕ variables, Val the set in which variables take 
their values and 𝖽𝗈𝗆 ∶ V → ℘(Val) a function associating a domain to each variable. The 
atoms of MVL are of the form vval where v ∈ V and val ∈ ���(v) . The set of such atoms 
is denoted by AV

���
= {vval ∈ V × Val ∣ val ∈ ���(v)} for a given set of variables V and a 

given domain function ��� . In the following, we work on specific V and ��� that we omit 
to mention when the context makes no ambiguity, thus simply writing A for AV

���
.

Example 1 For a system of 3 variables, the typical set of variables is V = {a, b, c} . 
In general, Val = ℕ so that domains are sets of natural integers, for instance: 
���(a) = {0, 1} , ���(b) = {0, 1, 2} and ���(c) = {0, 1, 2, 3} . Thus, the set of all atoms is: 
A = {a0, a1, b0, b1, b2, c0, c1, c2, c3}.

A MVL rule R is defined by:

where ∀i ∈ [[0;m]], v
vali
i

∈ A are atoms in MVL so that every variable is mentioned at most 
once in the right-hand part: ∀j, k ∈ [[1;m]], j ≠ k ⇒ vj ≠ vk . If m = 0 , the rule is denoted: 
v
val0
0

← ⊤ . Intuitively, the rule R has the following meaning: the variable v0 can take the 
value val0 in the next dynamical step if for each i ∈ [[1;m]] , variable vi has value vali in the 
current dynamical step.

(1)R = v
val0
0

← v
val1
1

∧⋯ ∧ vvalm
m
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The atom on the left-hand side of the arrow is called the head of R and is denoted 
head(R) ∶= v

val0
0

 . The notation var(head(R)) ∶= v0 denotes the variable that occurs in 
head(R) . The conjunction on the right-hand side of the arrow is called the body of R, written 
body(R) and can be assimilated to the set {vval1

1
,⋯ , v

valm
m } ; we thus use set operations such 

as ∈ and ∩ on it, and we denote it ∅ if it is empty. The notation var(body(R)) ∶= {v1,⋯ , vm} 
denotes the set of variables that occurs in body(R) . More generally, for all sets of atoms 
X ⊆ A , we denote var(X) ∶= {v ∈ V ∣ ∃val ∈ ���(v), vval ∈ X} the set of variables 
appearing in the atoms of X. A multi-valued logic program ( MVLP ) is a set of MVL 
rules.

Definition 1 introduces a domination relation between rules that defines a partial anti-
symmetric ordering. Intuitively, rules with more general bodies dominate other rules. In 
our approach, we prefer a more general rule over a more specific one.

Definition 1 (Rule Domination) Let R1 , R2 be two MVL rules. The rule R1 dominates R2 , 
written R1 ≥ R2 if head(R1) = head(R2) and body(R1) ⊆ body(R2).

Example 2 Let R1 ∶= a1 ← b1 , R2 ∶= a1 ← b1 ∧ c0 . R1 dominates R2 since 
head(R1) = head(R2) = a1 and body(R1) ⊆ body(R2) . Intuitively, R1 is more general than 
R2 on c. R2 does not dominate R1 because body(R2) ⊈ body(R1) . Let R3 ∶= a1 ← a1 ∧ b0 , 
R1 (resp. R2 ) does not dominate R3 (and vice versa), since body(R1) ⊈ body(R3) : the rules 
have a different condition over b. Let R4 ∶= a1 ← a1 , for the same reasons, R1 (resp. R2 ) 
does not dominate R4.

Let R5 ∶= a0 ← � , R1 (resp. R2,R3,R4 ) does not dominate R5 (and vice versa) since 
their head atoms are different ( a1 ≠ a0).

The most general body for a rule is the empty set (also denoted ⊤ ). A rule with an empty 
body dominates all rules with the same head atom. Furthermore, the only way two rules 
dominate each over is that they are the same rule, as stated by Lemma 1.

Lemma 1 (Double Domination Is Equality) Let R1,R2 be two MVL rules. If R1 ≥ R2 and 
R2 ≥ R1 then R1 = R2.

2.2  Dynamic multi‑valued logic program

We are interested in modeling non-deterministic (in a broad sense, which includes deter-
ministic) discrete memory-less dynamical systems. In such a system, the next state is 
decided according to dynamics that depend on the current state of the system. From a mod-
eling perspective, the variables of the system at time step t can be seen as target variables 
and the same variables at time step t − 1 as features variables. Furthermore, additional var-
iables that are external to the system, like stimuli or observation variables for example, can 
appear only as feature or target variables.

Such a system can be represented by a MVLP with some restrictions. First, the set of 
variables V is divided into two disjoint subsets: T  (for targets) encoding system variables at 
time step t plus optional external variables like observation variables, and F  (for features) 
encoding system variables at t − 1 and optional external variables like stimuli. It is thus 
possible that |F| ≠ |T| . Second, rules only have a conclusion at t and conditions at t − 1 , 
i.e., only an atom of a variable of T  can be a head and only atoms of variables in F  can 
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appear in a body. In the following, we also re-use the same notations as for the MVL of 
Sect. 2.1 such as head(R) , body(R) and var(head(R)).

Definition 2 (Dynamic MVLP ) Let T ⊂ V and F ⊂ V such that F = V ⧵ T  . A DMVLP P 
is a MVLP such that ∀R ∈ P, var(head(R)) ∈ T  and ∀vval ∈ body(R), v ∈ F .

In the following, when there is no ambiguity, we suppose that F  , T  , V and A are already 
defined and we omit to define them again.

Example 3 Figure 2 gives an example of regulation network with three elements a, b and c. 
The information of this network is not complete; notably, the relative “force” of the com-
ponents a and b on the component c is not explicit. Multiple dynamics are then possible on 
this network, among which four possibilities are given below by Program 1 to 4, defined on 
T ∶= {at, bt, ct} , F ∶= {at−1, bt−1, ct−1} and ∀v ∈ T ∪ F, ���(v) ∶= {0, 1}.

Program 1 is a direct translation of the relations of the regulation network. It only con-
tains rules producing atoms with value 1 which is equivalent to a set of Boolean func-
tions. In Program 2, a always takes value 1 while in Program 3 it always takes value 0, a 
having no incoming influence in the regulation network this can represent some kind of 
default behavior. In Program 3, the two red rules introduce potential non-determinism in 
the dynamics since both conditions can hold at the same time. In Program 4, the rule apply 
the conditions of the regulation network but it also allows each variable to keep the value 1 
at t if it has it at t − 1 and no inhibition occurs. We insist on the fact that the index notation t 
or t − 1 is part of the variable name, not its value. This allows to distinguish variables from 
T  (t) or F  ( t − 1).

Program 1
b1t ← a1t−1
c1t ← a1t−1 ∧ b0t−1

Program 2
a1t ← ∅
b0t ← a0t−1
b1t ← a1t−1
c0t ← a0t−1
c0t ← b1t−1
c1t ← a1t−1 ∧ b0t−1

Program 3
a0t ← ∅
b0t ← a0t−1
b1t ← a1t−1
c0t ← a0t−1
c0t ← b1t−1
c1t ← a1t−1

Program 4
a1t ← a1t−1
b1t ← b1t−1
b1t ← a1t−1
c1t ← c1t−1 ∧ b0t−1
c1t ← a1t−1 ∧ b0t−1

Fig. 2  Example of interaction graph of a regulation network representing an incoherent feed-forward loop 
(Kaplan et al., 2008) where a positively influences b and c, while b (and thus, indirectly, a) negatively influ-
ences c 
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The dynamical system we want to learn the rules of is represented by a succession of 
states as formally given by Definition 3. We also define the “compatibility” of a rule with a 
state in Definition 4 and with a transition in Definition 5.

Definition 3 (Discrete state) A discrete state s on T  (resp. F  ) of a DMVLP is a function 
from T  (resp. F  ) to ℕ , i.e., it associates an integer value to each variable in T  (resp. F  ). It 
can be equivalently represented by the set of atoms {vs(v) ∣ v ∈ T(resp. F)} and thus we can 
use classical set operations on it. We write ST  (resp. SF  ) to denote the set of all discrete 
states of T  (resp. F  ), and a couple of states (s, s�) ∈ S

F × S
T  is called a transition.

When there is no possible ambiguity, we sometimes (Figs. 3, 5, … ) denote a state only 
by the values of variables, without naming the variables. In this case, the variables are 
given in alphabetical order (a, b, c… ). For instance, {a0, b1} is denoted 01  , {a1, b0} is 
denoted 10  and {a0, b1, c0, d3} is denoted 0103 .

Example 4 Consider a dynamical system having two internal variables a and b, 
an external stimilus st and an observation variable ch used to trace some impor-
tant events. The two sets of possible discrete states of a program defined on the 
two sets of variables T = {at, bt, ch} and F = {at−1, bt−1, st} , and the set of atoms 
A = {a0

t
, a1

t
, b0

t
, b1

t
, b2

t
, ch0, ch1, a0

t−1
, a1

t−1
, b0

t−1
, b1

t−1
, b2

t−1
, st0, st1} are:

Here, at−1 and at (resp. bt−1 and bt ) are theoretically different variables from a MVL per-
spective. But they actually encode the same variable at different time step and thus a (resp. 
b) is present in both F  and T  in its corresponding timed form.

On the other hand, variables st and ch are respectively a stimuli and an observation var-
iable and thus only appear in F,SF  or T,ST  . Depending on the number of stimuli and 
observation variables, states of SF  can have a different size than states in ST  (see Fig. 4).

S
F = {
{a0

t−1
, b0

t−1
, st0}, {a0

t−1
, b0

t−1
, st1},

{a0
t−1

, b1
t−1

, st0}, {a0
t−1

, b1
t−1

, st1},
{a0

t−1
, b2

t−1
, st0}, {a0

t−1
, b2

t−1
, st1},

{a1
t−1

, b0
t−1

, st0}, {a1
t−1

, b0
t−1

, st1},
{a1

t−1
, b1

t−1
, st0}, {a1

t−1
, b1

t−1
, st1},

{a1
t−1

, b2
t−1

, st0}, {a1
t−1

, b2
t−1

, st1}}

and ST = {
{a0

t
, b0

t
, ch0}, {a0

t
, b0

t
, ch1},

{a0
t
, b1

t
, ch0}, {a0

t
, b1

t
, ch1},

{a0
t
, b2

t
, ch0}, {a0

t
, b2

t
, ch1},

{a1
t
, b0

t
, ch0}, {a1

t
, b0

t
, ch1},

{a1
t
, b1

t
, ch0}, {a1

t
, b1

t
, ch1},

{a1
t
, b2

t
, ch0}, {a1

t
, b2

t
, ch1} }.

Fig. 3  Example of a pseudo-idempotent semantics DS 
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Definition 4 (Rule-state matching) Let s ∈ S
F  . The MVL rule R matches s, written R ⊓ s , 

if body(R) ⊆ s.

Fig. 4  Representation of a state transition of a dynamical system over n variables, m stimuli and k observa-
tion variables, i.e., |F| = n + m, |T| = n + k

Fig. 5  A Boolean network with two variables inhibiting each other (top). The corresponding synchro-
nous, asynchronous and general dynamics are given as state-transition diagrams (middle). In these state-
transition diagrams, each box with a label “xy” represents both the feature state {ax

t−1
, b

y

t−1
} and the target 

state {ax
t
, b

y

t } , and each arrow represents a possible transitions between states. The corresponding optimal 
DMVLP (bottom) contain comments (in grey) that explain sub-parts of the programs
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We note that this definition of matching only concerns feature variables. Target vari-
ables are never meant to be matched.

Example 5 Let F = {at−1, bt−1, st} , T = {at, bt, ch} and dom(at−1) = dom(st) 
= dom(at) = dom(ch) = {0, 1}, dom(bt−1) = dom(bt) = {0, 1, 2} . The rule 
ch0 ← a1

t−1
∧ b1

t−1
∧ st1 only matches the state {a1

t−1
, b1

t−1
, st1} . The rule ch0 ← a0

t−1
∧ st1 

matches {a0
t−1

, b0
t−1

, st1} , {a0
t−1

, b1
t−1

, st1} and {a0
t−1

, b2
t−1

, st1} . The rule b2
t
← a1

t−1
 matches 

{a1
t−1

, b0
t−1

, st0} , {a1
t−1

, b0
t−1

, st1} , {a1
t−1

, b1
t−1

, st0} , {a1
t−1

, b1
t−1

, st1} , {a1
t−1

, b2
t−1

, st0} , 
{a1

t−1
, b2

t−1
, st1} . The rule a1 ← ∅ matches all states of SF .

The final program we want to learn should both:

• match the observations in a complete (all transitions are learned) and correct (no spuri-
ous transition) way;

• represent only minimal necessary interactions (according to Occam’s razor: no overly-
complex bodies of rules)

The following definitions formalize these desired properties. In Definition 5 we character-
ize the fact that a rule of a program is useful to describe the dynamics of one variable in a 
transition; this notion is then extended to a program and a set of transitions, under the con-
dition that there exists such a rule for each variable and each transition. A conflict (Defini-
tion 6) arises when a rule describes a change that is not featured in the considered set of 
transitions.

Finally, Definitions 8 and 7 give the characteristics of a complete (the whole dynamics 
is covered) and consistent (without conflict) program.

Definition 5 (Rule and program realization) Let R be a MVL rule and (s, s�) ∈ S
F × S

T  . 
The rule R realizes the transition (s, s�) , written s

R
������→ s′ , if R ⊓ s ∧ head(R) ∈ s�.

A DMVLP P realizes (s, s�) ∈ S
F × S

T  , written s
P
������→ s′ , if 

∀v ∈ T,∃R ∈ P, var(head(R)) = v ∧ s
R
������→ s� . It realizes a set of transitions T ⊆ S

F × S
T  , 

written P↪T  , if ∀(s, s�) ∈ T , s
P
������→ s�.

Example 6 The rule c1
t
← a1

t−1
∧ b1

t−1
 realizes the transition t = ({a1

t−1
, b1

t−1
, c0

t−1
} , 

{a0
t
, b1

t
, c1

t
}) since it matches the first state of t and its conclusion is in the second state. 

However, the rule c1
t
← a1

t−1
∧ b0

t−1
 does not realize t since it does not match the feature 

state of t.

Example 7 The transition t = ({a1
t−1

, b1
t−1

, c0
t−1

} , {a0
t
, b1

t
, c1

t
}) is realized by Program  3 

of Example 3, by using the rules a0
t
← ∅ , b1

t
← a1

t−1
 and c1

t
← a1

t−1
 . However, Program 2 

of the same Example does not realize t since the only rule that could produce c1
t
 , that is, 

c1
t
← a1

t−1
∧ b0

t−1
 , does not match {a1

t−1
, b1

t−1
, c0

t−1
} ; moreover, no rule can produce a0

t
 . Pro-

grams 1 and 4 of the same Example cannot produce a0
t
 either and thus do not realize t.

In the following, for all sets of transitions T ⊆ S
F × S

T  , we denote: 
f irst(T) ∶= {s ∈ S

F ∣ ∃(s1, s2) ∈ T , s1 = s} the set of all initial states of these transitions. 
We note that f irst(T) = � ⟺ T = �.
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Definition 6 (Conflict and Consistency) A MVL rule R conflicts with a set of transitions 
T ⊆ S

F × S
T  when ∃s ∈ first(T),

(
R ⊓ s ∧ ∀(s, s�) ∈ T , head(R) ∉ s�

)
 . R is said to be con-

sistent with T when R does not conflict with T.

A rule is consistent if for all initial states of the transitions of T ( f irst(T)) matched by 
the rule, there exists a transitions of T for which it verifies the conclusion.

Definition 7 (Consistent program) A DMVLP P is consistent with a set of transitions T if 
P does not contain any rule R conflicting with T.

Example 8 Let s1 = {a1
t−1

, b0
t−1

, c0
t−1

}, s2 = {a1
t−1

, b0
t−1

, c1
t−1

}, s3 = {a0
t−1

, b0
t−1

, c0
t−1

} and

Let T = {t1, t2, t3, t4, t5}.
Program 1 of Example 3 is consistent with T. The rule b1

t
← a1

t−1
 matches s1 and both 

s1 and b1
t
 are observed in t2. The rule also matches s2 which is observed with b1

t
 in t3. The 

rule c1
t
← a1

t−1
∧ b0

t−1
 matches s1 (resp. s2), which is observed with c1

t
 in t1 (resp. t3).

Program 2 is not consistent with T since a1
t
← ∅ is not consistent with T: it matches s1, 

s2 and s3 but the transitions of T that include s2 (t3, t4) do not contain a1
t
 . Program 3 is not 

consistent with T since a0
t
← ∅ matches s1, s2, s3 but the only transition that contains s3 

(t5) does not contain a0
t
 . Program 4 is not consistent with T since a1

t
← a1

t−1
 matches s2 but 

the transitions of T that include s2 (t3, t4) do not contain a1
t
.

Definition 8 (Complete program) A DMVLP P is complete if 
∀s ∈ S

F,∀v ∈ T,∃R ∈ P,R ⊓ s ∧ var(head(R)) = v.

A complete DMVLP realizes at least one transition for each possible initial state.

Example 9 Program 1 of Example 3 is not complete since it does not have any rule over 
target variable at , in fact it does not realize any transitions. Program 2 of same example is 
complete:

• The rule a1
t
← ∅ will realize a1

t
 from any feature state;

• For bt it has a first (resp. second) rule that matches all feature state where a0
t−1

 (resp. 
a1
t−1

 ) appears and the domain of at−1 being {0, 1} all cases and thus all feature states are 
covered by this two rules;

• For ct , all combinations of values of a and b are covered by the three last rules, 
∀val ∈ ���(ct−1),

• {a0
t−1

, b0
t−1

, cval
t−1

} is matched by c0
t
← a0

t−1
;

• {a0
t−1

, b1
t−1

, cval
t−1

} is matched by c0
t
← b1

t−1
 (and c0

t
← b1

t−1
);

• {a1
t−1

, b0
t−1

, cval
t−1

} is matched by c0
t
← a1

t−1
∧ b0

t−1
;

• {a1
t−1

, b1
t−1

, cval
t−1

} is matched by c0
t
← b1

t−1
.

t1 = (s1, {a0
t
, b1

t
, c1

t
}),

t2 = (s1, {a1
t
, b1

t
, c0

t
}),

t3 = (s2, {a0
t
, b1

t
, c0

t
}),

t4 = (s2, {a0
t
, b0

t
, c1

t
}),

t5 = (s3, {a1
t
, b1

t
, c0

t
}).
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Program 3 is also complete, and it even realizes multiple values for ct when both a1
t−1

 and 
b1
t−1

 are in a feature state: {a1
t−1

, b1
t−1

, c0
t−1

} is matched by both c0
t
← b1

t−1
 and c1

t
← a1

t−1
 . Pro-

gram 4 is not complete: no transition is realized when a0
t−1

 is in a feature state since the 
only rule of at is a1

t
← a1

t−1
.

Definition 9 groups all the properties that we want the learned program to have: suitabil-
ity and optimality, and Proposition 1 states that the optimal program of a set of transitions 
is unique.

Definition 9 (Suitable and optimal program) Let T ⊆ S
F × S

T  . A DMVLP Pis suitable 
for T when:

• P is consistent with T,
• P realizes T,
• P is complete,
• For any possible MVL rule R consistent with T, there exists R� ∈ P such that R′ ≥ R.

If in addition, for all R ∈ P , all the MVL rules R′ belonging to DMVLP suitable for T are 
such that R′ ≥ R implies R ≥ R′ then P is called optimal.

Note that Definition 9 ensures local minimality regarding the ordering ≥ (see Definition 
1). In terms of biological models, it is more interesting to focus on local minimality, thus 
simple but numerous rules, modeling local influences from which the complexity of the 
whole system arises, than global minimality that would produce system-level rules hiding 
the local correlations and influences. Definition 9 also guarantees that we obtain all the 
minimal rules which guarantees to provide biological collaborators with the whole set of 
possible explanations of biological phenomena involved in the system of interest.

Proposition 1 (Uniqueness of Optimal Program) Let T ⊆ S
F × S

T  . The DMVLP optimal 
for T is unique and denoted PO(T).

Example 10 
Program 1 and 4 of Example 3 are not complete (see Example 9) and thus not suitable for 
T. Program 3 is complete but not consistent with T (see Example 8). Program 2 is com-
plete, consistent and realizes T but is not suitable for T: indeed, c1

t
← a1

t−1
 is consistent with 

T and there is no rule in Program 2 that dominates it.
Let us consider:

Let T = { ({a0
t−1

, b0
t−1

, c0
t−1

}, {a1
t
, b0

t
, c0

t
})

({a0
t−1

, b0
t−1

, c1
t−1

}, {a1
t
, b0

t
, c0

t
})

({a0
t−1

, b1
t−1

, c0
t−1

}, {a1
t
, b0

t
, c0

t
})

({a1
t−1

, b0
t−1

, c0
t−1

}, {a1
t
, b1

t
, c1

t
})

({a0
t−1

, b1
t−1

, c1
t−1

}, {a1
t
, b0

t
, c0

t
})

({a1
t−1

, b0
t−1

, c1
t−1

}, {a1
t
, b1

t
, c1

t
})

({a1
t−1

, b1
t−1

, c0
t−1

}, {a1
t
, b1

t
, c0

t
})

({a1
t−1

, b1
t−1

, c0
t−1

}, {a1
t
, b1

t
, c1

t
}) }.
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P is complete, consistent, realizes T and all rules consistent with T are dominated by a rule 
of P. Thus, P is suitable for T. But P is not optimal since c1

t
← a1

t−1
∧ b0

t−1
 is dominated by 

c1
t
← a1

t−1
 . By removing c1

t
← a1

t−1
∧ b0

t−1
 from P, we obtain the optimal program of T.

According to Definition 9, we can obtain the optimal program by a trivial brute force 
enumeration algorithm: generate all rules consistent with T then remove the dominated 
ones as shown in Algorithm 1.

Algorithm 1 Brute Force Enumeration

– INPUT: a set of atoms A, two sets of variables F and T and a set of
transitions T ⊆ SF × ST .

– Generate all possible rules over A,F , T .
– P := {vval ← {v′val′ | v′val′ ∈ A ∧ v′ ∈ F} | vval ∈ A ∧ v ∈ T }

– Keep only the rules consistent with T .
– P := {R ∈ P | ∀(s, s′) ∈ T, body(R) ⊆ s =⇒ ∃(s, s′′) ∈ T, head(R) ∈

s′′}
– Remove rules dominated by another rule

– P := {R ∈ P | �R′ ∈ P,R′ �= R ∧R′ ≥ R}
– OUTPUT: P (P is PO(T )).

The purpose of Sect.  4 is to propose a non-trivial approach that is more efficient in 
practice to obtain the optimal program. This approach also respects the optimality proper-
ties of Definition 9 and thus ensures independence from the dynamical semantics, that are 
detailed in next Section.

3  Dynamical semantics

The aim of this section is to formalize the general notion of dynamical semantics as an 
update policy based on a program, and to give characterizations of several widespread 
existing semantics used on discrete models.

In the previous section, we supposed the existence of two distinct sets of variables F  
and T  that represent conditions (features) and conclusions (targets) of rules. Conclusion 
atoms allow to create one or several new state(s) made of target variables, from conditions 
on the current state which is made of feature atoms.

P ∶= { a1
t
← �

b0
t
← a0

t−1

b1
t
← a1

t−1

c0
t
← a0

t−1

c0
t
← b1

t−1

c1
t
← a1

t−1

c1
t
← a1

t−1
∧ b0

t−1
}.
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In Definition 10, we formalize the notion of dynamical semantics which is a function 
that, to a program, associates a set of transitions where each state has at least one outgoing 
transition. Such a set of transitions can also be seen as a function that maps any state to a 
non-empty set of states, regarded as possible dynamical branchings. We give examples of 
semantics afterwards.

Definition 10 (Dynamical Semantics)
A dynamical semantics (on A ) is a function that associates, to each DMVLP P, a set 

of transitions T ⊆ S
F × S

T  so that: f irst(T) = S
F  . Equivalently, a dynamical semantics can 

be seen as a function of 
(
DMVLP → (SF → ℘(ST) ⧵ {�})

)
 where DMVLP is the set of 

DMVLPs.

A dynamical semantics has an infinity of possibility to produce transitions from a 
DMVLP . Indeed, like DS1(P) of Example 11, a semantics can totally ignore the DMVLP 
rules. It can also use the rule in an adversary way like DSinverse that keeps only the tran-
sitions that are not permitted by the program. Such semantics can produce transitions 
that are not consistent with the input program, i.e., the rules which conclusions were not 
selected for the transition will be in conflict with the set of transitions from this feature 
state. The kind of semantics we are interested in are the ones that properly use the rule of 
the DMVLP and ensure the properties of consistency introduced in Definition 7.

In Example 11, the dynamical semantics DSsyn , DSasyn and DSgen are example of such 
semantics. They are trivial forms of the synchronous, asynchronous and general semantics 
that are widely used in bioinformatics. Indeed, DSsyn is trivial because it generates transi-
tions towards an arbitrary state when the program P is not complete (if no rule matches for 
some target variable, the program produces an incomplete state), while DSasyn and DSgen 
are trivial because they require feature and target variables to correspond and have a spe-
cific form (labelled with t − 1 and t) with no additional stimuli or observation variables. 
We formalize those three semantics properly under our modeling in next Section with no 
restriction on the feature and target variables forms.

Example 11 For this example, suppose that feature and target variable are “symmetrical” 
(called regular variables later): T = {at, bt,… , zt} and F = {at−1, bt−1,… , zt−1} , with: 
∀xt, xt−1 ∈ T × F, ���(xt) = ���(xt−1) . Let convert be a function of (SF → S

T) such that 
for any DMVLP P,∀s ∈ S

F, convert(s) = {vval
t

∣ vval
t−1

∈ s} , and s0 ∈ S
T  an arbitrary target 

state that is used to ensure that each of the following semantics produces at least one target 
state. Let DS1 , DS2 , DSsyn , DSasyn , DSgen and DSinverse be dynamical semantics defined as 
follows, where P is a DMVLP and s ∈ S

F:

• (DS1(P))(s) = {s0}
• (DS2(P))(s) = {s� ∈ S

T ∣ s� ⊆ {head(R) ∣ R ∈ P, |body(R)| = 3}} ∪ {s0}
• (DSsyn(P))(s) = {s� ∈ S

T ∣ s� ⊆ {head(R) ∣ R ∈ P, body(R) ⊆ s}} ∪ {s0}
• (DSasyn(P))(s) = {s� ∈ S

T ∣ s� ⊆ convert(s) ∪ {head(R) ∣ R ∈ P, 
body(R) ⊆ s} ∧ |{vval

t
∈ s� ∣ vval

t−1
∈ s}| ∈ {|T|, |T| − 1}}

• (DSgen(P))(s) = {s� ∈ S
T ∣ s� ⊆ convert(s) ∪ {head(R) ∣ R ∈ P, body(R) ⊆ s}

• (DSinverse(P))(s) = (ST ⧵ (DSsyn(P))(s)) ∪ {s0}

DS1 always outputs transitions towards s0 and totally ignores the rules of the given program 
and thus can produce transitions that are not consistent with the input program. DS2 uses 
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the rules of the DMVLP but in an improper way, as it always considers the conclusions of 
rules as long as they have exactly 3 conditions, whether they match the feature state or not. 
DSinverse uses proper rules conclusions, but in order to contradict the program: it produces 
transitions so that the program is not consistent, plus a transition to s0 to ensure at least a 
transition.

DSsyn use the rules in the expected way, i.e., it checks if they match the considered fea-
ture state and applies their conclusion; it is a trivial form of synchronous semantics as 
properly introduced later in Definition 15. DSasyn also uses the rules as expected: it uses 
the feature state to restrict the possible target states to at most one modification compared 
to the feature state; this is a trivial form of asynchronous semantics, as properly introduced 
later in Definition 16. DSgen also uses the rules as expected: it mixes the current feature 
state with rules conclusions to produce a partially new target state; it is a trivial form of 
general semantics, as properly introduced later in Definition 17.

We now aim at characterizing a set of semantics of interest for the current work, as 
given in Theorem 1. Beforehand, Definition 11 allows to denote as �����������(s,P) the 
set of heads of rules, in a program P, matching a state s, and Definition 12 introduces a 
notation B|X to consider only atoms in a set B ⊆ A that have their variable in a set X ⊆ V . 
These two notations will be used in the next theorem and afterwards. In the following, 
we especially use the notation of Definition 12 with A (denoted A|X ) and on ����������� 
(denoted �����������|X(s,P)).

Definition 11 (Program Conclusions) Let s in SF  and P a MVLP . We denote: 
�����������(s,P) ∶= {head(R) ∈ A ∣ R ∈ P,R ⊓ s} the set of conclusion atoms in state s 
for the program P.

Definition 12 (Restriction of a Set of Atoms) Let B ⊆ A be a set of atoms, and X ⊆ V be a 
set of variables. We denote: B|X = {vval ∈ B ∣ v ∈ X} the set of atoms of B that have their 
variables in X. If B is instead a function that outputs a set of atoms, we note B|X(params) 
instead of 

(
B(params)

)|X , where params is the sequence of parameters of B.

With Definition 13, we define semantics which for any DMVLP produce the same 
behavior using the corresponding optimal program, that is, any semantics DS such that for 
any DMVLP P,DS(P) = DS(PO(DS(P))) . This kind of semantics is of particular inter-
est since they are “stable” through learning, that is, learning the optimal program from 
the dynamics of a system that relies on such a semantics allows to exactly reproduce the 
observed behavior.

Definition 13 (Pseudo-idempotent Semantics) Let DS be a dynamical semantics. DS is 
said pseudo-idempotent if, for all P a DMVLP:

Theorem  1 gives another characterisation of a semantics that also ensures that it is 
pseudo-idempotent, and that especially applies to the semantics we are interested in this 
paper and formally defined later: synchronous, asynchronous and general.

Such a semantics must produce new states based on the initial state s and the heads of 
matching rules of the given program �����������(s,P) , as stated by point (2).

DS(PO(DS(P)))) = DS(P).
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Intuitively, the semantics must be defined according to an arbitrary function ���� that 
picks target states among ST  considering observed feature atoms and potential target atoms 
(what was and what could be). When given the atoms of the target states it outputs, this 
function must output the same set of target states as stated by point (1), i.e., it must pro-
duce the same states given the program conclusion or given its decision over the program 
conclusion.

Moreover, PO(DS(P)) being consistent with DS(P), given a state s ∈ S
F  , 

�����������(s,PO(DS(P))) =
⋃

s�∈DS(P)(s)

s� , i.e., all the target atoms observed in a target state 

of DS(P)(s) must be the head of some rule that matches s in the optimal program. In other 
words, it must be given to the semantics to choose from when the program PO(DS(P)) is 
used with semantics DS.

Thus the semantics should produce the same states, when being given the atoms of all 
those next states as possibilities, as stated by point (1).

Those two conditions are sufficient to ensure that DS is pseudo-idempotent and thus car-
ries “stability” through learning.

Theorem  1 (Characterisation of Pseudo-idempotent Semantics of Interest) Let DS be a 
dynamical semantics.

If, for all P a DMVLP , there exists 𝗉𝗂𝖼𝗄 ∈ (SF ×℘(A|T) → ℘(ST) ⧵ {�}) so that: 

(1) ∀D ⊆ A�T, ����(s, ⋃
s�∈����(s,D)

s�) = ����(s,D) , and

(2) ∀s ∈ S
F,
(
DS(P)

)
(s) = ����(s,�����������(s,P)),

then DS is pseudo-idempotent.
Example 12 Let DS be a dynamical semantics, s ∈ S

F  be a feature state such that 
s = {a0

t−1
, b1

t−1
, st0} , P be a DMVLP such that �����������(P, s) = {a1

t
, b1

t
, ch0, ch2} . In 

Fig.  3, from s and �����������(P, s) , DS produces three different target states, i.e., 
(DS(P))(s) = ����(s,�����������(s,P)) = {{a0

t
, b1

t
, ch2}, {a0

t
, b0

t
, ch2}, {a1

t
, b0

t
, ch2}} . Let 

D = �����������(P, s) , here, the set of occurring atoms in the states produced by ����(s,D) 
is D� =

⋃
s�∈����(s,D)

= {��
�
, a1

t
, ��

�
, b1

t
, ch2} . In this example, the function ���� uses all target 

atoms of D except ch0 and introduces two additional atoms ��
�
 , ��

�
 , it also only produces 3 of 

the 4 possible target states composed of those atoms: this semantics does not allows a1
t
 and 

b1
t
 to appear together in transition from s. If we call the function ���� by replacing the pro-

gram conclusions by the semantics conclusions we observe the same resulting states, i.e., 
����(s,D�) = ����(s,D) . Given the target atoms selected by the semantics, it reproduces the 
same set of target states in this example; if the semantics has this behavior for any feature 
state s and any program P, it is pseudo-idempotent.

Up to this point, no link has been made between corresponding feature (in F  ) and target 
(in T  ) variables or atoms. In other words, the formal link between the two atoms vval

t
 and 

vval
t−1

 with the same value has not been made yet. This link, called projection, is established 
in Definition 14, under the only assumption that ���(vt) = ���(vt−1) . It has two purposes:
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• When provided with a set of transitions, for instance by using a dynamical semantics, 
one can describe dynamical paths, that is, successions of next states, by using each next 
state to generate the equivalent initial state for the next transition;

• Some dynamical semantics (such as the asynchronous one, see Definition 16) make use 
of the current state to build the next state, and as such need a way to convert target vari-
ables into feature variables.

However, such a projection cannot be defined on the whole sets of target ( T  ) and feature 
( F  ) variables, but only on two subsets F ⊆ F  and T ⊆ T  . Note that we require the projec-
tion to be a bijection, thus: |F| = |T| . These subsets T  and F  contain variables that we call 
afterwards regular variables: they correspond to variables that have an equivalent in both 
the initial states (at t − 1 ) and the next states (at t). Variables in F ⧵ F  can be considered 
as stimuli variables: they can only be observed in the previous state but we do not try to 
explain their next value in the current state; this is typically the case of external stimuli 
(sun, stress, nutriment… ) that are unpredictable when observing only the studied system. 
Variables in T ⧵ T  can be considered as observation variables: they are only observed in 
the present state as the result of the combination of other (regular and stimuli) variables; 
they can be of use to assess the occurrence of a specific configuration in the previous state 
but cannot be used to generate the next step. For the rest of this section, we suppose that F  
and T  are given and that there exists such projection functions, as given by Definition 14. 
Figure 4 gives a representation of these sets of variables.

It is noteworthy that projections on states are not bijective, because of stimuli variables 
that have no equivalent in target variables, and observation variables that have no equiva-
lent in feature variables (see Fig. 4). Therefore, the focus is often made on regular variables 
(in F  and T  ). Especially, for any pair of states (s, s�) ∈ S

F × S
T  , having 𝗌𝗉

T→F
(s�) ⊆ s , 

which is equivalent to 𝗌𝗉
F→T

(s) ⊆ s� , means that the regular variables in s and their projec-
tion in s′ (or conversely) hold the same value, modulo the projection.

Definition 14 (Projections) A projection on variables is a bijective function 
𝗏𝗉

T→F
∶ T → F  so that T ⊆ T  , F ⊆ F  , and: ∀v ∈ T, 𝖽𝗈𝗆(𝗏𝗉

T→F
(v)) = 𝖽𝗈𝗆(v).

The projection on atoms (based on 𝗏𝗉
T→F

 ) is the bijective function:

The inverse function of 𝗏𝗉
T→F

 is denoted 𝗏𝗉
F→T

 and the inverse function of 𝖺𝗉
T→F

 is 
denoted 𝖺𝗉

F→T
.

The projections on states (based on 𝖺𝗉
T→F

 and 𝖺𝗉
F→T

 ) are the functions:

Example 13 In Example 12, there are three feature variables ( at−1 , bt−1 , st) and three target 
variables ( at , bt , ch). If we consider that the regular variables are T = {at, bt} and 

𝖺𝗉
T→F

∶ A|
T
→ A|

F

vval ↦
(
𝗏𝗉

T→F
(v)

)val
.

𝗌𝗉
T→F

∶ S
T → S

F

s� ↦ {𝖺𝗉
T→F

(vval) ∈ A ∣ vval ∈ s� ∧ v ∈ T}

𝗌𝗉
F→T

∶ S
F → S

T

s ↦ {𝖺𝗉
F→T

(vval) ∈ A ∣ vval ∈ s ∧ v ∈ F}.
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F = {at−1, bt−1} , we can define the following (bijective) projection on variables: 

𝗏𝗉
T→F

∶

{
at ↦ at−1
bt ↦ bt−1

 . Following Definition 14, we have, for instance:

• 𝖺𝗉
T→F

(a1
t
) = a1

t−1,
• 𝖺𝗉

F→T
(b0

t−1
) = b0

t ,
• 𝗌𝗉

T→F
({a0

t
, b0

t
, ch0}) = {a0

t−1
, b0

t−1
} , and

• 𝗌𝗉
F→T

({a1
t−1

, b0
t−1

, st1}) = {a1
t
, b0

t
}.

3.1  Synchronous, asynchronous and general semantics

In the following, we present a formal definition and a characterization of three particular 
semantics that are widespread in the field of complex dynamical systems: synchronous, 
asynchronous and general.

Note that some points in these definitions are arbitrary and could be discussed 
depending on the modeling paradigm. For instance, the policy about rules R so that 
∃s ∈ S

F,R ⊓ s ∧ 𝖺𝗉
T→F

(head(R)) ∈ s , which model stability in the dynamics, could be to 
include them (such as in the synchronous and general semantics) or exclude them (such as 
in the asynchronous semantics) from the possible dynamics.

The modeling method presented so far in this paper is independent to the considered 
semantics as long as it respects Definition 10 and the capacity of the optimal program to 
reproduce the observed behavior is ensured as long as the semantics respects Theorem 1.

Definition 15 introduces the synchronous semantics, consisting in updating all variables 
at once in each step in order to compute the next state. The value of each variable in the 
next state is taken amongst a “pool” of atoms containing all conclusions of rules that match 
the current state (using ����������� ) and atoms produced by a “default function” d that 
is explained below. However, this is taken in a loose sense: as stated above, atoms that 
make a variable change its value are not prioritized over atoms that don’t. Furthermore, 
if several atoms on the same variable are provided in the pool (as conclusions of different 
rules or provided by the default function), then several transitions are possible, depending 
on which one is chosen. Thus, for a self-transition (s, s�) ∈ S

F × S
T  with 𝗌𝗉

T→F
(s�) ⊆ s to 

occur, there needs to be, for each atom vval ∈ s� so that v ∈ T  , either a rule that matches s 
and whose head is vval or that the default function gives the value vval.

Note however that such a loop is not necessarily a point attractor (that is, a state for 
which the only possible transition is the self-transition); it is only the case if all atoms in 
the pool are also in 𝗌𝗉

T→F
(s).

As explained above, for a given state s and a given set of variables W, the function d 
provides a set of “default atoms” added to the pool of atoms used to build the next state, 
along with rules conclusions.

This function d, however, is not explicitly given; the only constraints are that:

• d produces atoms at least for a provided set of variables W, specifically, the set of vari-
ables having no conclusion in a given state, which is necessary in the case of an incom-
plete program,

• d(s, �) is a subset of d(s, W) for all W, as it intuitively represents a set of default atoms 
that are always available.

Note that d(s, �) = � always respects these constraints and is thus always a possible value. 
In the case of a complete program, that is, a program providing conclusions for every 
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variables in every state, d is always called with W = � and the other cases can thus be 
ignored. Another typical use for d is the case of a system with Boolean variables (i.e., 
such that ∀v ∈ V, ���(v) = {0, 1} ) where a program P is built by importing only the posi-
tive rules of the system, that is, only rules with atoms v1

t
 as heads. This may happen when 

importing a model from another formalism featuring only Boolean formulas, such as 
Boolean networks. In this case, d can be used to provide a default atom w0

t
 for all variables 

w that do not appear in �����������(s,P) , thus reproducing the dynamics of the original 
system.

Definition 15 (Synchronous semantics) Let d ∈ (SF ×℘(T) → ℘(A|T)) , so that 
∀s ∈ S

F,∀W ⊆ T,W ⊆ var(d(s,W)) ∧ d(s, �) ⊆ d(s,W) . The synchronous semantics Tsyn is 
defined by:

Example 14 It is possible to reproduce classical Boolean network dynamics using the syn-
chronous semantics ( Tsyn ) with a well-chosen default function. Indeed, Boolean models are 
classically defined as a set of Boolean function providing conditions in which each vari-
able becomes active, thus implying that all the other cases make them inactive. A straight-
forward translation of a Boolean model into a program is thus to encode the active state 
of a variable with state 1 and the inactive state with 0. If the Boolean functions are rep-
resented as disjunctive normal forms, the clauses can be considered as a set of Boolean 
atoms of the form v or ¬v . Each clause c of the DNF of a variable v can directly be con-
verted into a rule R such that, head(R) = v1

t
 and ∀v�

t−1
∈ F  , v�1

t−1
∈ body(R) ⟺ v� ∈ c 

and v�0
t−1

∈ body(R) ⟺ (¬v�) ∈ c . Finally, the following default function allows to force 
the variables back to 0 when the original Boolean function should not be true:

In Definition 16, we formalize the asynchronous semantics that imposes that no more 
than one regular variable can change its value in each transition. The observation vari-
ables are not counted since they have no equivalent in feature variables to be compared 
to. As for the previous synchronous semantics, we use here a “pool” of atoms, made 
of rules conclusions and default atoms, that may be used to build the next states. The 
default function d used here is inspired from the previous synchronous semantics, with 
an additional constraint: its result always contains the atoms of the initial state. Con-
strains are also added on the next state to limit to at most one regular variable change. 
Moreover, contrary to the synchronous semantics, the asynchronous semantics prior-
itizes the changes. Thus, for a self-transition (s, s�) ∈ S

F × S
T  with 𝗌𝗉

T→F
(s�) ⊆ s to 

occur, it is required that all atoms of regular variables in the pool are in 𝗌𝗉
F→T

(s) : 
𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌|

T
(s,P) ∪ d|

T
(s, T ⧵ var(𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P))) = 𝗌𝗉

F→T
(s) , which here implies: 

|𝗌𝗉
F→T

(s) ⧵ s�| = 0 . This only happens when (s, s�) is a point attractor, in the sense that all 
regular variables cannot change their value.

It is different from Example 11 where the asynchronous semantics is more permissive 
and allows self-loops in every state. The asynchronous semantics of Definition 16, although 
more complex, is more widespread in the bioinformatics community (Chatain et al., 2020; 
Fauré et al., 2006; Klarner et al., 2014; Thieffry & Thomas, 1995); the only difference are 

Tsyn ∶ P ↦{(s, s�) ∈ S
F × S

T ∣ s� ⊆ 𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P)∪

d(s, T ⧵ var(𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P)))}

d ∶ S
F ×℘(T) → ℘(A|T)

(s,Z) ↦ {v0
t
∣ vt ∈ Z}
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terminal states modeled instead as (terminal) self-transitions because all states must have a 
successor following our definition of semantics (see Definition 10).

Definition 16 (Asynchronous semantics) Let d ∈ (SF ×℘(T) → ℘(A|T)) , so that 
∀s ∈ S

F,∀W ⊆ T,W ⊆ var(d(s,W)) ∧ 𝗌𝗉
F→T

(s) ⊆ d(s, �) ⊆ d(s,W) . The asynchronous 
semantics Tasyn is defined by:

where the notations A|T  , �����������|
T

 and d|
T

 come from Definition 12.

A typical mapping for d is: d ∶ (s,W) ↦ 𝗌𝗉
F→T

(s) ∪ O , where O is a set of atoms on 
observation variables with arbitrary values, thus conserving the previous values for regular 
variables and ignoring the second argument.

In Definition 17, we formalize the general semantics as a more permissive version of 
the synchronous one: any subset of the variables can change their value in a transition. 
This semantics uses the same “pool” of atoms than the synchronous semantics containing 
conclusions of P and default atoms provided by d, and no constraint. However, as for the 
asynchronous semantics, the atoms of the initial state must always be featured as default 
atoms. Thus, a self-transition (s, s�) ∈ S

F × S
T  with 𝗌𝗉

F→T
(s) ⊆ s� occurs for each state s 

because, intuitively, the empty set of variables can always be selected for update. However, 
as for the synchronous semantics, such a self-transition is a point attractor only if all atoms 
of regular variables in the “pool” are in 𝗌𝗉

F→T
(s).

Finally, we note that the general semantics contains the dynamics of both the synchro-
nous and the asynchronous semantics, but also other dynamics not featured in these two 
other semantics.

Definition 17 (General semantics) Let d ∈ (SF ×℘(T) → ℘(A|T)) , so that 
∀s ∈ S

F,∀W ⊆ T,W ⊆ var(d(s,W)) ∧ 𝗌𝗉
F→T

(s) ⊆ d(s, �) ⊆ d(s,W) . The general seman-
tics Tgen is defined by:

Figure 5 gives an example of the transitions corresponding to these three semantics on a 
simple Boolean network of two variables inhibiting each other. The corresponding optimal 
DMVLP is given below each transition graph. In this example, the three programs share 
the rules corresponding to the inhibitions: a0

t
← b1

t−1
 and a1

t
← b0

t−1
 model the inhibition of 

a by b, while b0
t
← a1

t−1
 and b1

t
← a0

t−1
 model the inhibition of b by a. However, generally 

speaking, there may not always exist such shared rules, for instance if the interactions they 
represent are somehow ignored by the semantics behavior.

Furthermore, in this example, we observe additional rules (w.r.t. the synchronous case) 
that appear in both the asynchronous and general semantics cases. Those rules capture the 
default behavior of both semantics, that is, the projection of the feature state as possible 
target atoms. Again, such rules may not appear generally speaking, because the dynamics 

Tasyn ∶ P ↦ {(s, s�) ∈ S
F × S

T ∣ s� ⊆ 𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P) ∪

d(s, T ⧵ var(𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P))) ∧(|𝗌𝗉
F→T

(s) ⧵ s�| = 1 ∨ 𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌|
T
(s,P) ∪

d|
T
(s, T ⧵ var(𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P))) = 𝗌𝗉

F→T
(s)

)
}

Tgen ∶ P ↦ {(s, s�) ∈ S
F × S

T ∣ s� ⊆ 𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P)∪

d(s,T ⧵ var(𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P)))}.
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of the system might combine with the dynamics semantics, thus possibly merging multi-
ple rules into more general ones (for example, conservation rules becoming rules with an 
empty body).

Example 15 As for the synchronous semantics, it is possible to reproduce classical Boolean 
network dynamics using the asynchronous ( Tasyn ) and general semantics ( Tgen ) with the 
same encoding of rules, and a similar default function where the projection of the current 
state is added:

Finally, with Theorem 2, we state that the definitions and method developed in the pre-
vious section are independent of the chosen semantics as long as it respect Theorem 1.

Theorem 2 (Semantics-Free Correctness) Let P be a DMVLP.

• Tsyn(P) = Tsyn(PO(Tsyn(P))),
• Tasyn(P) = Tasyn(PO(Tasyn(P))),
• Tgen(P) = Tgen(PO(Tgen(P))).

The next section focuses on methods and algorithm to learn the optimal program.

4  GULA

In Algorithm 1 we presented a trivial algorithm to obtain the optimal program. In this sec-
tion we present a more efficient algorithm based on inductive logic programming.

Until now, the LF1T algorithm (Inoue et al., 2014; Ribeiro & Inoue, 2015; Ribeiro et al., 
2015b) only tackled the learning of synchronous deterministic programs. Using the formal-
ism introduced in the previous sections, it can now be revised to learn systems from transi-
tions produced from any semantics respecting Theorem 1 like the three semantics defined 
above. Furthermore, both deterministic and non-deterministic systems can now be learned.

4.1  Learning operations

This section focuses on the manipulation of programs for the learning process. Definition 
18 and Definition 19 formalize the main atomic operations performed on a rule or a pro-
gram by the learning algorithm, whose objective is to make minimal modifications to a 
given DMVLP in order to be consistent with a new set of transitions.

Definition 18 (Rule least specialization) Let R be a MVL rule and s ∈ S
F  such that R ⊓ s . 

The least specialization of R by s according to F  and A is:

d ∶ S
F ×℘(T) → ℘(A|T)

(s,Z) ↦ {v0
t
∣ vt ∈ Z} ∪ 𝗌𝗉

F→T
(s)

Lspe(R, s,A,F) ∶= {head(R) ← body(R) ∪ {vval} ∣

v ∈ F ∧ vval ∈ A ∧ vval ∉ s ∧ ∀val� ∈ ℕ, vval
�

∉ body(R)}.
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The least specialization Lspe(R, s,A,F) produces a set of rule which matches all states 
that R matches except s. Thus Lspe(R, s,A,F) realizes all transitions that R realizes except the 
ones starting from s. Note that ∀R ∈ P,R ⊓ s ∧ |body(R)| = |F| ⟹ Lspe(R, s,A,F) = � , 
i.e., a rule R matching s cannot be modified to make it not match s

if its body already contains all feature variables, because nothing can be added in its 
body.

Example 16 Let F ∶= {at−1, bt−1, ct−1} and 
���(at−1) ∶= {0, 1}, ���(bt−1) ∶= {0, 1, 2}, ���(ct−1) ∶= {0, 1, 2, 3} . We give below 
three examples of least specialization on different initial rules and states. These situations 
could very well happen in the learning of a same set of transitions, at different steps of the 
process. The added conditions are highlighted in bold.

For a0
t
← ∅ , the rule having an empty body, all possible variable values (given by ��� ) 

not appearing in the given state are candidate for a new condition. For b2
t
← b1

t−1
 , there 

is a condition on b in the body, therefore only conditions on a and c can be added. For 
c3
t
← a1

t−1
∧ c3

t−1
 , only conditions on b can be added. Finally we can consider a case like 

Lspe(a
1
t
← a0

t−1
∧ b1

t−1
∧ c2

t−1
, {a0

t−1
, b1

t−1
, c2

t−1
},A,F) = � where a condition already exists 

for each variable and thus no minimal specialization of the body can be produced, thus 
resulting in an empty set of rules.

Definition 19 (Program least revision) Let P be a DMVLP , s ∈ S
F  and T ⊆ S

F × S
T  

such that f irst(T) = {s} . Let RP ∶= {R ∈ P ∣ Rconflicts withT} . The least revision of P by 
T according to A and F  is Lrev(P,T ,A,F) ∶= (P ⧵ RP) ∪

⋃
R∈RP

Lspe(R, s,A,F).

Note that according to Definition 19, f irst(T) = {s} implies that all transitions for T 
have s as initial state.

Example 17 Let F ∶= {at−1, bt−1, ct−1} and 
���(at−1) ∶= {0, 1}, ���(bt−1) ∶= {0, 1, 2}, ���(ct−1) ∶= {0, 1, 2, 3} . Let T be as set of 
transitions and P a DMVLP as follows.

Lspe(a
0
t
← �,

{a0
t−1

, b1
t−1

, c2
t−1

},A,F) = {
a0
t
← �

�

�−�
,

a0
t
← �

�

�−�
,

a0
t
← �

�

�−�
,

a0
t
← �

�

�−�
,

a0
t
← �

�

�−�
,

a0
t
← �

�

�−�
}

Lspe(b
0
t
← b1

t−1
,

{a0
t−1

, b1
t−1

, c2
t−1

},A,F) = {
b0
t
← �

�

�−�
∧ b1

t−1
,

b0
t
← b1

t−1
∧ �

�

�−�
,

b0
t
← b1

t−1
∧ �

�

�−�
,

b0
t
← b1

t−1
∧ �

�

�−�
}

Lspe(c
0
t
← a0

t−1
∧ c2

t−1
,

{a0
t−1

, b1
t−1

, c2
t−1

},A,F) = {
c0
t
← a0

t−1
∧ �

�

�−�
∧ c2

t−1
,

c0
t
← a0

t−1
∧ �

�

�−�
∧ c2

t−1
}
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Here, we have f irst(T) = {{a0
t−1

, b1
t−1

, c2
t−1

}} and thus the least revision of Definition 19 
can be applied on P. Moreover, RP = {b0

t
← b1

t−1
, c0

t
← a0

t−1
∧ b1

t−1
∧ c2

t−1
, c0

t
← c2

t−1
} ; 

these rules are highlighted in bold in P. The least revision of P by T over A and F  , 
Lrev(P, T ,A,F) , is obtained by removing the rules of RP from P and adding their least spe-
cialization, added conditions are in bold in Lrev(P,T ,A,F) and are detailed in Example 16, 
except for a0

t
← ∅ which does not need to be revised because it is consistent with T since a0

t
 

is observed in some target states.

Theorem 3 states properties on the least revision, in order to prove it suitable to be used 
in the learning algorithm.

Theorem  3 (Properties of Least Revision) Let R be a MVL rule and s ∈ S
F  such that 

R ⊓ s . Let SR ∶= {s� ∈ S
F ∣ R ⊓ s�} and Sspe ∶= {s� ∈ S

F ∣ ∃R� ∈ Lspe(R, s,A,F),R� ⊓ s�}.

Let P be a DMVLP and T , T � ⊆ S
F × S

T  such that 
|f irst(T)| = 1 ∧ f irst(T) ∩ f irst(T �) = � . The following results hold: 

1. Sspe = SR ⧵ {s},
2. Lrev(P, T ,A,F) is consistent with T,
3. 

P

↪T �
⟹

Lrev(P,T ,A,F)

↪ T �,
4. 

P

↪T ⟹

Lrev(P,T ,A,F)

↪ T ,
5. P is complete ⟹ Lrev(P,T ,A,F) is complete.

The next properties are directly used in the learning algorithm. Proposition 2 gives an 
explicit definition of the optimal program for an empty set of transitions, which is the start-
ing point of the algorithm. Proposition 3 gives a method to obtain the optimal program 
from any suitable program by simply removing the dominated rules; this means that the 
DMVLP optimal for a set of transitions can be obtained from any DMVLP suitable for 
the same set of transitions by removing all the dominated rules. Finally, in association 
with these two results, Theorem  4 gives a method to iteratively compute PO(T) for any 
T ⊆ S

F × S
T  , starting from PO(�).

T ∶= {
({a0

t−1
, b1

t−1
, c2

t−1
}, {a1

t
, b1

t
, c2

t
}),

({a0
t−1

, b1
t−1

, c2
t−1

}, {a0
t
, b2

t
, c2

t
}),

({a0
t−1

, b1
t−1

, c2
t−1

}, {a0
t
, b1

t
, c1

t
}),

({a0
t−1

, b1
t−1

, c2
t−1

}, {a0
t
, b1

t
, c3

t
}),

}

P ∶= {
a0
t
← �,

a1
t
← �,

�
�

�
← �

�

�−�
,

b1
t
← �,

�
�

�
← �

�

�−�
∧ �

�

�−�
∧ �

�

�−�
,

�
�

�
← �

�

�−�
,

c1
t
← a0

t−1
,

c2
t
← a1

t−1
,

c2
t
← b1

t−1
,

c3
t
← c2

t−1
}

Lrev(P, T ,A,F) ∶= {
a0
t
← �,

a1
t
← �,

b0
t
← �

�

�−�
∧ b1

t−1
,

b0
t
← b1

t−1
∧ �

�

�−�
,

b0
t
← b1

t−1
∧ �

�

�−�
,

b0
t
← b1

t−1
∧ �

�

�−�
,

b1
t
← �,

c0
t
← �

�

�−�
∧ c2

t−1
,

c0
t
← �

�

�−�
∧ c2

t−1
,

c0
t
← �

�

�−�
∧ c2

t−1
,

c1
t
← a0

t−1
,

c2
t
← a1

t−1
,

c2
t
← b1

t−1
,

c3
t
← c2

t−1
}
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Proposition 2 (Optimal Program of Empty Set) PO(�) = {vval ← � ∣ v ∈ T ∧ vval ∈ A|T}.

Proposition 3 (From Suitable to Optimal) Let T ⊆ S
F × S

T  . If P is a DMVLP suitable for 
T, then PO(T) = {R ∈ P ∣ ∀R� ∈ P,R� ≥ R ⟹ R� = R}.

Theorem  4 (Least Revision and Suitability) Let s ∈ S
F  and T , T � ⊆ S

F × S
T  such that 

|f irst(T �)| = 1 ∧ f irst(T) ∩ f irst(T �) = � . Lrev(PO(T),T
�,A,F) is a DMVLP suitable for 

T ∪ T �.

4.2  Algorithm

In this section we present GULA: the General Usage LFIT Algorithm, a revision of the 
LF1T algorithm (Inoue et  al., 2014; Ribeiro & Inoue, 2015) to capture a set of multi-
valued dynamics that especially encompass the classical synchronous, asynchronous and 
general semantics dynamics. For this learning algorithm to operate, there is no restriction 
on the semantics. GULA learns the optimal program that, under the same semantics, is 
able to exactly reproduce a complete set of observations, if the semantics respect Theo-
rem 1. Section 5 will be devoted to also learning the behaviors of the semantics itself, if it 
is unknown.

GULA learns a logic program from the observations of its state transitions. Given as 
input a set of transitions T ⊆ S

F × S
T  , GULA iteratively constructs a DMVLP that mod-

els the dynamics of the observed system by applying the method formalized in the previous 
section as shown in Algorithm 2. The algorithm can be used for both learning possibil-
ity or impossibility depending of its parameter learning_mode . When learning possibility 
( learning_mode = “possibility”), the algorithm will learn the optimal logic program PO(T) 
and this is what will be discussed in this section. The second mode is used in a heuristical 
approach to obtain predictive model from partial observation and will be discussed in later 
sections.
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Algorithm 2 GULA

– INPUT: a set of atoms A′, a set of transitions T ⊆ SF ′ ×
ST ′

, two sets of variables F ′ and T ′, a string learning mode ∈
{“possibility”, “impossibility”}.

– For each atom vval ∈ A′ of each variable v ∈ T ′:
– if learning mode = “possibility”:

• Extract all states from which transition to vval does not exist:
Negvval := {s ∈ first(T ) | �s′ ∈ ST , (s, s′) ∈ T ∧ vval ∈ s′}

– if learning mode = “impossibility”:
• Extract all states from which transition to vval do exist:

Negvval := {s ∈ first(T ) | ∃s′ ∈ ST , (s, s′) ∈ T ∧ vval ∈ s′}
– Initialize Pvval := {vval ← ∅}.
– For each state s ∈ Negvval :

• Extract and remove the rules of Pvval that match s:
Mvval := {R ∈ P | body(R) ⊆ s} and Pvval := Pvval \Mvval .

• LS := ∅
• For each rule R ∈ Mvval :

· Compute its least specialization P ′ = Lspe(R, s,A′,F ′).
· Remove all the rules in P ′ dominated by a rule in Pvval .
· Remove all the rules in P ′ dominated by a rule in LS.
· Remove all the rules in LS dominated by a rule in P ′.
· LS := LS ∪ P ′.

• Add all remaining rules of LS to Pvval : Pvval := Pvval ∪ LS.
– P := P ∪ Pvval

– OUTPUT: P (P is PO(T ) if learning mode = “possibility”).

From the set of transitions T, GULA learns the conditions under which each 
vval ∈ A

� ⊆ A, v ∈ T
� ⊆ T  may appear in the next state.

The algorithm starts by computing the set of all negative examples of the appearance of 
vval in next state: all states such that v never takes the value val in the next state of a transi-
tion of T  (Fig. 6). Those negative examples are then used during the following learning 
phase to iteratively learn the set of rules PO(T) . The learning phase starts by initializing a 
set of rules Pvval to {R ∈ PO(�) ∣ head(R) = vval} = {vval ← �}.

Fig. 6  Preprocessing of the general semantics state transitions of Fig. 5 (right) into positive/negative exam-
ple of the occurence of each value of variable a in next state. In blue (resp. red) are positive (resp. nega-
tives) examples of the occurence of a0

t
 (left) and a1

t
 (right) in next state (Color figure online)



Machine Learning 

1 3

Pvval is iteratively revised against each negative example neg in Negvval . All rules Rm of 
Pvval that match neg have to be revised. In order for Pvval to remain optimal, the revision of 
each Rm must not match neg but still matches every other state that Rm matches.

To ensure that, the least specialization (see Definition 18) is used to revise each conflict-
ing rule Rm . For each variable of F′ so that body(Rm) has no condition over it, a condition 
over another value than the one observed in state neg can be added. None of those revision 
match neg and all states matched by Rm are still matched by at least one of its revisions.

Each revised rule can be dominated by a rule in Pvval or another revised rules and thus 
dominance must be checked from both.

The non-dominated revised rules are then added to Pvval.
Once Pvval has been revised against all negatives example of Negvval , 

Pvval = {R ∈ PO(T) ∣ head(R) = vval} . Finally, Pvval is added to P and the loop restarts with 
another atom. Once all values of each variable have been treated, the algorithm outputs P 
which is then equal to PO(T) . More discussion of the implementation and detailed pseu-
docode are given in “Appendix”. The source code of the algorithm is available at https:// 
github. com/ Tony- sama/ pylfit under GPL-3.0 License.

Example 18 Execution of GULA(A, T ,F, T  ) on the synchronous state transitions of Fig. 5 
(left):

• F = {at−1, bt−1},
• T = {at, bt},
• A = {a0

t−1
, b0

t−1
, a1

t−1
, b1

t−1
, a0

t
, b0

t
, a1

t
, b1

t
}

• T = { ({a0
t−1

, b0
t−1

}, {a1
t
, b1

t
}), ({a0

t−1
, b1

t−1
}, {a0

t
, b1

t
}), ({a1

t−1
, b0

t−1
}, {a1

t
, b0

t
}), 

({a1
t−1

, b1
t−1

}, {a0
t
, b0

t
}) }

Table 1  Iterative evolution of Pvval over each element of Negvval for each vval ∈ A|T  during the execution of 
GULA(A,T ,F, T  ) over the transitions of Fig. 5 (left)

• Nega0
t
= {{a0t−1, b

0
t−1}, {a1t−1, b

0
t−1}}, Pa0

t
= {a0t ← ∅}

neg ∈ Nega0
t

M Least specializations Pa0
t

(a0t−1, b
0
t−1) {a0t ← ∅} {a0t ← a1t−1, a

0
t ← b1t−1} {a0t ← a1t−1, a

0
t ← b1t−1}

(a1t−1, b
0
t−1) {a0t ← a1t−1} {a0t ← a1t−1 ∧ b1t−1.} {a0t ← b1t−1}

• Nega1
t
= {{a0t−1, b

1
t−1}, {a1t−1, b

1
t−1}}, Pa1

t
= {a1t ← ∅}

neg ∈ Nega1
t

M Least specializations Pa1
t

(a0t−1, b
1
t−1) {a1t ← ∅} {a1t ← a1t−1, a

1
t ← b0t−1} {a1t ← a1t−1, a

1
t ← b0t−1}

(a1t−1, b
1
t−1) {a1t ← a1t−1} {a1t ← a1t−1 ∧ b0t−1} {a1t ← b0t−1}

• Negb0t
= {{a0t−1, b

1
t−1}, {a0t−1, b

0
t−1}}, Pb0t

= {b0t ← ∅}
neg ∈ Negb0t

M Least specializations Pb0t
(a0t−1, b

1
t−1) {b0t ← ∅} {b0t ← a1t−1, b

0
t ← b0t−1} {b0t ← a1t−1, b

0
t ← b0t−1}

(a0t−1, b
0
t−1) {b0t ← b0t−1} {b0t ← a1t−1 ∧ b0t−1} {b0t ← a1t−1}

• Negb1t
= {{a1t−1, b

0
t−1}, {a1t−1, b

1
t−1}}, Pb1t

= {b1t ← ∅}
neg ∈ Negb1t

M Least specializations Pb1t
(a1t−1, b

0
t−1) {b1t ← ∅} {b1t ← a0t−1, b

1
t ← b1t−1} {b1t ← a0t−1, b

1
t ← b1t−1}

(a1t−1, b
1
t−1) {b1t ← b1t−1} {b1t ← a0t−1 ∧ b1t−1} {b0t ← a1t−1}

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit
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Table 1 provides each Negvval (first column) and shows the iterative evolution of Pvval (last 
column) over each neg ∈ Negvval during the execution of GULA(A, T ,F, T  ). Rules in red 
in Pvval of previous step match the current negative example neg and must be revised, while 
rules in blue in the last column dominate rules in blue produced by the least specialization 
(third column).

Example 19 Execution of GULA(A, T ,F, T  ) on the asynchronous state transitions of 
Fig. 5 (middle):

• F = {at−1, bt−1},
• T = {at, bt},
• A = {a0

t−1
, b0

t−1
, a1

t−1
, b1

t−1
, a0

t
, b0

t
, a1

t
, b1

t
}

• T = { ({a0
t−1

, b0
t−1

}, {a0
t
, b1

t
}), ({a0

t−1
, b0

t−1
}, {a1

t
, b0

t
}), ({a0

t−1
, b1

t−1
}, {a0

t
, b1

t
}), 

({a1
t−1

, b0
t−1

}, {a1
t
, b0

t
}), ({a1

t−1
, b1

t−1
}, {a0

t
, b0

t
}) ({a1

t−1
, b1

t−1
}, {a1

t
, b1

t
}) }

Table 2 provides each Negvval (first column) and shows the iterative evolution of Pvval (last 
column) over each neg ∈ Negvval during the execution of GULA(A, T ,F, T  ). Rules in red 
in the last column ( Pvval ) match the current negative example neg and must be revised, 
while rules in blue in the last column dominate rules in blue produced by the least spe-
cialization (third column, next line). For the general semantics transitions of Fig. 5 (right), 
the additional transitions that are observed compared to the asynchronous case do not alter 
any Negvval , thus the learning process is the same as in Table 2 resulting in the same output 
program.

Theorem  5 gives the properties of the algorithm: GULA terminates and GULA is 
sounds, complete and optimal w.r.t. its input, i.e., all and only non-dominated consistent 
rules appear in its output program which is the optimal program of its input.

Table 2  Example of the execution of GULA(A,T ,F, T  ) over the transitions of Fig. 5 (right) and, equiva-
lently, the transitions of Fig. 5 (right)

• Nega0
t
= {{a1t−1, b

0
t−1}}, Pa0

t
= {a0t ← ∅}

neg ∈ Nega0
t

M Least specializations Pa0
t

(a1t−1, b
0
t−1) {a0t ← ∅} {a0t ← a0t−1, a

0
t ← b1t−1} {a0t ← a0t−1, a

0
t ← b1t−1}

• Nega1
t
= {{a0t−1, b

1
t−1}}, Pa1

t
= {a1t ← ∅}

neg ∈ Nega1
t

M Least specializations Pa1
t

(a0t−1, b
1
t−1) {a1t ← ∅} {a1t ← a1t−1, a

1
t ← b0t−1} {a1t ← a1t−1, a

1
t ← b0t−1}

• Negb0t
= {{a0t−1, b

1
t−1}}, Pb0t

= {b0t ← ∅}
neg ∈ Negb0t

M Least specializations Pb0t
(a0t−1, b

1
t−1) {b0t ← ∅} {b0t ← a1t−1, b

0
t ← b0t−1} {b0t ← a1t−1, b

0
t ← b0t−1}

• Negb1t
= {{a1t−1, b

0
t−1}}, Pb1t

= {b1t ← ∅}
neg ∈ Negb1t

M Least specializations Pb1t
(a1t−1, b

0
t−1) {b1t ← ∅} {b1t ← a0t−1, b

1
t ← b1t−1} {b1t ← a1t−1, b

1
t ← b1t−1}

For each vval ∈ A|T  is given the iterative evolution over each element of Negvval ( 1st col.) of the set of match-
ing rules M ⊆ Pvval ( 2nd col.), their least specializations ( 3rd col.) and Pvval final state
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Finally, Theorem 6 characterizes the algorithm time and memory complexities.

Theorem 5 (GULA Termination, Soundness, Completeness, Optimality) Let T ⊆ S
F × S

T  . 

(1) Any call to GULA on finite sets terminates,
(2) GULA(A, T ,F, T) = PO(T),
(3) ∀A� ⊆ A|T,����(AF ∪A

�, T ,F, T) = {R ∈ PO(T) ∣ head(R) ∈ A
�}.

Lemma 2 (Gula can learn from any pseudo-idempotent semantics) Let DS be a pseudo-
idempotent semantics, then

Lemma 2 is trivially proven from Theorem 5 since for any dynamical semantics DS and 
any DMVLP P, ����(A,DS(P),F, T) = PO(DS(P)).

Lemma 3 (Gula can learn from synchronous, asynchronous and general semantics)

• Tsyn(����(A, Tsyn(P),F, T)) = Tsyn(PO(Tsyn(P))) = Tsyn(P)
• Tasyn(����(A, Tasyn(P),F, T)) = Tasyn(PO(Tasyn(P))) = Tasyn(P)
• Tgen(����(A, Tgen(P),F, T)) = Tgen(PO(Tgen(P))) = Tgen(P)

Lemma 3 is trivially proven from Theorem 2. Thus the algorithm can be used to learn 
from transitions produced from both synchronous, asynchronous and general semantics.

Theorem  6 (GULA Complexity) Let T ⊆ S
F × S

T  be a set of transitions, Let 
n ∶= max(|F|, |T|) and d ∶= max({|���(v)|) ∈ ℕ ∣ v ∈ F ∪ T} . The worst-case time com-
plexity of GULA when learning from T belongs to O(|T|2 + |T| × (2n4d2n+2 + 2n3dn+1)) 
and its worst-case memory use belongs to O(d2n + 2ndn+1 + ndn+2).

The worst case complexity of GULA is higher than the brute force enumeration of 
Algorithm 1. The complexity of brute force enumeration is bound by the operation of 
removing the dominated rules ( O(nd2n+2) ), that also appear in GULA. This operation is 
done once in the brute force enumeration with all consistent rules and multiple time (for 
each negative example) in GULA, also GULA can generate several time the same rule. 
But, in practice, GULA is expected to manage much less rules than the whole set of pos-
sibility at each step since it removes dominated rules of previous step, thus globally dealing 
with less rules than all possibility and ending being more efficient in practice. Its scalabil-
ity is evaluated in Sect. 7 with brute force enumeration as baseline.

To use GULA for outputting predictions, we have to assume a semantics for the model. 
In the next section, we will exhibit an approach to avoid such a preliminary assumption and 
learn a whole system dynamics, including its semantics, in the form of a single proposi-
tional logic program.

DS(����(A,DS(P),F, T)) = DS(PO(DS(P))) = DS(P).
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5  Learning from any dynamical semantics using constraints

Any non-deterministic (and thus deterministic) discrete memory-less dynamical system 
can be represented by a MVLP with some restrictions and a dedicated dynamical seman-
tics. For this, programs must contain two types of rules: possibility rules which have con-
ditions on variables at t − 1 and conclusion on one variable at t, same as for DMVLP ; 
and constraint rules which have conditions on both t and t − 1 but no conclusion. In the 
following, we also re-use the same notations as for the MVL of Sect. 2.1 such as head(R) , 
body(R) and var(head(R)).

5.1  Constraints DMVLP

Definition 20 (Constrained DMVLP ) Let P′ be a DMVLP on AF∪T
���

 , F  and T  two sets of 
variables, and � a special variable with ���(�) = {0, 1} so that � ∉ T ∪ F  . A CDMVLP P 
is a MVLP such that P = P� ∪ {R ∈ MVL ∣ head(R) = �1 ∧ ∀vval ∈ body(R), v ∈ F ∪ T} . 
A MVL rule R such that head(R) = �1 and ∀vval ∈ body(R), v ∈ F ∪ T  is called a MVL 
constraint.

Moreover, in the following we denote V = F ∪ T ∪ {�} . This V is different than the one of 
P′ (which is F ∪ T  , without the special variable � ). From now, a constraint C is denoted: 
⊥
←������� body(C).

Example 20 
⊥
←������� a0

t
∧ a0

t−1
 is a constraint that can prevent a to take the value 0 in two suc-

cessive states. 
⊥
←������� b1

t
∧ d2

t
∧ c2

t−1
 is a constraint that can prevent to have both b1 and d2 in the 

next state if c2 appears in the initial state. 
⊥
←������� a0

t
∧ b0

t
 is a constraint with only conditions in 

T  , it prevents a and b to take value 0 at same time. 
⊥
←������� a0

t−1
∧ b0

t−1
 is a constraint with only 

conditions in F  , it prevents any transitions from a state where a and b have value 0, thus 
creating final states.

Definition 21 (Constraint-transition matching) Let (s, s�) ∈ S
F × S

T  . The constraint C 
matches (s, s�) , written C ⊓ (s, s�) , iff body(C) ⊆ s ∪ s�.

Using the notion of rule and constraint matching we can use a CDMVLP to compute 
the next possible states. Definition 22 provides such a method based on synchronous 
semantics and constraints. Given a state, the set of possible next states is the Cartesian 
product of the conclusion of all matching rules and default atoms. Constraints rules are 
then used to discard states that would generate non-valid transitions.

Definition 22 (Synchronous constrained Semantics) The synchronous constrained seman-
tics Tsyn−c is defined by:

Figure 7 shows the dynamics of the Boolean network of Fig. 5 under three semantics 
which dynamics cannot be reproduced using synchronous, asynchronous or general seman-
tics on a program learned using GULA. In the first example (left), either all Boolean func-
tions are applied simultaneously or nothing occurs (self-transition using projection). In the 

Tsyn−c ∶ P ↦{(s, s�) ∈ S
F × S

T ∣ s� ⊆ 𝖢𝗈𝗇𝖼𝗅𝗎𝗌𝗂𝗈𝗇𝗌(s,P) ∧

∄C ∈ P, head(C) = 𝜀1 ∧ C ⊓ (s, s�)}
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second example (center), the Boolean functions are applied synchronously but there is also 
always a possibility for any variable to take value 0 in the next state. In the third example 
(right), either the Boolean functions are applied synchronously, or each variable value is 
reversed (0 into 1 and 1 into 0). The original transitions of each dynamics are in black and 
the additional non-valid transitions in red. Using the original black transitions as input, 
GULA learns programs which, under the synchronous semantics (Definition 15), would 
realize the original black transitions plus the non-valid red ones. The idea is to learn con-
straints that would prevent those non-valid transitions to occur so that the observed dynam-
ics is exactly reproduced using the synchronous constrained semantics of Definition 22. 
The CDMVLP s shown below each dynamics realize all original black transitions thanks to 
their rules and none of the red transitions thanks to their constraints.

Fig. 7  States transitions diagrams corresponding to three semantics that do not respect Theorem  1 (in 
black) applied on the Boolean network of Fig. 5. Using the synchronous semantics on the optimal program 
of the black transitions will produce in addition the red ones. Below each diagram, a CDMVLP that can 
reproduce the same behavior using synchronous constrained semantics (Color figure online)
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Definition 23 (Conflict and Consistency of constraints)
The constraint C conflicts with a set of transitions T ⊆ S

F × S
T  when 

∃(s, s�) ∈ T ,C ⊓ (s, s�) . C is said to be consistent with T when C does not conflict with T.

Therefore, a constraint is consistent if it does not match any transitions of T.

Definition 24 (Complete set of constraints)
A set of constraints SC is complete with a set of transitions T if 

∀(s, s�) ∈ S
F × S

T, (s, s�) ∉ T ⟹ ∃C ∈ SC,C ⊓ (s, s�).

Definition 25 groups all the properties that we want the learned set of constraints to 
have: suitability and optimality, and Proposition 4 states that the optimal set of constraints 
of a set of transitions is unique.

Definition 25 (Suitable and optimal constraints) Let T ⊆ S
F × S

T  . A set of MVL con-
straints SC is suitable for T when:

• SC is consistent with T,
• SC is complete with T,
• for all constraints C not conflicting with T, there exists C� ∈ P such that C′ ≥ C.

If in addition, for all C ∈ SC , all the constraint rules C′ belonging to a set of constraints 
suitable for T are such that C′ ≥ C implies C ≥ C′ , then SC is called optimal.
Proposition 4 Let T ⊆ S

F × S
T  . The optimal set of constraints for T is unique and denoted 

CO(T).

The subset of constraints of CO(T) that prevent transitions permitted by PO(T) but not 
observed in T from happening, or, in other terms, constraints that match transitions in 
Tsyn−c(PO(T))) ⧵ T  , is denoted C�

O
(T) and given in Definition 26.

All constraints of CO(T) that are not in this set can never match a transition produced 
by PO(T) with Tsyn−c and can thus be considered useless. Finally, Theorem 7 shows that 
any set of transitions T can be reproduced, using the synchronous constrained semantics of 
Definition 22 on the CDMVLP PO(T) ∪ C�

O
(T).

Definition 26 (Useful Constraints) Let T ⊆ S
F × S

T .
C�
O
(T) ∶= {C ∈ CO(T) ∣ ∃(s, s

�) ∈ S
F × S

T,C ⊓ (s, s�) ∧ s
PO(T)
���������������������→ s�}.

Theorem  7 (Optimal DMVLP and Constraints Correctness Under Synchronous Con-
strained Semantics) Let T ⊆ S

F × S
T  , it holds that T = Tsyn−c(PO(T) ∪ C�

O
(T)).

5.2  Algorithm

In previous sections we presented a modified version of GULA: the General Usage LFIT 
Algorithm from Ribeiro et al. (2018), which takes as arguments a different set of variables 
for conditions and conclusions of rules. This modification allows to use this modified algo-
rithm to learn constraints and thus CDMVLP.
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Algorithm  3 show the Synchronizer algorithm, which given a set of transitions 
T ⊆ S

F × S
T  will output PO(T) ∪ C�

O
(T) using GULA and the properties introduced in the 

previous section. With the new version of GULA it is possible to encode meaning in the 
transitions we give as input to the algorithm. The constraints we want to learn are techni-
cally rules whose head is �1 with conditions on both F  and T .

It is sufficient to make the union of the two states of each transition (Fig. 8) and feed it to 
GULA to make it learn such rules. Constraints should match when an impossible transition 
is generated by the rules of the optimal program of T. GULA learns from negative exam-
ples and negative examples of impossible transitions are just the possible transitions, thus 
the transitions observed in T. Using the set of transitions T � ∶= {(s ∪ s�, {�0}) ∣ (s, s�) ∈ T} 
we can use GULA to learn such constraints with GULA(A ∪ {�1}, T �,F ∪ T, {�}) . Note 
that � , from the algorithmic viewpoint, is just a dummy variable used to make every tran-
sition of T ′ a negative example of �1 which will be the only head of the rule we will learn 
here. The program produced will contain a set of rules that match none of the initial states 
of T ′ and thus none of the transitions of T but matches all other possible transitions accord-
ing to GULA properties.

Their head being �1 , those rules are actually constraints over T. Since all and only such 
minimal rules are output by this second call to GULA, it corresponds to CO(T) , which 
prevents every transitions that are not in T to be produced using the constraint synchronous 
semantics. Finally, the non-essential constraints can be discarded following Definition 26 
and finally PO(T) ∪ C�

O
(T) is output.

The source code of the algorithm is available at https:// github. com/ Tony- sama/ pylfit 
under GPL-3.0 License.

Fig. 8  Preprocessing of the state transitions of Fig.  7 (left) into negative examples of the application of 
constraints

https://github.com/Tony-sama/pylfit
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Algorithm 3 Synchronizer

– INPUT: a set of atoms A, a set of transitions T ⊆ SF × ST , two sets of
variables F and T .
// 1) Learn what is possible locally in a transition using GULA

– P := GULA(A, T,F , T )
// 2) Encode negative examples of constraints, i.e., observed transitions

– Let ε be a special variable not in the system: ε T∪F∈�
– T ′ := {(s ∪ s′, {ε0}) | (s, s′) ∈ T}

// 3) Learn what is impossible state-wise in form of constraint using GULA
– P ′ := GULA(A|F∪T ∪{ε1}, T

′,F ∪ T , {ε})
// 4) Keep only applicable constraints

– P ′′ := ∅
– For each C ∈ P ′

// 4.1) Extract compatible rules
– Ctargets := {v ∈ T | ∃val ∈ dom(v), vval ∈ body(C)}
– ∀v ∈ Ctargets, Crules(v) := {R ∈ P | var(head(R)) = v ∧ head(R) ∈

body(C) ∧ ∀w ∈ F ,∀val, val′ ∈ dom(w), wval ∈ body(R) ∧ wval′ ∈
body(C)

)
=⇒ val = val′}

// 4.2) Search for a combination of rules with no conflicting conditions
– For each combi ∈×v∈Ctargets

(Crules(v))
• If ∀v ∈ F , |{vval ∈ body(R) | val ∈ dom(v) ∧R ∈ combi}| ≤ 1

· P ′′ := P ′′ ∪ {C}
· break

– OUTPUT: PO(T ) ∪ C ′
O(T ) := P ∪ P ′′.

Theorem 8 (Synchronizer Correctness) Given any set of transitions T,

Synchronizer(A , T, F  , T  ) outputs PO(T) ∪ C�
O
(T).

From Theorems 7 and 8, given a set of transitions T ⊆ S
F × S

T  , it holds that 
Tsyn−c(Synchronizer(A, T ,F, T)) = T  , i.e., the algorithm can be used to learn a CDMVLP 
that reproduces exactly the input transitions whatever the semantics that produced them.

The complexity of the Synchronizer is basically a regular call to GULA plus a special 
one to learn constraints and the search for a compatible set of rules in the optimal pro-
gram which could be blocked by the constraint. Since constraint can have both features and 
target variables in their body, the complexity of learning constraints with GULA is like 
considering |F| + |T| features but only one target value �1 . The detailed complexity of the 
Synchronizer is given in Theorem 9.

Theorem  9 (Synchronizer Complexity) Let T ⊆ S
F × S

T  be a set of transitions, let 
n ∶= max(|F|, |T|) and d ∶= max({|���(v)| ∈ ℕ ∣ v ∈ F ∪ T}) and m ∶= |F| + |T|.

The worst-case time complexity of Synchronizer when learning from T belongs to 
O((d2n + 2ndn+1 + ndn+2) + (|T|2 + |T| × (2m4d2m+2 + 2m3dm+1)) + (dn

n

)) and its worst-
case memory use belongs to O((d2n + 2ndn+1 + ndn+2) + (d2m + 2mdm+1 + mdm+2) + (ndn))
.
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The Synchronizer algorithm does not need any assumption about the semantics of the 
underlying model but require the full set of observations. However, when dealing with real 
data, we may only get access to partial observations. That is why we propose in next sec-
tion a heuristic method to use GULA in such practical cases.

6  Predictions from partial observations with weighted DMVLPs

In this section, we present a heuristic method allowing to use GULA to learn from partial 
observations and predict from unobserved feature states. Previous sections were focusing 
on theoretical aspects of our method. The two algorithms presented in Sects. 4 and 5 are 
sound regarding the observations they have been provided as input. Rules of an optimal 
program provide minimal explanations and can reproduce what is possible over observed 
transitions. If observation are incomplete, the optimal program will realize a transition to 
every possible target state from unobserved feature state, i.e. all target atoms are always 
possible for unobserved feature state. In practice, when observations are partial, to get pre-
dictions and explanations from our model on unobserved feature states, we also need to 
model impossibilities.

Definition 27 (Rule of Impossibility) A rule of impossibility of T ⊆ S
F × S

T  is a MVL 
rule R such that ∀(s, s�) ∈ T ,R ⊓ s ⟹ head(R) ∉ s�.

A rule of impossibility is a rule that does not realise any transition of T: the conclusion 
of a rule of impossibility is never observed in any transition from a feature state of f irst(T) 
it matches, i.e., its body is a condition so that its head is not possible. Thus, such a rule 
either conflicts with T (see Definition 7) for every feature states it matches or matches no 
feature state of T (in f irst(T) ). Note that all conflicting rules are not necessarily rules of 
impossibility. Indeed, a conflicting rule can still realize some transitions of T.

Definition 28 (Optimal Program of Impossibility) Let T ⊆ S
F × S

T  . A DMVLP P is 
impossibility-suitable for T when:

• all rules in P are rules of impossibility of T, and
• for all rules of impossibility R of T, there exists R� ∈ P such that R′ ≥ R.

If in addition, for all R ∈ P , all the MVL rules R′ belonging to DMVLP impossibility-
suitable for T are such that R′ ≥ R implies R ≥ R′ then P is called impossibility-optimal 
and denoted PO(T).
Proposition 5 (Uniqueness of Impossibility-Optimal Program) Let T ⊆ S

F × S
T  . The 

DMVLP impossibility-optimal for T is unique and denoted PO(T).

Rules of possibility and impossibility can be weighted according to the observations to 
form a Weighted DMVLP as given in Definition 29.

Definition 29 (Weighted DMVLP ) A weighted program is a set of weighted rules: 
{(w,R) ∣ w ∈ ℕ ∧ R is a DMVLP rule} . A weighted DMVLP , or WDMVLP , is a pair of 
weighted programs (P,P�) on the same set of atoms A , and the same feature and target 
variables F  and T .
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Example 21 Let WP = (P,P�) be a WDMVLP , as follows.

Let s ∶= {a0
t−1

, b1
t−1

, c1
t−1

} . The rule of possibility a0
t
← b1

t−1
 matches s, and the rule of 

impossibility a0
t
← c1

t−1
 also matches s. The weight of the rule of impossibility (30) being 

greater than that of the rule of possibility (3), we can consider that a0
t
 is not likely to appear 

in a transition from s according to WP.

Using GULA, we can learn both rules of possibility (by using parameter learning_mode 
= “possibility”) and rules of impossibility (with parameter learning_mode = “impossibil-
ity”) from T ⊆ S

F × S
T  . In Algorithm 4, GULA is used to learn two distinct DMVLP s: 

a program of possibility and a program of impossibility. The rules of both programs are 
then weighted by the number of observed feature states (that is, in T) they match to form 
a weighted DMVLP . This WDMVLP can be used to make predictions from unobserved 
feature states ( s ∈ S

F, s ∉ first(T) ) by confronting the learned rules of possibility and 
impossibility according to their weights.

Algorithm 4 Learning WDMVLP with GULA

– INPUT: a set of atoms A′, a set of transitions T ⊆ SF ′ × ST ′
, two sets

of variables F ′ and T ′

– P := GULA(A′, T,F ′, T ′, “possible”)
– P ′ := GULA(A′, T,F ′, T ′, “impossible”)
– WP := {(|{s ∈ S | (s, s′) ∈ T ∧R � s}|, R) ∈ N× P}
– WP ′ := {(|{s ∈ S | (s, s′) ∈ T ∧R � s}|, R) ∈ N× P ′}
– OUTPUT: (WP,WP ′).

Given a feature state s ⊆ S
F  we can predict and explain the likelihood of each target 

atom by confronting the rules of possibility and impossibility that match s. The likelihoods 
are computed as given in Definition 30.

Definition 30 (WDMVLP Prediction and Explanation)
(1) Let P be a weighted program, s ∈ S

F  and vval ∈ A with v ∈ T  . We define the best 
rules of vval matching s in P as:

where: 
{

wmax ∶= max({w ∈ ℕ ∣ (w,R) ∈ P} ∪ {0})
M ∶= {R ∣ (wmax,R) ∈ P ∧ head(R) = vval,R ⊓ s}

.

(2) Let WP = (P,P�) be a WDMVLP , s ∈ S
F  and vval ∈ A with v ∈ T  . We define the 

best rules of possibility and best rules of impossibility of vval matching s in WP as:

P = {
(3, a0

t
← b1

t−1
)

(15, a1
t
← b0

t−1
)

…}

P� = {
(30, a0

t
← c1

t−1
)

(5, a1
t
← c0

t−1
)

…}

best_rules(P, s, vval) ∶= (wmax,M)
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(3) We define the prediction of likelihood of the occurrence of vval in a transition from s 
according to WP as:

where: 
{

best_rules_of_possibility(WP, s, vval) = (w,M)
best_rules_of_impossibility(WP, s, vval) = (w�,M�)

.

(4) We define the explanation of the prediction of the occurrence of vval in a transition 
from s according to WP as:

where: 

⎧⎪⎨⎪⎩

(w,R) ∶= arbitrary(best_rules_of_possibility(WP, s, vval))
(w�,R�) ∶= arbitrary(best_rules_of_impossibility(WP, s, vval)))
arbitrary((w��,M)) = (w��,R��)

best_rules_of_possibility(WP, s, vval) ∶= best_rules(P, s, vval)

best_rules_of_impossibility(WP, s, vval) ∶= best_rules(P�, s, vval).

predict(WP, s, vval) ∶=
1

2
×

(
1 +

w − w�

max({1,w + w�})

)

predict_and_explain(WP, s, vval) ∶=(
vval, predict(WP, s, vval), (w,R), (w�,R�)

)

Table 3  Example of prediction of a WDMVLP WP from a non-observed feature state s using Definition 30

Target 
atom ( vval)

Likelihood 
( predict(WP, s, vval)
)

Possibility explanation ((w, R)) Impossibility explanation ( (w�,R�))

a0
t

0.95 (54, a0
t
← a0

t−1
) (3, a0

t
← c0

t−1
∧ d0

t−1
∧ f 0

t−1
∧ g0

t−1
)

a1
t

0.05 (3, a1
t
← c0

t−1
∧ d0

t−1
∧ f 0

t−1
∧ g0

t−1
) (54, a1

t
← a0

t−1
)

b0
t

0.93 (58, b0
t
← d0

t−1
) (4, b0

t
← a0

t−1
∧ b0

t−1
∧ g0

t−1
∧ h1

t−1
)

b1
t

0.07 (4, b1
t
← a0

t−1
∧ b0

t−1
∧ g0

t−1
∧ h1

t−1
) (58, b1

t
← d0

t−1
)

c0
t

0.88 (28, c0
t
← d0

t−1
∧ h1

t−1
) (4, c0

t
← a0

t−1
∧ b0

t−1
∧ d0

t−1
∧ g0

t−1
)

c1
t

0.12 (4, c1
t
← a0

t−1
∧ b0

t−1
∧ d0

t−1
∧ g0

t−1
) (28, c1

t
← d0

t−1
∧ h1

t−1
)

d0
t

0.85 (50, d0
t
← i1

t−1
) (9, d0

t
← b0

t−1
∧ f 0

t−1
∧ g0

t−1
)

d1
t

0.15 (9, d1
t
← b0

t−1
∧ f 0

t−1
∧ g0

t−1
) (50, d1

t
← i1

t−1
)

e0
t

0.88 (51, e0
t
← f 0

t−1
) (7, e0

t
← b0

t−1
∧ g0

t−1
∧ i1

t−1
)

e1
t

0.12 (7, e1
t
← b0

t−1
∧ g0

t−1
∧ i1

t−1
) (51, e1

t
← f 0

t−1
)

f 0
t

0.42 (11, f 0
t
← a0

t−1
∧ b0

t−1
∧ f 0

t−1
) (15, f 0

t
← d0

t−1
∧ g0

t−1
∧ j1

t−1
)

f 1
t

0.58 (15, f 1
t
← d0

t−1
∧ g0

t−1
∧ j1

t−1
) (11, f 1

t
← a0

t−1
∧ b0

t−1
∧ f 0

t−1
)

g0
t

0.36 (9, g0
t
← b0

t−1
∧ g0

t−1
∧ h1

t−1
) (16, g0

t
← a0

t−1
∧ d0

t−1
∧ j1

t−1
)

g1
t

0.64 (16, g1
t
← a0

t−1
∧ d0

t−1
∧ j1

t−1
) (9, g1

t
← b0

t−1
∧ g0

t−1
∧ h1

t−1
)

h0
t

0.40 (8, h0
t
← b0

t−1
∧ c0

t−1
∧ d0

t−1
∧ i1

t−1
) (12, h0

t
← a0

t−1
∧ g0

t−1
∧ h1

t−1
)

h1
t

0.60 (12, h1
t
← a0

t−1
∧ g0

t−1
∧ h1

t−1
) (8, h1

t
← b0

t−1
∧ c0

t−1
∧ d0

t−1
∧ i1

t−1
)

i0
t

0.10 (4, i0
t
← a0

t−1
∧ b0

t−1
∧ g0

t−1
∧ h1

t−1
) (35, i0

t
← d0

t−1
∧ j1

t−1
)

i1
t

0.90 (35, i1
t
← d0

t−1
∧ j1

t−1
) (4, i1

t
← a0

t−1
∧ b0

t−1
∧ g0

t−1
∧ h1

t−1
)

j0
t

0.63 (12, j0
t
← e1

t−1
∧ f 0

t−1
∧ g0

t−1
) (7, j0

t
← a0

t−1
∧ c0

t−1
∧ d0

t−1
∧ j1

t−1
)

j1
t

0.37 (7, j1
t
← a0

t−1
∧ c0

t−1
∧ d0

t−1
∧ j1

t−1
) (12, j1

t
← e1

t−1
∧ f 0

t−1
∧ g0

t−1
)
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so that R′′ is taken arbitrarily in M if M ≠ ∅ , or R�� ∶= ∅ if M = �.

Intuitively, predict(WP, s, vval) gives a normalized score between 0 and 1 of the like-
lihood to observe vval after state s, where 0.5 means that we are left inconclusive. In 
predict_and_explain(WP, s, vval) , one of the best rules of possibility and rules of impossi-
bility with their respective weights are given as explanation to the prediction or a weight of 
0 and no rule when no rules of possibility (resp. impossibility) match s. The weights of the 
selected rules are used to compute the likelihood and the rules themselves are the explana-
tion of the predictions.

Table  3 shows an example of such predictions and explanations from a WDMVLP 
WP from the feature state s = {a0

t−1
, b0

t−1
, c0

t−1
, d0

t−1
, e1

t−1
, f 0

t−1
, g0

t−1
, h1

t−1
, i1

t−1
, j1

t−1
} where 

F = {at−1,… , jt−1}, T = {at,… , jt} and ∀v ∈ F ∪ T, ���(v) = {0, 1} . Each row of the 
table provides the WDMVLP prediction of the occurrence of a target atom vval and the 
corresponding explanation: predict_and_explain(WP, s, vval) . For example, i1

t
 is very likely 

to be observed in a transition from s since its likelihood is almost 1 (0.90). This likelihood 
comes from the best possibility rule of the WDMVLP : i1

t
← d0

t−1
∧ j1

t−1
 , whose weight is 

35, and its best impossibility rule: i1
t
← a0

t−1
∧ b0

t−1
∧ g0

t−1
∧ h1

t−1
 , which only has a weight 

of 4. This WDMVLP has been learned using Algorithm 4, thus the weights correspond to 
the number of feature states that those rules match. Here, we can say that i1

t
 is very likely to 

occur since 90% of the observed feature states that contain both d0
t−1

 and j1
t−1

 (like s) have 
i1
t
 in a transition, according to the possibility rule R. We have the reverse case for a1

t
 in this 

example, the best impossibility rule is much stronger than the best possibility rule leading 
to the likelihood of 0.05, thus a1

t
 is very unlikely to be observed in a transition from s. In 

this example, the likelihood probability of the two atoms of each target variable (for exam-
ple a0 and a1 ) sums to 1.0 because the observed transitions are deterministic, but in the 
general case they are not related; for instance: both a0 and a1 could be very likely.

Regarding the choice of the rules for prediction, here we simply take the rules with the 
biggest weight from each weighted program. The intuition behind this is that rules with 
bigger weights are more likely to be consistent with unobserved transitions, thus the big-
gest weighted rule(s) is (are) the most likely to be part of the real optimal program. Note 
that other heuristics are possible. One could for instance combine all matching rules, for 
example by computing the sum or average of their weights; however, combining rules can 
be more noise sensitive: a lot of small-weighted incorrect rules (on unobserved states) 
might counter a single high-weighted rule that would happen to be optimal under all obser-
vations. This is why we chose to use a single-rule heuristics, which also happens to give a 
unique pair of rules as explanation (why a target atom might be possible and why it might 
not).

The capacity of this heuristic method to predict and explain from unobserved feature 
states is evaluated in Sect. 7.
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7  Evaluation

In this section, both the scalability, accuracy and explanations of GULA are evaluated 
using Boolean network benchmarks from the biological literature. The scalability of Syn-
chronizer is also evaluated (details are given in “Appendix”). All experiments1 were con-
ducted on one core of an Intel Core i3 (6157U, 2.4 GHz) with 4 Gb of RAM.

In our experiments we use Boolean networks2 from Boolenet (Dubrova & Teslenko, 
2011) and Pyboolnet (Klarner et al., 2016). Benchmarks are performed on a wide range of 
networks. Some of them are small toy examples, while the biggest ones come from biologi-
cal case study papers like the Boolean model for the control of the mammalian cell cycle 
(Fauré et al., 2006) or fission yeast (Davidich & Bornholdt, 2008). Boolean networks are 
converted to DMVLP where ∀v ∈ V, ���(v) = {0, 1} . In Dubrova and Teslenko (2011), 
Klarner et  al. (2016) file formats, for each variable, Boolean functions are given in dis-
junctive normal form (DNF), a disjunction of conjunction clauses that can be considered 

Table 4  Number of variables and total number of transitions under the three semantics of the Boolean net-
works from Boolenet (Dubrova & Teslenko, 2011) and PyBoolNet (Klarner et al., 2016) used as benchmark 
in this experimental section

Benchmark name Variables Transitions

Synchronous Asynchronous General

n3s1c1a 3 8 14 29
n3s1c1b 3 8 14 31
raf 3 8 13 29
n5s3 5 32 73 213
n6s1c2 6 64 230 1039
n7s3 7 128 451 2243
randomnet_n7k3 7 128 394 1580
xiao_wnt5a 7 128 324 972
arellano_rootstem 9 512 1940 11,472
davidich_yeast 10 1024 4364 38,720
faure_cellcycle 10 1024 4273 30,971
fission_yeast 10 1024 4157 33,727
budding_yeast 12 4096 19,975 260,557
n12c5 12 4096 30,006 1,122,079
tournier_apoptosis 12 4096 22,530 358,694
dinwoodie_stomatal 13 8192 53,249 1,521,099
multivalued 13 8192 49,156 1,049,760
saadatpour_guardcell 13 8192 53,249 1,521,099

1 Available at: https:// github. com/ Tony- sama/ pylfit. Using command “python3 evaluations/
mlj2020/mlj2020_all.py” from the repository’s tests folder, results will be in the tests/tmp 
folder. All experiements were run with the release version 0.2.2 https:// github. com/ Tony- sama/ pylfit/ relea 
ses/ tag/ v0.2.2.
2 Original Boolenet Boolean network files: https:// people. kth. se/ ~dubro va/ boole net. html. Original PyBool-
Net Boolean network files: https:// github. com/ hklar ner/ PyBoo lNet/ tree/ master/ PyBoo lNet/ Repos itory.

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit/releases/tag/v0.2.2
https://github.com/Tony-sama/pylfit/releases/tag/v0.2.2
https://people.kth.se/%7edubrova/boolenet.html
https://github.com/hklarner/PyBoolNet/tree/master/PyBoolNet/Repository
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as a set of Boolean atoms of the form v or ¬v . Each clause c of the DNF of a variable v is 
directly converted into a rule R such that, head(R) = v1

t
 and v�1

t−1
∈ body(R) ⟺ v� ∈ c 

and v�0
t−1

∈ body(R) ⟺ ¬v� ∈ c . For each such DMVLP  the set T of all transitions are 
generated for the three considered semantics (see Sect. 3). For each generation, to simu-
late the cases where Boolean functions are false, each semantics uses a default function 
that gives v0,∀v ∈ T  when no rule R, v(head(R)) = v matches a state. Table 4 provides the 
number of variables of each benchmark used in our experiments together with the number 
of transitions under synchronous, asynchronous and general semantics.

7.1  GULA scalability

Figure  9 shows the run time (log scale) of GULA (Algorithm  2) and brute force enu-
meration (Algorithm  1) when learning a WDMVLP from Boolean networks (grouped 
by number of variables) transitions of Table  4. Since we learn WDMVLP the run 
time corresponds to the sum of two calls to GULA (resp. brute force enumera-
tion) (possibility and impossibility mode) and the computation of each rule weight 
(see Algorithm  4). For the impossibility mode of the brute force enumeration 
(Algorithm  1), we keep impossibility rules in place of consistent rules: it suffices to 
replace P ∶= {R ∈ P ∣ ∀(s, s�) ∈ T , body(R) ⊆ s ⟹ ∃(s, s��) ∈ T , head(R) ∈ s��} by 
P ∶= {R ∈ P ∣ ∀(s, s�) ∈ T , body(R) ⊆ s ⟹ ∄(s, s��) ∈ T , head(R) ∈ s��} . For each 
benchmark, learning is performed on 10 random subsets of 1% , 5% , 10% , 25% , 50% , 75% , 
100% of the whole set of transitions with a time out of 1000 s.

Fig. 9  Run time in seconds (log scale) of two calls to GULA (in blue) and brute force enumeration (in 
red) when learning a WDMVLP from a random set of 1% , 5% , 10% , 25% , 50% , 75% , 100% of the transi-
tions of a Boolean network from Boolenet and PyBoolNet with size varying from 3 to 13 variables. Time 
out is set at 1000 s and 10 runs where performed for each setting (Color figure online)
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For all benchmarks, we clearly see that GULA is more efficient than the trivial brute 
force enumeration, the difference exponentially increasing with the number of variables: 
about 10 times faster with 6 variables and 100 times faster with 9 variables. The brute 
force enumeration reaches the time out for 10 variables benchmarks and beyond.

For a given number of variables, we observe that for each benchmark the run time 
increases with the number of transitions until some ratio (for example 50% for 7 variables) 
at which point more transition can actually speed up the process. More transitions reduce 
the probability for a rule to be consistent, thus both methods have less rules to check for 
domination. This tendency is observed on the three semantics. It is important to note that 
the systems are deterministic with the synchronous semantics and thus the number of tran-
sitions in the synchronous case is much lower than for the two other semantics and one 
may expect better run time. But the quantity of transitions has little impact in fact and most 
of the run time goes into rule domination check (see Theorem  6). Actually, more input 
transitions can even imply less learning time for GULA. Having more diverse initial states 
can also allow the sorting of the negatives example to reduce the quantity of specialization 
made at each step, a freshly revised rule being revised again will not have much non-domi-
nated candidates to generate. For example, for the benchmarks with 13 variables, for some 
variable values, given 25% of the transitions, the number of stored rules reached several 
thousands. On the other hand, when given 100% of the transitions, it rarely exceeds hun-
dreds stored rules. Same logic can apply to the faster run time of general semantics with 
“low” subset of transitions: the total number of transitions being higher, more diversity 
appears in its subset thus higher chance for the sorting to have effect on reducing the need 
for least specialization. The rules are simpler for the two other semantics since rules of the 
form vval

t
← vval

t−1
 are always consistent and quickly obtained. Such simple rules have great 

dominance power, reducing the quantity of stored rules and thus checked for domination at 
each step.

GULA succeeds in learning a WDMVLP from the benchmarks with up to 10 variables 
for all semantics before the time-out of 1, 000 seconds for all considered sub-sets of transi-
tions. Benchmarks from 12 variables need a substantial amount of input transitions to pre-
vent the explosion of consistent rules and thus reaching the time out. For both semantics, 
the 12 variables benchmarks reached the time out several times when given less than 100% 
of the transitions. Even if this may seem small compared to the intrinsic complexity of bio-
logical systems, ten components are sufficient to capture the dynamic behavior of critical, 
yet significant, mechanisms like the cell cycle (Gibart et al., 2021).

Compared to our previous algorithm LF1T (Ribeiro & Inoue, 2015), GULA is slower 
in the synchronous deterministic Boolean case (even when learning only PO(T) ). This was 
expected since it is not specifically dedicated to learning such networks: GULA learns both 
values (0 and 1) of each variable and pre-processes the transitions before learning rules to 
handle non-determinism. On the other hand, LF1T is optimized to only learn rules that 
make a variable take the value 1 in the next state and assume only one transition from each 
initial state. furthermore, LF1T only handles Boolean values and deterministic transitions 
while GULA can deal with multi-valued variable and any pseudo-idempotent (Theorem 1) 
semantics transitions.

The current implementation of the algorithm is rather naive and better performances are 
expected from future optimizations. In particular, the algorithm can be parallelized into as 
many threads as the number of different rule heads (one thread per target variable value). 
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We are also developing3 an approximated version of GULA that outputs a subset of PO(T) 
(resp. PO(T) ) sufficient to explain T (Ribeiro et  al., 2020). The complexity of this new 
algorithm is polynomial, greatly improving the scalability of our approach but to the sacri-
fice of completeness. However, this algorithm is still under development and is beyond the 
scope of this paper.

Learning constraints is obviously more costly than learning regular rules since both 
feature and target variables can appear in the body, i.e., the number of features becomes 
|F| + |T| . Thus by running the Synchronizer on the Boolean network benchmark it implies 
a call to GULA with double the number of variables to learn constraints. Under the same 
experimental settings, the Synchronizer reached the time-out of 1,  000 seconds on the 
benchmarks of 7 variables. The contribution regarding CDMVLP being focused on theo-
retical results, we provided the detailed evaluation of the Synchronizer in “Appendix” to 
save space.

7.2  GULA predictive power

When addressing biological systems, a major challenge arises: even if the amount of pro-
duced data is increasing through the development of high-throughput RNA sequencing, it 
is still low with regard to all the theoretical contexts.

In this experiment, we thus evaluate the quality of the models learned by GULA in their 
ability to correctly predict possible values for each variable from unseen feature states, i.e., 
the capacity of the learned model to generalize to unobserved cases. Practically speaking, 

Fig. 10  Experiments settings: data generation, train/test split

3 The polynomial approximation of GULA, currently named PRIDE is also available at: https:// github. 
com/ Tony- sama/ pylfit

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit
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this ensures the resulting models can provide relevant information about biological experi-
ments that were (or could) not be performed.

For each Boolean network benchmark, we first generate the set of all possible feature 
states. Those states are then randomly split into two sets: at least 20% will be test fea-
ture states and the remaining 80% will be potential training feature states. According to 
the Boolean formula of the network and a given semantics, all transitions from test feature 
states are generated to make the test set. All transitions are also computed from the training 
feature states, but only x% of the transitions are randomly chosen to form the training set 
with x ∈ {1, 5, 10, 20, 30,… , 100} . Figure 10 illustrates the construct of both training and 
test sets for a Boolean network of 3 variables.

The training set is used as input to learn a WDMVLP using GULA. The learned WDM-
VLP WP is then used to predict from each feature state s of the test set, the possibility of 
occurrence of each target atoms vval according to Proposition 30, i.e., predict(WP, s, vval) . 
The forecast probabilities are compared to the observed values of the test set. Let T be the 
set of all transitions, T ′ the training set of transitions and T ′′ the test set of transitions. For 
all vval ∈ A|T  and s ∈ first(T ��) , we define:

To evaluate the accuracy of prediction from the learned WDMVLP , WP, over the test set 
T ′′ we consider a ratio of precision given by the complement to one of the mean absolute 
error between its prediction and the actual value:

Formally, if T is the whole set of transitions of the Boolean network, this experi-
ment consists in learning the WDMVLP (PO(T

�),PO(T
�)) from the training set 

T ′ ⊂ T  and checking both the consistency and realization of the test set T ′′ ⊂ T  , with 
f irst(T �) ∩ f irst(T ��) = � . Here, we chose |T �| ≈ x × 0.8 × |T| and |T ��| ≈ 0.2 × |T| , where 
x ∈ {0.01, 0.05, 0.1, 0.2, 0.3,… , 1.0} . Intuitively, the WDMVLP learned in these experi-
ments can be seen as an approximation of (PO(T),PO(T)) on partial observations: the 
learned rules can be different. These experiments aim to evaluate the discrepancies in their 
behaviors, i.e., we only measure the consequences of the use of the rules, not the quality of 
the rules themselves (which is the subject of the next experiment).

Example 22 Let T ′′ be the test set of Fig. 10 and WP be the WDMVLP of Example 21. Let 
s ∶= (a1

t−1
, b1

t−1
, c1

t−1
) (111).

• Expected prediction from s according to T ′′:
  {(vval, actual(vval, s, T ��))} = {(a0

t
, 1), (a1

t
, 0), (b0

t
, 1), (b1

t
, 1), (c0

t
, 1), (c1

t
, 1)}

• Predictions from s according to WP:
  {(vval, predict(WP, s, vval))} = {(a0

t
, 0.9), (a1

t
, 0.2), (b0

t
, 0.8), (b1

t
, 0.6), (c0

t
, 1.0), 

(c1
t
, 0.0)}

• Accuracy (unique state): 1 − |1−0.9|+|0−0.2|+|1−0.8|+|1−0.6|+|1−1.0|+|1−0.0|
|A|T|=6 = 0.58

On state s, the model prediction mean absolute error w.r.t. T ′′ is 0.42, thus giving an accu-
racy of 0.58, meaning that in average, 58% of the predictions are correct.

actual(vval, s, T ��) =

{
1, if∃(s, s�) ∈ T ��, vval ∈ s�

0, otherwise
.

accuracy(WP,T ��) =
∑

s∈first(T ��)

∑
vval∈A|T

1 − |actual(vval, s, T ��) − predict(WP, s, vval)|
|A|T| × |f irst(T ��)|
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Figure 11a–c show the accuracy of the predicted possible values w.r.t. the ratio of train-
ing data going from 1% to 100% with the three considered semantics.

Here, we also consider four trivial baselines that are random predictions and always pre-
dicting 0, 0.5 or 1.0, i.e., ∀s ∈ S

F,∀vval ∈ A|T :

• baseline_random(s, vval) = rand(0.0, 1.0)
• baseline_always_0.0(s, vval) = 0.0

• baseline_always_0.5(s, vval) = 0.5

• baseline_always_1.0(s, vval) = 1.0

Accuracy score for the random baseline is expected to be around 0.5 for every semantics 
since the problem is equivalent to a binary classification, i.e., each atom can appear or not. 
Accuracy score of the three fixed baselines is exactly 0.5 in synchronous case since transi-
tions are deterministic here: only one atom vval is possible (either v0 or v1 ) for each target 
variable v for each feature state of the test set, i.e., always one of the two must be predicted 
to 0.0 and the other one to 1.0. For asynchronous and general semantics the transitions 
are non-deterministic, thus always predicting 0.0 or 1.0 for each target atoms will lead to 
different accuracy score. Both semantics using previous value as default, it is more likely 
for each atom to appear in a target state, thus always predicting 1.0 is expected to perform 
better than 0.5 and always predicting 0.0 is expected to perform worst. That explain why, in 
Fig. 11b, c we can observe an accuracy score of 0.6 to 0.8 for always predicting 1.0 and 0.2 
to 0.4 for always predicting 0.0.

With synchronous semantics transitions, when given only 5% of the possible transitions, 
GULA starts to clearly outperform the baseline on the test set for all benchmarks size. It 
reaches more than 80% accuracy when given at least 40% of the transitions for benchmarks 
with 6 variables and only 5% of input transitions is enough to obtain same performance 
with 9 variables. These results show that the models learned by GULA effectively gener-
alise some meaningful behavior from training data over test data in a deterministic context.

For the non-deterministic case of asynchronous and general semantics the performance 
of GULA are similar but the differences with the baselines that always predict 1.0 is 
smaller. As stated before, since both semantics use previous value as default, it is more 
likely for each atom to appear in a target state, thus predicting that all atoms are always 
possible is less risky. Furthermore, the transition being non-deterministic, the way we 
select the training set (see Fig. 10) may lead to have missing transitions from some feature 
state in the training set, generating false negative example for GULA equivalent to noisy 
data. Still, GULA start to outperforms the baseline that always predict 1.0 (and all others) 
for the two semantics when given more than 50% of the possible transitions as input. The 
performances of GULA also increase when considering more variables, with 9 variables 
benchmarks 20% of transition is enough to obtain 80% accuracy over unseen test data for 
asynchronous case and about 2% for general case. Performances are globally similar for 
the three semantics, showing that our method can handle a bit of noise caused by missing 
observations.

If one is only interested by prediction accuracy, it is certainly easier to achieve better 
results using statistical machine learning methods like neural networks or random forest 

Fig. 11  Accuracy of the WDMVLP learned by GULA and trivial baselines when predicting possible tar-
get atoms from unseen states with different amounts of training data of transitions from Boolean network 
benchmarks with synchronous, asynchronous and general semantics

▸
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since prediction here is basically a binary classification for each target variables values. 
In the cases where explainability is of interest, the rules used for the predictions and their 
weights may be quite simple human readable candidates for explanations (i.e., exhibit 
dynamic relations between biological interacting components). For a given feature state, a 
WDMVLP provides (using Definition 30) for each target atom the likelihood of its occur-
rence in a transition but also the two rules (possibility/impossibility) that explain this pre-
diction as shown in Table 3. We consider the evaluation of explanation in the following 
experiment.

7.3  GULA explanation quality

In this experiment, we evaluate the quality of the models learned by GULA in their ability 
to correctly explain their predictions. Benchmarks and train/test sets generation is the same 
as in previous experiment (see Fig. 10). The learned model must predict correctly the pos-
sibility for each target atom as previously, and also provide a rule that can explain the pre-
diction. When a target atom is possible (resp. impossible), we expect a rule of the optimal 
program (resp. optimal program of impossibility) to be given as explanation. By computing 
the Hamming distance between the rules used in the model learned from incomplete obser-
vations (PO(T

�),PO(T
�)) , and the optimal rules from the full observations (PO(T),PO(T)) , 

we can have an idea of how close we are from the theoretically optimal explanations. For 
that, for each experiment, we compute the optimal program and the optimal program of 
impossibility from the set of all transitions (T) before splitting it into train/test sets.

Fig. 11  (continued)
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A WDMVLP is then learned using GULA from the training set ( T ′ ) as in previous 
experiment. The learned WDMVLP is then used to predict from each feature state of the 
test set ( T ′′ ), the possibility of occurrence of each target atom according to Proposition 30 
as well as a rule to explain this prediction. The forecast probabilities and explanations are 
compared to the observed values of the test set and the rules of the optimal programs. For 
all vval ∈ A|T  and s ∈ first(T ��) , we define:

To compare the forecast rules and the ideal rules, we consider the Hamming distance over 
their bodies:

We expect both correct forecast of possibility and explanation, in the sense that an incorrect 
prediction yields the highest error (1.0) while a good prediction yields an error depending 
on the quality of the explanation (0.0 when an ideal rule is used). This is summed up in the 
following error function:

This allows to compute an explanation score, combining both accuracy and explanation 
quality from the learned WDMVLP , WP, over the test set T ′′:

Example 23 Let F = {at−1, bt−1, ct−1} , T = {at, bt, ct} , a complete set of transitions 
T ⊆ S

F × S
T  , a train set of transitions T ′ ⊆ T  and a test set of transitions T ′′ ⊆ T  with 

T � ∩ T �� = � such that:

• – P (T ) = a1t a1t 1, a
1
t b1t 1 c1t 1, a

1
t b0t 1 c0t 1, a

0
t c0t 1, ...

• – P (T ) = a1t a0t 1, a
1
t b0t 1, a

1
t c0t 1, a

0
t c1t 1, ...

• Let us suppose that from the test feature state s := a1t 1, b
1
t 1, c

1
t 1 , the target atom 

a1
t
 is observed in some transitions from s in T ′′ thus we expect a probability of 1.0 and a 

rule from PO(T) that matches s and produce a1
t
 (any of the blue rules) as explanation:

• – actual(a1t , s, T
′′) = (a1t , 1.0, a1t a1t 1, a

1
t b1t 1 c1t 1 )

• Let WP be a WDMVLP learned from T ′ and we suppose that:

• predict_and_explain(WP, s, a1
t
) = (a1

t
, 1.0, a1

t
← b1

t−1
)

actual(vval, s, T ��) =

{
(1, {R ∈ PO(T) ∣ head(R) = vval ∧ R ⊓ s}), if∃(s, s�) ∈ T ��, vval ∈ s�

(0, {R ∈ PO(T) ∣ head(R) = vval ∧ R ⊓ s}), otherwise
.

distance(R,R�) = |(body(R) ∪ body(R�)) ⧵ (body(R) ∩ body(R�))|.

error((forecast_proba, forecast_rule),
(actual_proba, actual_rules)) =

⎧
⎪⎪⎨⎪⎪⎩

1.0 if forecast_rule = ∅
1.0 if forecast_proba = 0.5

1.0 if forecast_proba > 0.5 ∧ actual_proba = 0

1.0 if forecast_proba < 0.5 ∧ actual_proba = 1
min({distance(forecast_rule,R)∣R∈actual_rules})

�F� otherwise

explanation_score(WP,T ��) =

∑
s∈first(T ��)

∑
vval∈A|T

1 − |error(predict_and_explain(WP, s, vval), actual(vval, s, T ��))|
|A|T| × |f irst(T ��)|
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• The predicted possibility is correct, thus the explanation score will depend on the 
explanation.

• The explanation a1
t
← b1

t−1
 has a Hamming distance of 2 with a1

t
← a1

t−1
 (the conditions 

on at−1 and bt−1 are wrong, the condition on ct−1 is correct), thus the error will be 2

|F| =
2

3

.
• The Hamming distance is only of 1 with rule a1

t
← b1

t−1
∧ c1

t−1
 (the conditions on at−1 

and bt−1 are correct, the condition on ct−1 is wrong), thus the error will be 1

|F| =
1

3
.

• The final score for target a1
t
 is 1 − min({ 2

3
,
1

3
}) ≈ 0.66

The prediction is correct for target a1
t
 from s, but the explanation a1

t
← a1

t−1
 is not perfect. 

Still, 66% of its conditions correspond to an optimal rule a1t ← b1t−1 ∧ c1t−1  that can 
explain this prediction.

• Now let us suppose that from the test feature state s := a0t 1, b
1
t 1, c

0
t 1 , the target 

atom a1
t
 is never observed in any transition from s in T ′′ . Thus, we expect a predicted 

probability of 0.0 and, as an explanation, a rule from PO(T) that matches s and has a1
t
 as 

conclusion (any of the red rules):

– – actual(a1t , s, T
′′) = (a1t , 0.0, a1t a0t 1, a

1
t c0t 1 )

• Let WP be a WDMVLP and suppose that:

• predict_and_explain(WP, s, a1
t
) = (a1

t
, 0.0, a1

t
← �)

• The explanation a1
t
← ∅ has an Hamming distance of 1 when compared with a1

t
← a0

t−1
 

(the condition on at−1 is wrong, the conditions on bt−1 and ct−1 are correct), thus the 
error will be 1

|F| =
1

3
.

• We obtain the same Hamming distance of 1 when compared with a1
t
← c0

t−1
.

• The final score for target a1
t
 from s is 1 − min({ 1

3
,
1

3
}) ≈ 0.66.

The prediction is correct for target a1
t
 from s, but the explanation a1

t
← ∅ is not perfect. 

Still, 66% of its conditions correspond to an optimal rules of impossibility (a1t a0t 1 and 
a1t c0t 1) that can explain this prediction.

It is important to note that the metric we consider here only evaluates the quality of the 
explanation in the predictions, not of the entire program. Also this metrics can only be used 
when the actual real program is known and thus cannot be used to evaluate a model when 
only observations are available. Table 5 shows an example of scoring of the predictions 
of a WDMVLP (both accuracy and explanation score) from the feature state s = {a0

t−1
, 

b0
t−1

, c0
t−1

, d0
t−1

, e1
t−1

, f 0
t−1

, g0
t−1

, h1
t−1

, i1
t−1

, j1
t−1

} where F = {at−1,… , jt−1}, T = {at,… , jt} 
and ∀v ∈ F ∪ T, ���(v) = {0, 1} . This example was generated using the Boolean net-
work “faure_cellcycle” synchronous transitions (see Table 4) where we replaced variable 
names by letters from a to j and omitted time subscript to make the table more compact 
and easy to read. From the set of all transitions T are computed PO(T) and PO(T) . T is 
also partitioned into a training set T ′ (about 10% of T) and a test set T ′′ (about 20% of T) 
such that T � ∩ T �� = � . Here, in the test set, there is only one possible transition from s: 

Fig. 12  Explanation score of the WDMVLP learned by GULA and trivial baselines when predicting pos-
sible target atoms from unseen states with different amounts of training data of the transitions from Boolean 
network benchmarks with synchronous, asynchronous and general semantics

▸
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(s, s�), s� = {a0, b0, c0, d0, e0, f 1, g1, h0, i1, j1} (deterministic transition). Thus, for atoms that 
appear in s′ , the model is expected to predict a probability of 1.0 ( > 0.5 ) and 0.0 ( < 0.5 ) 
for the others. Furthermore, when correctly predicting the occurrence it should also pro-
vide one of the corresponding optimal rules (possibility rule if predicted possible, rule of 
impossibility otherwise). For instance, for a0 , the model predicted a likelihood of 0.95, and 
since the atom was effectively observed in s′ , a likelihood of 1.0 is expected, thus its accu-
racy is 0.95. For a1 , since it is not in s′ , we expect a likelihood of 0.0; because the predicted 
likelihood is 0.05, its accuracy is also 0.95. Regarding the explanation score, the accu-
racy is checked before computing the rule distance with the expected optimal rules. For 
a0 , the likelihood prediction is above 0.5, thus the model considers a0 possible and since it 
is indeed observed in s′ , the explanation score depends of the prediction possibility rule R; 
since R ∈ PO(T) , the explanation is considered perfect and the score is 1.0. For a0 , we have 
another perfect case of explanation but for the impossibility scenario: the atom a0 is not in 
s′ , it is predicted unlikely, and the impossibility rule of the prediction R′ is in PO(T) . When 
considering instead h0 and h1 , we have a wrong likelihood prediction, thus the explanation 
score is directly 0.0. Regarding c0 , the likelihood prediction is correct, and the provided 
possibility rule R ∶= c0 ← d0 ∧ h1 has (at most) 8 conditions out of 10 that are in common 
with a rule of PO(T) (that is, rule c0 ← h1 ∧ i1 ): indeed, both rules have h1 as condition, 
but R misses i1 and contains a spurious d0 , while the 7 remaining feature variables do not 
appear in both rules, leading to an explanation score of 8∕10 = 0.8 . We observe the same 
for the impossibility rules of c1 , although the score could have been different than for c0 . 
In this example, we see that optimal rules of the same target atoms matching the same 

Fig. 12  (continued)



Machine Learning 

1 3

feature state can be very different (for instance, the two actual PO(T) rules of c1 that have 
no feature atom in common) that is why we consider the minimal Hamming distance in our 
scoring.

As a final comment, we can observe that for a given target variable, the rules for one 
value (for instance, a0 ) in PO(T) have exactly the same body than the rules for the other 
value (for instance, a1 ) in PO(T) . This is due to the Boolean deterministic nature of the 
example tackled here, but it could not be the case in general (multi-valued or non-deter-
ministic case).

Figure 12a–c show the results of the evolution of the explanation score when learning 
a WDMVLP using GULA from approximately 1% to 80% of the transitions of a Boolean 
network. We also use 4 trivial methods as baselines, each having a perfect value predic-
tion, thus their score is only influenced by their explanation. The baselines explanations are 
trivial and take the form of a random rule, no rules, the most specific rule, the most general 
rule, i.e., ∀s ∈ firstT ��,∀vval ∈ A|T, perfect_prediction = actual(vval, s, T ��):

• baseline_random_rules(s, vval) = (perfect_prediction, vval ← body ⊆ s)
• baseline_no_rules(s, vval) = (perfect_prediction,∅)
• baseline_most_general_rules(s, vval) = (perfect_prediction, vval ← �)
• baseline_most_specific_rules(s, vval) = (perfect_prediction, vval ← s)

The random baseline is expected to score around 0.5, while the no rule baseline will 
always have a score of 0.0. The most specific rule baseline will have all conditions of each 
expected rule, but also unnecessary ones. The most general rules will miss all specific con-
ditions but avoid all unnecessary ones. Since optimal rules rarely use more than half of the 
total number of variable as conditions (at least for these Benchmarks), the most general 
rule is expected to have a better score in average compared to most specific. That’s why 
we observe random rule score around 0.4 to 0.5, most specific score around 0.1 to 0.4 and 
most general score around 0.6 to 0.8 for all semantics considered.

With synchronous semantics transitions, when given only 50% of the possible transi-
tions, GULA start to clearly outperform the baselines on the test set for all benchmarks 
size. It reaches more than 80% accuracy when given at least 25% of the transitions for 
benchmarks with 6 variables and only 10% of input transitions is enough to obtain same 
performance with 9 variables. These results show that GULA, in a deterministic context, 
effectively learns rules that are close to the optimal ones even with a partial set of observa-
tions, showing its capacity in practice to generalize to unseen data. Such results will help to 
validate, using the data, models that were previously built and designed by the sole expert 
knowledge of the biological experts. Meanwhile we cannot rely only on deterministic 
semantics, as well-known models from the literature (e.g., the switch between the lytic and 
lysogenic cycles of the lambda phage (Thieffry and Thomas, 1995), which is composed of 
four components in interaction) require non-determinism to be captured efficiently.

For the non-deterministic case of asynchronous and general semantics the performance 
of GULA are similar but more observation are needed to obtain same performances. Like 
for previous experiments, in those cases we can have missing transitions for some of the 
observed feature states, leading to false negative examples extraction in GULA. This is 
more likely to happen with asynchronous semantics, since only one transition will show 
the change of a specific variable value from a given state while the general semantics will 
have several subset of change combined in a transitions. It also makes transitions less valu-
able in quantity of information in the asynchronous case, i.e., only one variable changes 



 Machine Learning

1 3

its value, starting from the second transition from the same state, all transitions only pro-
vide one positive example for the only variable that is changing its value. Still, GULA 
starts to outperform the most general rule baseline (and all others) for the two semantics 
when given more than 50% of the possible transitions as input. This shows again that our 
method can handle a bit of noise caused by missing observations also at the explanation 
level. The performances of GULA are similar when considering more variables here, the 
gain observed in value precision compensating the additional possibility for explanation 
error introduced by new variables.

It is important to recall that the baselines used here have perfect value prediction while 
our method also need to predict proper value to have it’s explanation evaluated. As stated 
before, it is certainly easier to achieve better prediction results using statistical machine 
learning methods. Furthermore, when good prediction model can be built from training 
data, it can replace our learned model to forecast the value but could be used to improve 
the output of GULA. Indeed, one can use such models to directly generate positive/nega-
tive examples of each atom from observed and unseen states that can be given as input to 

Fig. 13  Boolean functions of the “faure_cellcycle” Boolean network (Fauré et al., 2006), in .bnet file for-
mat from PyBoolNet (Klarner et al., 2016) (top) and the equivalent DMVLP (bottom). The rules colored in 
red are missing from the final learned model of Fig. 14 (Color figure online)
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GULA in place of the raw observations. It can help to deal with noisy data and improve 
the diversity of initial state that can speed up and improve the quality of the rules of GULA 
and thus also its approximated version (Ribeiro et al., 2020). Actually, as long as feature 
and target variables are discrete (or can be properly discretized), GULA (or its approxi-
mated version for big systems) could be used to generate rules that could explain in a more 
human readable way the behavior of other less explainable models. Such a combination of 
predictive statistical model and WDMVLP learning study is out of the scope of this paper 
but will be an interesting application part of our future works. This would not only allow 
to output relevant predictions w.r.t. dynamical trajectories of biological systems but also 
help to get a precise understanding of the underlying key interactions between components. 
Such an approach can also be considered for a broader range of applications. In Ortega 
et al. (2020), the authors investigate the promises conveys to provide declarative explana-
tions in classical machine learning by neural networks in the context of automatic recruit-
ment algorithms.

7.4  Readability of the model

So far we formalized methods and proposed algorithms in order to learn models of dynam-
ical systems which predictions can be explained by human readable rules. Experiments and 
metrics of the previous sections evaluate the use of the model regarding both accuracy of 
predictions and quality of the explanation of the predictions. But one could also be inter-
ested about the explainability of the model itself: we could consider the readability of the 
program learned not only its use. In this section we do a short case study of the program 
learned by GULA on one of the benchmarks used in the previous experiments. Here we 
consider again the “faure_cellcycle” Boolean network (Fauré et al., 2006) that is composed 
of ten variables. Starting from the seminal contribution of Novak and Tyson, who proposed 
a set of ordinary differential equations (ODE) to model the mammalian cell cycle (Novák 
and Tyson, 2004, the authors of Fauré et al. (2006) synthesized the knowledge about the 
core control of mammalian cell division into a single logical model. This model, whose 
biological significance is high, appears as a good candidate to illustrate the impact of our 
contribution. As in the previous experiment, the original Boolean network is converted into 
its DMVLP equivalent as shown in Fig. 13.

A training set and test set are randomly produced from all its synchronous transitions as 
in Fig. 10. Here we take about 10% of the transitions as the training set T ′ and 20% as the 
test set T ′′ , with no common initial states in the two sets, as previously. The WDMVLP 
(PO(T

�),PO(T
�)) learned by GULA using the training set T ′ as input achieves 87.97% accu-

racy and 94.85% explanation score. Each prediction explanation of the model is at most 40 
rules: 10 Boolean variables make 20 possible atoms, and each target atom probability is 
explained by a rule of possibility and impossibility, thus multiplying by 2. The prediction 
explanation could arguably be considered readable but the program itself contains several 
thousands rules, in this example run: |PO(T

�)| = 9439 and |PO(T
�)| = 4520.

To make the program more human readable, we can use a heuristic. What is readable or 
not depends of the context; for this case study, we will consider that a total of 40 rules is 
a reasonable number for our model and that rules with more than four conditions are not 
readable (thus bounding the maximal size of clauses observed in the Boolean network). As 
we have 10 variables in the studied Boolean network, we force to have no more than four 
rules per variable to achieve at most 40 rules of activation (rule with value of 1 as head) 
that will form our final readable model. For this, the best four rules for each possible head 
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Fig. 14  The set of activation rules of the WDMVLP (PO(T
�),PO(T

�)) learned by GULA after pruning for read-
ability. The rules that appear in the original DMVLP of Fig. 13 are colored in blue (Color figure online)
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are selected according to their weight, the others are filtered out. We end up with at most 
80 rules of possibility (resp. impossibility).

Applying this heuristic on (PO(T
�),PO(T

�)) , we obtain a new WDMVLP 
WP = (WP�,WP��) , with WP� ⊆ PO(T

�) and WP�� ⊆ PO(T
�) (given in “Appendix” in 

Fig.  16). The accuracy of WP is 97.45% (+9.47% ) and explanation score is 98.37% 
(+3.52% ). In this example, the heuristic improved both scores but it could also reduce it; an 
important aspect of such a heuristic is to not lose too much prediction/explanation quality 
for readability. Furthermore, the rules of impossibility can now be ignored since they are 
only used for probabilistic predictions. Also, since we are considering only Boolean varia-
bles (and we know the system is determinist) we can also discard the rules with head atoms 
encoding the false value (typically: all atoms x0 ). We end up with the 40 activation rules of 
Fig. 14 and can compare them to the original rules of the Boolean network.

Here, 20 of the 22 original rules are in the final output, there are two missing rules 
(shown in Fig. 13) and 20 spurious rules. Most of the original program is found and the 
missing/spurious rules have a small impact as shown by the accuracy/explanation score. 
The presence of spurious rules is due to the lack of training observations, a few more nega-
tive examples could specialize them enough so that they become dominated by the original 
rules learned. For example, the three spurious rules of Cdc201

t
 will end up needing CycB1

t−1
 

as condition to remain consistent (since it is the only way to have Cdc201
t
 in the original 

program) with the observation and will be dominated by Cdc201
t
← CycB1

t−1
 and discarded. 

Discarding those spurious rules without the needed observation is not trivial, we could use 
a minimal weight of 10 for example to discard most of them but we would lose some origi-
nal rules like the one of p271

t
 . The weight of the rules, which is already used as a degree 

of confidence for the prediction of the dynamics, could also be used on the static model as 
a degree of confidence of the correctness of the rules. More complex analysis of the rule 
conditions and its relation with other rules could produce a better pruning, for example we 
could detect rules that will never be used for prediction, i.e., when another rule with bet-
ter weight can always be applied. Developing such heuristics to ensure readability (in the 
sense simplicity) of the model itself would be interesting and the subject of future works.

8  Related work

8.1  Modeling dynamics

In modeling of dynamical systems, the notion of concurrency is crucial. Historically, two 
main dynamical semantics have been used in the field of systems biology: synchronous 
[Boolean networks of Stuart Kauffman (1969)] and asynchronous [René Thomas’ networks 
(1991)], although other semantics are sometimes proposed or used (Fages, 2020).

The choice of a given semantics has a major impact on the dynamical features of a 
model: attractors, trap domains, bifurcations, oscillators, etc. The links between modeling 
frameworks and their update semantics constitute the scope of an increasing number of 
papers. In Inoue (2011), the author exhibited the translation from Boolean networks into 
logic programs and discussed the point attractors in both synchronous and asynchronous 
semantics. In Noual and Sené (2018), the authors studied the synchronism-sensitivity of 
Boolean automata networks with regard to their dynamical behavior (more specifically 
their asymptotic dynamics). They demonstrate how synchronism impacts the asymptotic 
behavior by either modifying transient behaviors, making attractors grow or destroying 
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complex attractors. Meanwhile, the respective merits of existing synchronous, asynchro-
nous and generalized semantics for the study of dynamic behaviors has been discussed 
by Chatain and Paulevé in a series of recent papers. In Chatain et al. (2015), they intro-
duced a new semantics for Petri nets with read arcs, called the interval semantics. Then 
they adapted this semantics in the context of Boolean networks (Chatain et al., 2018), and 
showed in Chatain et al. (2020) how the interval semantics can capture additional behav-
iors with regard to the already existing semantics. Their most recent work demonstrates 
how the most common synchronous and asynchronous semantics in Boolean networks 
have three major drawbacks that are to be costly for any analysis, to miss some behaviors 
and to predict spurious behaviors. To overcome these limits, they introduce a new para-
digm, called Most Permissive Boolean Network which offers the guarantee that no realiz-
able behavior by a qualitative model will be missed (Paulevé et al., 2020).

The choice of a relevant semantics appears clearly not only in the recent theoretical 
works bridging the different frameworks, but also in the features of the software provided 
to the persons involved in Systems Biology modeling [e.g., the GinSIM tool offers two 
updating modes, that are fully synchronous and fully asynchronous (Naldi et  al. 2018)]. 
Analysis tools offer the modelers the choice of the most appropriate semantics with regard 
to their own problem.

8.2  Learning dynamics

In this paper, we proposed new algorithms to learn the dynamics of a system independently 
of its update semantics, and apply it to learn Boolean networks from the observation of 
their states transitions. Learning the dynamics of Boolean networks has been considered 
in bioinformatics in several works (Liang et al., 1998; Akutsu et al., 2003; Pal et al., 2005; 
Lähdesmäki et al. 2003; Fages 2020). In biological systems, the notion of concurrency is 
central. When modeling a biological regulatory network, it is necessary to represent the 
respective evolution of each component of the system. One of the most debated issues with 
regard to semantics targets the choice of a proper update mode of every component, that 
is, synchronous [Boolean networks of Stuart Kauffman (1969)], or asynchronous [René 
Thomas’ networks (1991)], or more complex ones. The differences and common features 
of different semantics w.r.t. properties of interest (attractors, oscillators, etc.) have thus 
resulted in an area of research per itself, especially in the field of Boolean networks (Noual 
& Sené, 2018; Chatain et al. 2018, 2020).

In Fages (2020), Fages discussed the differential semantics, stochastic semantics, 
Boolean semantics, hybrid (discrete and continuous) semantics, Petri net semantics, logic 
programming semantics and some learning techniques. Rather than focusing on particular 
semantics, our learning methods are complete algorithms that learn transition rules for any 
memory-less discrete dynamical systems independently of the update semantics.

As in Pal et al. (2005), we can also deal with partial transitions, but will not need to 
identify or enumerate all possible complete transitions. Pasula et al. (2007) learns a model 
as a probability distribution for the next state given the previous state and an action. Here, 
exactly one dynamic rule fires every time-step, which corresponds to the asynchronous 
semantics of Definition 16.

In Schüller and Benz (2018), action rules are learned using inductive logic program-
ming but require as input background knowledge. In Bain and Srinivasan (2018), the 
authors use logic program as a meta-interpreter to explain the behaviour of a system as 
stepwise transitions in Petri nets. They produce new possible traces of execution, while our 
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output is an interaction model of the system that aims to explain the observed behavior. In 
practice, our learned programs can also be used to predict unobserved behavior using some 
heuristics as shown in the experiments of Sect. 7.

Klarner et al. (2014) provide an optimization-based method for computing model reduc-
tion by exploiting the prime implicant graph of the Boolean network. This graph is simi-
lar to the rules of PO(T) that can be learned by GULA. But while Klarner et al. (2014) 
requires an existing model to work, we are able to learn this model from observations.

Lähdesmäki et al. (2003) propose algorithms to infer the truth table of Boolean func-
tions of gene regulatory network from gene expression data.

Each positive (resp. negative) example represents a variable configuration that makes a 
Boolean function true (resp. false).

The logic programs learned by GULA are a generalization of those truth tables.

8.3  Inductive logic programming

From the inductive logic programming point of view, GULA performs a general to spe-
cific search, also called top-down approach. Algorithmically, GULA shares similarities 
with Progol (Muggleton, 1995, 1996) or Aleph (Srinivasan, 2001), two state-of-the-art ILP 
top-down approaches. Progol combines inverse entailment with general-to-specific search 
through a refinement graph. GULA is limited to propositional logic while those two meth-
ods handle first order predicates. Learning the equivalent of DMVLP rules should be pos-
sible using Progol or Aleph assuming some proper encoding. But both methods would only 
learn enough rules to explain the positive examples, whereas GULA outputs all optimal 
rules that can explain these examples. The completeness of the output program is criti-
cal when learning constraint of a CDMVLP to guarantee the exact reproduction of the 
observed transitions. Thus, nor Progol or Aleph can replace GULA in the Synchronizer 
algorithm to learn the optimal CDMVLP . But the completeness of the search of GULA 
comes with a higher complexity cost w.r.t. Progol and Aleph. The search of Progol and 
Aleph is guided by positives examples. Indeed, given a positive example, Progol performs 
an admissible A*-like search, guided by compression, over clauses which subsume the 
most specific clause (corresponding to the example). The search of GULA is guided by 
negative examples. It can also be seen as an A*-like search but for all minimal clauses that 
subsume none of the most specific clauses corresponding to the negative examples.

Evans et al. (2019, 2020) propose the Apperception Engine, a system able to learn pro-
grams from a sequence of state transitions. The first difference is that our approach is lim-
ited to propositional atoms while first order logic is considered in this approach. Further-
more, the Aperception Engine can predict the future, retrodict the past, and impute missing 
intermediate values, while we only consider rules to explain what can happen in a next 
state. But our input can represent transitions from multiple trajectories, while they consider 
a single trajectory and thus our setting can be considered as a generalized apperception task 
in the propositional case. Another major difference is that they only consider deterministic 
inputs while we also capture non-deterministic behaviors. Given the same kind of single 
trajectory and a DMVLP (or CDMVLP ), it should be possible to produce candidates past 
states or to try to fill in missing values. But in practice that would suppose to have many 
other transitions to build such DMVLP using GULA while the Aperception Engine can 
perform the task with only the given single trajectory. This system can also produce a set 
of constraints as well as rules. The constraints perform double duty: on the one hand, they 
restrict the sets of atoms that can be true at same time; on the other hand, they ensure what 
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they call the frame axiom: each atom remains true at the next time-step unless it is overrid-
den by a new fact which is incompatible with it. The constraints of CDMVLP can prevent 
some combinations of atoms to appear, but only in next states, while in Evans et al. (2019, 
2020), constraints can prevent some states to exist anywhere in the sequence, and ensure 
the conservation of atoms. From Theorem 7, the conservation can also be reproduced by 
CDMVLP by the right combination of optimal rules and constraints.

In Law et al. (2016) the authors propose a general framework named ILASP for learning 
answer set programs. ILASP is able to learn choice rules, constraints and preferences over 
answer sets. Our problem settings is related to what is called “context-dependant” tasks in 
ILASP. Our input can be straightforwardly represented using ILASP when variables are 
Boolean, but the learned program does not respect our notion of optimality, and thus our 
learning goals differ, i.e., we guarantee to miss no potential dynamical influence. Indeed, 
ILASP minimizes a program as a whole, i.e., the sum of the length of all rules and con-
straints; in contrast, we aim to minimize each rule and constraint individually and expect to 
find as many of them in practice and all of them in theory to ensure good properties regard-
ing dynamical semantics.

Katzouris et al. (2015) proposes an incremental method to learn and revise event-based 
knowledge in the form of Event Calculus programs using XHAIL (Ray, 2009), a system 
that jointly abduce ground atoms and induce first-order normal logic programs. XHAIL 
needs to be provided with a set of mode declarations to limit the search space of possible 
induced rules, while our method do not require background knowledge. Still it is possible 
to exploit background knowledge with GULA: for example one could add heuristic inside 
the algorithm to discard rules with “too many” conditions; influences among variables, if 
known, could also be exploited to reduce possible bodies. Finally, XHAIL does not model 
constraints, thus is not able to prevent some combinations of atoms to appear in transitions, 
which can be achieve using our Synchronizer.

General research about evaluation of explainability in AI systems has been led into 
two major directions (Islam et  al., 2020). One of them is about the evaluation of model 
complexity, while the second one focuses on human evaluation of explainability based on 
experimental studies involving a set of humans. Especially in the ILP litterature, Muggle-
ton et al. (2018) the authors study the comprehensibility of logic programs and provide a 
definition of comprehensibility of hypotheses which can be estimated using human partici-
pant trials. In this work they evaluate the readability of entire programs while our explain-
ability metric only considers the quality of the rules used for a prediction in a learned 
model. Furthermore, our metric evaluates a learned model against an ideal model that we 
consider readable at least by the experts that build it by hand, i.e., the biologists who build 
the Boolean network. Thus our metric cannot be used on a program alone contrary to the 
study of Muggleton et al. (2018) but requires the knowledge of the original program. The 
goal of our proposed explanation metric is to assess how the dynamics of a learned pro-
gram approaches an expected one, not to provide a readability measure. This is done by 
considering both the choice taken (the value predicted) and the way the choice is made (the 
rules used).
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9  Conclusions

While modeling a dynamical system, the choice of a proper semantics is critical for the 
relevance of the subsequent analysis of the dynamics. The works presented in this paper 
aim to widen the possibilities offered to a system designer in the learning phase. Until now, 
the systems that the LFIT framework handles were restricted to synchronous deterministic 
dynamics. However, many other dynamics exist in the field of logical modeling, in particu-
lar the asynchronous and generalized semantics which are of deep interest to model biolog-
ical systems. In this paper, we proposed a modeling of memory-less multi-valued dynamic 
systems in the form of annotated logic programs and a first algorithm, GULA, that learns 
optimal programs for a wide range of semantics (see Theorem  1) including notably the 
asynchronous and generalized semantics. But the semantics need to be assumed to use the 
learned model, in order to produce predictions for example. Our second proposition is a 
new approach that makes a decisive step in the full automation of logical learning of mod-
els directly from time series, e.g., gene expression measurements along time (whose intrin-
sic semantics is unknown or even changeable). The Synchronizer algorithm that we pro-
posed is able to learn a whole system dynamics, including its semantics, in the form of a 
single propositional logic program. This logic program explains the behavior of the system 
in the form of human readable propositional logic rules, as well as, be able to reproduce the 
behavior of the observed system without the need of knowing its semantics. Furthermore, 
the semantics can be explained, without any previous assumption, in the form of human 
readable rules inside the logic program.

This provides a precious output when dealing with real-life data coming from, e.g., biol-
ogy. Typically, time series data capturing protein (i.e., gene) expressions come without any 
assumption on the most appropriate semantics to capture the relevant dynamical behaviors 
of the system. The methods introduced in this paper generate a readable view of the rela-
tionships between the different biological components at stake. GULA can be used when 
biological collaborators provide partial observations (as shown by our experiments), for 
example when addressing gene regulatory networks. Meanwhile the Synchronizer algo-
rithm is of interest for systems with the full set of observations, e.g., when refining a model 
that was manually built by experts.

We took care to show the benefits of our approach on several benchmarks. While sys-
tems with ten components are able to capture the behavior of complex biological systems, 
we exhibit that our implementation is scalable to systems up to 10 components on a com-
puter as simple as a single-core computer with a 1000 seconds time-out. Further work will 
consist in a practical use of our method on open problems coming from systems biology.

An approximate version of the method is a necessity to tackle large systems and is under 
development (Ribeiro et  al., 2020). In addition, lack of observations and noise handling 
is also an issue when working with biological data. Data science methodologies and deep 
learning techniques can then be good candidates to tackle this challenge.

The combination of such techniques to improve our method may be of prime interest to 
tackle real data.

Appendix 1: Proofs of Sect. 2

Lemma 1 (Double Domination Is Equality) Let R1,R2 be two MVL rules. If R2 ≥ R1 and 
R1 ≥ R2 then R1 = R2.
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Proof Let R1,R2 be two MVL rules such that R2 ≥ R1 and R1 ≥ R2 . Then 
head(R1) = head(R2) and body(R1) ⊆ body(R2) and body(R2) ⊆ body(R1) , hence 
body(R1) ⊆ body(R2) ⊆ body(R1) thus body(R1) = body(R2) and R1 = R2 .   ◻

Proposition 1 (Uniqueness of Optimal Program) Let T ⊆ S
F × S

T  . The MVLP optimal 
for T is unique and denoted PO(T).

Proof Let T ⊆ S
F × S

T  . Assume the existence of two distinct MVLP s optimal for T, 
denoted by PO1

(T) and PO2
(T) respectively. Then w.l.o.g. we consider that there exists a 

MVL rule R such that R ∈ PO1
(T) and R ∉ PO2

(T) . By the definition of a suitable pro-
gram, R is not conflicting with T and there exists a MVL rule R2 ∈ PO2

(T) , such that 
R2 ≥ R . Using the same definition, there exists R1 ∈ PO1

(T) such that R1 ≥ R2 since R2 is 
not conflicting with T. Thus R1 ≥ R and by the definition of an optimal program R ≥ R1 . 
By Lemma 1, R1 = R , thus R2 ≥ R and R ≥ R2 hence R2 = R , a contradiction.   ◻

Appendix 2: Proofs of Sect. 3

Theorem 1 (Characterisation of Pseudo-idempotent Semantics of Interest) Let DS be a 
dynamical semantics.

If, for all P a DMVLP , there exists 𝗉𝗂𝖼𝗄 ∈ (SF ×℘(A|T) → ℘(ST) ⧵ {�}) so that:

(1) ∀D ⊆ A�T, ����(s, ⋃
s�∈����(s,D)

s�) = ����(s,D) , and

(2) ∀s ∈ S
F,
(
DS(P)

)
(s) = ����(s,�����������(s,P)),

then DS is pseudo-idempotent.
Proof Let DS be a dynamical semantics, P a DMVLP , ���� a function from SF ×℘(AT) 
to ℘(ST) ⧵ {�} with the properties described in (1) and (2).

In this proof, we use the following equivalent notations, for all (s, s�) ∈ S
F × S

T  : 
(s, s�) ∈ DS(P) ⟺ s� ∈

(
DS(P)

)
(s).

By Definition 10, f irst(DS(P)) = S
F  ( ∗).

By Definition 9, PO(DS(P)) realizes DS(P). Therefore, according to Definition 5, for all 
(s, s�) in DS(P) and vval in s′ , because v ∈ T  , there exists R in PO(DS(P)) so that 
var(head(R)) = v ∧ R ⊓ s ∧ head(R) ∈ s� . Because of Definition 3, a discrete state cannot 
contain two different atoms on the same variable: from 
var(head(R)) = v ∧ vval ∈ s� ∧ head(R) ∈ s� , it comes: head(R) = vval . Moreover, by defini-
tion of ����������� , because R ∈ P ∧ R ⊓ s , we have: vval ∈ �����������(s,PO(DS(P))) . By 
generalizing on all vval , it comes: s� ⊆ �����������(s,PO(DS(P))) . By generalizing on all s′ , 
it comes: ∀s ∈ S

F,
⋃

s�∈(DS(P))(s)

s� ⊆ �����������(s,PO(DS(P))) ( †).

By Definition 9, PO(DS(P)) is also consistent with DS(P). Therefore, according to Defi-
nition 7: ∀R ∈ PO(DS(P)),∀s ∈ first(DS(P)),R ⊓ s ⟹ ∃s� ∈

(
DS(P)

)
(s), head(R) ∈ s� . 

From ( ∗ ), f irst(DS(P)) = S
F  , thus 

∀s ∈ S
F,∀vval ∈ �����������(s,PO(DS(P))),∃s

� ∈ DS(P)(s), vval ∈ s� . Thus: 
∀s ∈ S

F,�����������(s,PO(DS(P))) ⊆
⋃

s�∈(DS(P))(s)

s� (§).

From ( † ) and (§): ∀s ∈ S
F,�����������(s,PO(DS(P))) =

⋃
s�∈(DS(P))(s)

s� ( ⋆).

From ( ⋆ ) and (2): ∀s ∈ S
F,�����������(s,PO(DS(P))) =

⋃
s�∈����(s,�����������(s,P))

s� ( ◊).
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Let s in SF .

• From (2): 
(
DS(PO(DS(P)))

)
(s) = ����(s,�����������(s,PO(DS(P)))).

• From ( ◊ ): 
�
DS(PO(DS(P)))

�
(s) = ����(s,

⋃
s�∈����(s,�����������(s,P))

s�)

• From (1): 
(
DS(PO(DS(P)))

)
(s) = ����(s,�����������(s,P))

• From (2): 
(
DS(PO(DS(P)))

)
(s) =

(
DS(P)

)
(s).

Thus: ∀s ∈ S
F,
(
DS(PO(DS(P)))

)
(s) =

(
DS(P)

)
(s) , QED.   ◻

Theorem 2 (Semantics-Free Correctness) Let P be a DMVLP.

• Tsyn(P) = Tsyn(PO(Tsyn(P))),
• Tasyn(P) = Tasyn(PO(Tasyn(P))),
• Tgen(P) = Tgen(PO(Tgen(P))).

Proof Let d ∈ (SF ×℘(T) → ℘(AT)) , so that ∀s ∈ S
F
,∀W ⊆ T,

W ⊆ var(d(s,W)) ∧ d(s, �) ⊆ d(s,W).
Let p be a function from S

F ×℘(AT) to ℘(ST) ⧵ {�} so that 
∀s ∈ S

F,∀D ⊆ AT, p(s,D) = {s� ∈ S
T ∣ s� ⊆ D ∪ d(s, T ⧵ var(D))}  . 

Since T ⧵ var(D) ⊆ var(d(s,W)), � ∉ p(s,D) . Thus from Definition 15, 
∀s ∈ S

F, Tsyn(P)(s) = p(s,�����������(s,P)) (property 1).
Since ∀W ⊆ T, d(s, �) ⊆ d(s,W) , ∀D ⊆ AT, d(s, �) ⊆ D ∪ d(s, T ⧵ var(D)) , thus 

d(s, �) ⊆
⋃

s�∈p(s,D)

s� (property 2).

Moreover, ∀D ⊆ AT  , let D� ∶=
⋃

s�∈p(s,D)

s� . Straightforwardly: D� = D ∪ d(s, T ⧵ var(D)) 

because we can always create a state with any atom in D ∪ d(s, T ⧵ var(D)) , thus all atoms 
of this set are in D′ , and conversely (property 3). 
p(s,D�) = {s� ∈ S

T ∣ s� ⊆ D� ∪ d(s, T ⧵ var(D�))} by definition of p. 
p(s,D�) = {s� ∈ S

T ∣ s� ⊆ D� ∪ d(s, �)} since var(D�) = T  by definition of D′ and p. 
p(s,D�) = {s� ∈ S

T ∣ s� ⊆ D�} from property 2. 
p(s,D�) = {s� ∈ S

T ∣ s� ∈ D ∪ d(s, T ⧵ var(D))} = p(s,D) from property 3. Therefore p 
respects (1). Since Tsyn(P) = p(s,�����������(s,P)) , p also respects (2). Thus, 
Tsyn(P) = Tsyn(PO(Tsyn(P))) according to Theorem 1.

By definition of Tgen : 
∀s ∈ S

F, (Tgen(P))(s) = {s� ∈ S
T ∣ s� ⊆ �����������(s,P) ∪ d(s,T ⧵ var(�����������(s,P)))} 

with 𝗌𝗉
F→T

(s) ⊆ d(s, �) . Thus, the same proof gives Tgen(P) = Tgen(PO(Tgen(P))) according 
to Theorem 1.

Tasyn(P) = Tasyn(PO(Tasyn(P))) Let p be a function from SF ×℘(AT) to ℘(ST) ⧵ {�} so 
that ∀s ∈ S

F,∀D ⊆ AT :

where AT  and D
T

 are restriction notations from Definition 12. From Definition 16, we 
have: TasynP = p(s,�����������(s,P)).

∀D ⊆ AT, p(s,
⋃

s�∈p(s,D)

s�) = p(s,D) Let D in AT .

p(s,D) = {s� ∈ S
T ∣ s� ⊆ D ∪ d(s, T ⧵ var(D)) ∧

(|s� ⧵ 𝗌𝗉
F→T

(s)| − |T ⧵ T| = 1 ∨ (D ∪ d(s, T ⧵ var(D)))
T
= 𝗌𝗉

F→T
(s))}
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• If (D ∪ d(s, T ⧵ var(D)))
T
= 𝗌𝗉

F→T
(s) , then 

⋃
s�∈p(s,D)

s� = D and thus 

p(s,
⋃

s�∈p(s,D)

s�) = p(s,D).

• If there exists vval ∈ A
T

 so that var(D ∪ d(s, T ⧵ var(D)) ⧵ 𝗌𝗉
F→T

(s)) ∩ T = {v} , then 
for all state s� ∈ p(s,D) , s′ differs from s on the regular variable v and on variables in 
T ⧵ T  . Thus, 

⋃
s�∈p(s,D)

s� = (D ∪ d(s, T ⧵ var(D))) ⧵ {vval
�

∣ vval
�

∈ s} . By construction of 

p, it comes: p(s,
⋃

s�∈p(s,D)

s�) = p(s,D) because vval� ∈ s� would contradict the condition 

|s� ⧵ 𝗌𝗉
F→T

(s)| − |T ⧵ T| = 1.
• Otherwise, |var(D ∪ d(s, T ⧵ var(D)) ⧵ 𝗌𝗉

F→T
(s)) ∩ T| > 1 then there exists two states 

s�
1
, s�

2
∈ p(s,D) , so that they differ from s on a different regular variable each. Espe-

cially, by construction of p, 𝗌𝗉
F→T

(s) ⊆ s�
1
∪ s�

2
⊆ D ∪ d(s, T ⧵ var(D)) . Therefore, ⋃

s�∈p(s,D)

s� ⊆ D ∪ d(s, T ⧵ var(D)) . Finally, and by definition of p, 

D ∪ d(s, T ⧵ var(D)) ⊆
⋃

s�∈p(s,D)

s� because for each atom in D ∪ d(s, T ⧵ var(D)) , it is pos-

sible to build a state s′ containing it: either as the projection of the initial state s or as 
the only variable changing its value in s′ compared to 𝗌𝗉

F→T
(s) . In conclusion: 

D ∪ d(s, T ⧵ var(D)) =
⋃

s�∈p(s,D)

s� , which gives: p(s,
⋃

s�∈p(s,D)

s�) = p(s,D).

Thus, Tasyn(P) = Tasyn(PO(Tasyn(P))) , according to Theorem 1.   ◻

Appendix 3: Proofs of Sect. 4

Theorem  3 (Properties of Least Revision) Let R be a MVL rule and s ∈ S
F  such that 

R ⊓ s . Let SR ∶= {s� ∈ S
F ∣ R ⊓ s�} and Sspe ∶= {s� ∈ S

F ∣ ∃R� ∈ Lspe(R, s,A,F),R� ⊓ s�}.

Let P be a DMVLP and T , T � ⊆ S
F × S

T  such that 
|f irst(T)| = 1 ∧ f irst(T) ∩ f irst(T �) = � . The following results hold:

1. Sspe = SR ⧵ {s},
2. Lrev(P, T ,A,F) is consistent with T,
3. 

P

↪T �
⟹

Lrev(P,T ,A,F)

↪ T �,
4. 

P

↪T ⟹

Lrev(P,T ,A,F)

↪ T ,
5. P is complete ⟹ Lrev(P,T ,A,F) is complete.

Proof 

1. First, let us suppose that ∃s�� ∉ SR ⧵ {s} such that ∃R� ∈ Lspe(R, s,A,F),R� ⊓ s�� . 
By definition of matching R� ⊓ s�� ⟹ body(R�) ⊆ s�� . By definition of least spe-
cialization, body(R�) = body(R) ∪ {vval}, vval

�

∈ s, vval ∉ body(R), val ≠ val� .  Let 
us suppose that s�� = s , then body(R�) ⊈ s�� since vval ∈ body(R�) and vval ∉ s , this 
is a contradiction. Let us suppose that s′′ ≠ s then ¬(R ⊓ s��) , thus body(R) ⊈ s�� and 
body(R�) ⊈ s�� , this is a contradiction. Second, let us assume that ∃s�� ∈ SR ⧵ {s} 
such that ∀R� ∈ Lspe(R, s,A,F),¬(R� ⊓ s��) . By definition of SR , R ⊓ s′′ . By defi-
nition of matching ¬(R� ⊓ s��) ⟹ body(R�) ⊈ s�� . By definition of least spe-
cialization, body(R�) = body(R) ∪ {vval}, vval

�

∈ s, val ≠ val� . By definition of 
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m a t c h i n g  R ⊓ s�� ⟹ body(R) ⊆ s�� ⟹ s�� = body(R) ∪ I, body(R) ∩ I = � 
and  t hus  body(R�) ⊈ s�� ⟹ vval ∉ I  .  The  assumpt ion  impl ies  t ha t 
∀vval

�

∈ I,∀R� ∈ Lspe(R, s,A,F), vval ∈ body(R�), val ≠ val� . By definition of least spe-
cialization, it implies that vval� ∈ s and thus I = s ⧵ body(R) making s�� = s , which is a 
contradiction. Conclusion: Sspe = SR ⧵ {s}

2. By definition of a consistent program, if two sets of MVL rules SR1, SR2 are consistent 
w i t h  T  t h e n  SR1 ∪ SR2  i s  c o n s i s t e n t  w i t h  T .  L e t 
RP = {R ∈ P ∣ R ⊓ s,∀(s, s�) ∈ T , head(R) ∉ s�} be the set of rules of P that conflict with 
T. By definition of least revision Lrev(P,T ,A,F) = (P ⧵ RP) ∪

⋃
R∈RP

Lspe(R, s,A,F) . The 

first part of the expression P ⧵ RP is consistent with T since ∄R� ∈ P ⧵ RP such that R′ 
conflicts with T. The second part of the expression 

⋃
R∈RP

Lspe(R, s,A,F) is also consistent 

with T: ∄R� ∈ Lspe(R, s,A,F),R� ⊓ s thus ∄R� ∈ Lspe(R, s,A,F) that conflict with T and ⋃
R∈RP

Lspe(R, s,A,F) is consistent with T. Conclusion: Lrev(P, T ,A,F) is consistent with 

T.
3. L e t  (s1, s2) ∈ T �  t h u s  s1 ≠ s  .  F r o m  d e f i n i t i o n  o f  r e a l i z a t i o n , 

vval ∈ s2 ⟹ ∃R ∈ P, head(R) = vval,R ⊓ s1 . If ¬R ⊓ s then R ∈ Lrev(P, T ,A,F) and 
Lrev(P,T ,A,F)

↪ (s1, s2) . If R ⊓ s , from the first point ∃R� ∈ Lspe(R, s,A,F),R� ⊓ s1 and since 
head(R�) = head(R) = vval,

Lrev(P,T ,A,F)

↪ (s1, s2) . Applying this reasoning on all elements 
of T ′ implies that 

P

↪T �
⟹

Lrev(P,T ,A,F)

↪ T �.
4. L e t  (s1, s2) ∈ T  ,  s i n c e  P

↪T  b y  d e f i n i t i o n  o f  r e a l i z a t i o n 
∀vval ∈ s2,∃R ∈ P,R ⊓ s1, head(R) = vval . By definition of conflict, R is not in conflict 
with T thus R ∈ Lrev(P, T ,A,F) and Lrev(P,T ,A,F)

↪ T .
5. Let (s1, s2) ∈ S

F × S
T  , if P is complete, then by definition of a complete program 

∀v ∈ V,∃R ∈ P,R ⊓ s1, var(head(R)) = v . If ¬(R ⊓ s) then R ∈ Lrev(P, T ,A,F) . If R ⊓ s , 
from the first point ∃R� ∈ Lspe(R, s,A,F),R� ⊓ s1 and thus R� ∈ Lrev(P,T ,A,F) and since 
var(head(R�)) = var(head(R)) = v , Lrev(P, T ,A,F) is complete.

  ◻

Proposition 2 (Optimal Program of Empty Set) PO(�) = {vval ← � ∣ vval ∈ AT}.

Proof Let P = {vval ← � ∣ vval ∈ AT} . The MVLP P is consistent and complete by con-
struction. Like all MVLP s, 

P

↪ ∅ and there is no transition in ∅ to match with the rules in P. 
In addition, by construction, the rules of P dominate all MVL rules.   ◻

Proposition 3 (From Suitable to Optimal) Let T ⊆ S
F × S

T  . If P is a DMVLP suitable 
for T, then PO(T) = {R ∈ P ∣ ∀R� ∈ P,R� ≥ R ⟹ R ≥ R�}.

Proof Since any possible MVL rule consistent with T is dominated, all the rules of the 
optimal program are dominated. Since the only rules dominating a rule of the optimal 
program is the rule itself, the optimal program is a subset of any suitable program. If we 
remove the dominated rules, only remains the optimal program.   ◻

Theorem  4 (Least Revision and Suitability) Let s ∈ S
F  and T , T � ⊆ S

F × S
T  such that 

|f irst(T �)| = 1 ∧ f irst(T) ∩ f irst(T �) = � . Lrev(PO(T),T
�,A,F) is a DMVLP suitable for 

T ∪ T �.
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Proof Let P = Lrev(PO(T), T
�) . Since PO(T) is consistent with T, by Theorem 3, P is also 

consistent with T and thus consistent with T � ∪ T  . Since PO(T) realizes T by Theorem 3, 
P

↪T  . Since s ∉ first(T) , a MVL rule R such that body(R) = s does not conflict with T. By 
definition of suitable program ∃R� ∈ PO(T),R

� ≥ R , thus PO(T)
↪ T � . Since PO(T)

↪ T � by Theo-
rem 3 P

↪T ′ and thus 
P

↪T ∪ T � . Since PO(T) is complete, by Theorem 3, P is also complete. 
To prove that P verifies the last point of the definition of a suitable MVLP , let R be a 
MVL rule not conflicting with T ∪ T � . Since R is also not conflicting with T, there exists 
R� ∈ PO(T) such that R′ ≥ R . If R′ is not conflicting with T ′ , then R′ will not be revised and 
R� ∈ P , thus R is dominated by a rule of P. Otherwise, R′ is in conflict with T ′ , thus R′ ⊓ s 
and ∀(s, s�) ∈ T �, head(R�) ∉ s� . Since R is not in conflict with T ′ and head(R) = head(R�) , 
since R′ ≥ R then body(R) = body(R�) ∪ I,∃vval ∈ I, vval ∉ s . By definition of least revi-
sion and least specialization, there is a rule R�� ∈ Lspe(R

�, s) such that vval ∈ body(R��) and 
since R�� = head(R�) ← body(R�) ∪ vval thus R′′ ≥ R . Thus R is dominated by a rule of P.  
 ◻

Theorem 5 (GULA Termination, Soundness, Completeness, Optimality) Let T ⊆ S
F × S

T  . 

(1) Any call to GULA on finite sets terminates,
(2) GULA(A, T ,F, T) = PO(T),
(3) ∀A� ⊆ A|T,����(AF ∪A

�, T ,F, T) = {R ∈ PO(T) ∣ head(R) ∈ A
�}.

Proof In this proof we refer to the detailed pseudo-code of GULA given in “Appendix” in 
Algorithm 5 and Algorithm 6.

(1) The algorithm of GULA iterates on finite sets, and thus terminates.
(3) Let T ⊆ S

F × S
T  . The algorithm iterates over each atom vval ∈ A

� , 
A

′ ⊆ AT  iteratively to extract all states s such that (s, s�) ∈ T ⟹ vval ∉ s� . 
This is equivalent to group the transitions by initial state: generate the set 
TT = {T �

s
⊆ T ∣ s ∈ S

F, f irst(T �
s
) = {s} ∧ ∀s� ∈ S

T, (s, s�) ∈ T ⟹ (s, s�) ∈ T �
s
}.

To prove that ∀A� ⊆ AT,����(AF ∪A
�, T ,F, T) = {R ∈ PO(T) ∣ head(R) ∈ A

�} and 
thus GULA(A, T ,F, T) = PO(T) , it suffices to prove that the main loop (Algorithm 5, lines 
23-50) preserves the invariant Pval

v
= {R ∈ PO(Ti) ∣ head(R) = vval ∈ A

�} after the ith itera-
tion where Ti is the union of all set of transitions of TT already selected line 23 after the ith 
iteration for all i from 0 to |TT|.

Line 22 initializes Pvval to {vval ← �} . Thus by Proposition 2, after line 22, 
Pvval = {R ∈ PO(�) ∣ head(R) = vval}.

Let us assume that before the (i + 1)th iteration of the main loop, 
Pvval = {R ∈ PO(Ti) ∣ head(R) = vval} . Through the loop of lines 25-28, 
P� = {R ∈ PO(Ti) ∣ R does not conflict with Ti+1 ∧ head(R) = vval} is computed. 
Then the set P�� =

⋃
R∈PO(Ti)�P

�∧head(R)=vval Lspe(R, s,A,F) is iteratively build through 
the calls to least_specialization (Algorithm  6) at line 31 and the dominated rules 
are pruned as they are detected by the loop of lines 32-49. Each revised rule can 
be dominated by a rule in {R ∈ PO(Ti)�P

�} or another revised rule and thus domi-
nance must be checked from both. But only a revised rule ( R ∈ P�� ) can be domi-
nated by a revised rule: if a rule in {R ∈ PO(Ti)�P

�} is dominated by a revised rule, 
then it was dominated by its original rule in {R ∈ PO(Ti)} which is impossible since 
Pvval = {R ∈ PO(Ti) ∣ head(R) = vval} . Thus it is safe to only check domination of 
the revised rules by previous rules ( PO(Ti) ⧵ P

� ) or by other revised rules ( P′′ ). Thus 
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by Theorem  4 and Proposition 3, Pvval = {R ∈ PO(Ti+1) ∣ head(R) = vval} after the 
(i + 1)th iteration of the main loop. By induction, at the end of all the loop lines 23-50, 
Pvval = {R ∈ PO(

⋃
T �∈TT T

�) ∣ head(R) = vval} = {R ∈ PO(T) ∣ head(R) = vval} since 
it has iterated on all elements of TT. Since the same operation holds for each vval ∈ A

� , 
P =

⋃
vval∈A� Pvval = {R ∈ PO(T) ∣ head(R) = vval ∧ vval ∈ A

�} after all iterations of the loop 
of line 6. Finally: ∀A� ⊆ AT,����(AF ∪A

�, T ,F, T) = {R ∈ PO(T) ∣ head(R) ∈ A
�}.

(2) Thus 
����(A,T ,F, T) = ����(AF ∪AT, T ,F, T) = {R ∈ PO(T) ∣ head(R) ∈ AT} = PO(T) .  
 ◻

Theorem  6 (GULA Complexity) Let T ⊆ S
F × S

T  be a set of transitions, Let 
n ∶= max(|F|, |T|) and d ∶= max({|���(v)|) ∈ ℕ ∣ v ∈ F ∪ T} . The worst-case time com-
plexity of GULA when learning from T belongs to O(|T|2 + |T| × (2n4d2n+2 + 2n3dn+1)) 
and its worst-case memory use belongs to O(d2n + 2ndn+1 + ndn+2).

Proof Let df ∶= max({|���(v)| ∈ ℕ ∣ v ∈ F}) (resp. dt ∶= max({|���(v)| ∈ ℕ ∣ v ∈ T}) ) 
be the maximal number of values of features (resp. target) variables.

The algorithm takes as input a set of transition T ⊆ S
F × S

T  bounding the memory use 
to O(d|F|

f
) × d

|T|
t ) = O(d2n) . The learning is performed iteratively for each possible rule 

head vval ∈ A
� ⊆ AT .

The extraction of negative example requires to compare each transition of T one to one 
and thus has a complexity of op1 = O(|T|2) . Those transitions are stored in Negvval which 
size is at most |SF| extending the memory use to O(d|F|

f
× d

|T|
t + d

|F|
f

) which is bounded by 
O(d2n + dn).

The learning phase revises a set of rule Pvval where each rule has the same head 
vval . There are at most d|F|

f
≤ dn possible rule bodies and thus |Pvval | ≤ d

|F|
t ≤ dn , 

the memory use of |Pvval | is then O(d|F|t ) extending the memory bound to 
O(d|F|

f
× d

|T|
t + d

|F|
f

) + d
|F|
f

) = O(d|F|
f

× d
|T|
t + 2d

|F|
f

)) , which is bound by O(d2n + 2dn).
For each state s of Negvval , each rule of Pvval that matches s are extracted into a set of 

rules Rm . This operation has a complexity of op2 = O(d|F|
f

× |F|) bound by O(ndn) . 
Each rule of Rm are then revised using least specialization, this operation has a complex-
ity of O(|F|2) bound by O(n2) . |Rm| ≤ d

|F|
f

≤ dn thus the revision of all matching rules 
is op3 = O(d|F|

f
× n2) bounded by O(dn × n2) . All revisions are stored in LS and there 

are at most df × |F| ≤ dn revisions for each rule, thus |LS| ≤ d
|F|
f

× df |F| ≤ dn × dn 
extending the memory bound to O(d|F|

f
× d

|T|
t + 2d

|F|
f

) + df |F| × d
|F|
f

) bounded by 
O(d2n + 2dn + ndn+1).

Learning is performed for each vval ∈ A
� ⊆ T  , thus the memory 

usage of GULA is therefore O(d|F|
f

× d
|T|
t + |A�|(2d|F|

f
+ df |F| × d

|F|
f

)) , 
bounded by O(d|F|

f
× d

|T|
t + tdt(2d

|F|
f

) + df |F| × d
|F|
f

)) wich is bounded by 
O(d2n + dn(2dn + ndn+1)) = O(d2n + 2ndn+1 + ndn+2).

The worst-case memory use of GULA is thus O(d2n + 2ndn+1 + ndn+2).
All rules of LS are compared to the rule of Pvval for dom-

ination check, this operation has a complexity of 
op4 = O(2 × |LS| × |Pvval | × |F|2) = O(2 × d

|F|
f

× df |F| × dn × n2) = O(2 × |F|3 × d
2|F|+1
f

) 
which is bounded by O(2 × n3 × d2n+1).

Learning is performed for each vval ∈ A
� ⊆ T  , |A′| ≤ |T|dt , thus the complex-

ity is bound by O(op1 + |T| × |T| × dt(op2 + op3 + op4)) = O(|T|2 + |T| times|T|
×d

t
(d|F|

f
× |F| + d

|F|
f

× n
2 + 2 × |F|3 × d

2|F|+1
f

)) which is bounded by 
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O(|T|2 + |T| × nd(dn × n
2 + d

n × n
2 + 2 × n

3 × d
2n+1)) = O(|T|2 + |T| × nd(2n3d2n+1 + 2n2dn))

= O(|T|2 + |T| × (2n4d2n+2 + 2n3dn+1)).
The computational complexity of GULA is thus O(|T|2 + |T| × (2n4d2n+2 + 2n3dn+1)).
  ◻

Appendix 4: Proofs of Sect. 5

Theorem  7 (Optimal DMVLP and Constraints Correctness Under Synchronous Con-
strained Semantics) Let T ⊆ S

F × S
T  , it holds that T = Tsyn−c(PO(T) ∪ C�

O
(T)).

Proof From Definition 9, ∀(s, s�) ∈ T , s� ⊆ �����������(s,PO(T)) thus according to Defini-
tion 22, s� ∈ Tsyn−c(PO(T))(s) , thus T ⊆ Tsyn−c(PO(T)) (property 1).

By Definition 25, ∀(s, s�) ∈ T ,∄C ∈ CO(T),C ⊓ (s, s�) , thus since 
C�
O
(T) ⊆ CO(T),∄C ∈ C�

O
(T),C ⊓ (s, s�) and then T ⊆ Tsyn−c(PO(T) ∪ C�

O
(T)) (property 2).

Let us suppose ∃(s, s�) ∈ Tsyn−c(PO(T) ∪ C�
O
(T)), (s, s�) ∉ T  . From Defi-

nition 22, ∀vval ∈ s�,∃R ∈ PO(T), body(R) ⊓ s, head(R) = vval . From 
Definition 25, ∃C� ∈ CO(T),C

� ⊓ (s, s�) since (s, s�) ∉ T  . But since 
∃(s, s�) ∈ Tsyn−c(PO(T) ∪ C�

O
(T)) , thus C� ∉ C�

O
(T) . From Definition 26, it implies that 

∃vval ∈ s
�,∄R ∈ PO(T), head(R) = vval,∀w ∈ F,∀val�, val�� ∈ ���(w),wval

�
∈ body(R) ∧ wval

��

∈ body(C) ⟹ val
� = val

�� . Since body(C�) ⊆ (s ∪ s
�) , ∄R ∈ PO(T), head(R) = vval, body(R) ⊆ s , 

thus s� ⊈ �����������(s,PO(T)) and by Definition 22, (s, s�) ∉ Tsyn−c(PO(T) ∪ C�
O
(T)) , con-

tradiction, thus Tsyn−c(PO(T) ∪ C�
O
(T)) ⊆ T  (property 3).

From property 2 and 3: Tsyn−c(PO(T) ∪ C�
O
(T)) = T  .   ◻

Theorem 8 (Synchronizer Correctness) Given any set of transitions T,

Synchronizer(A , T, F  , T  ) outputs PO(T) ∪ C�
O
(T).

Proof Let G1 = GULA(A, T ,F, T) and G2 = GULA(AF∪T∪{�1}, T
�,F ∪ T, {�}) . From The-

orem 5, P = G1 = PO(T) (property 1).
Let P� = G2 . By definition of T ′ : ∀(s, s�) ∈ T �, s� = {�0} . Thus ∀R ∈ P� , R is con-

sistent with T ′ by Theorem  5, thus ∄(s, s�) ∈ T �,R ⊓ s , since head(R) = �1 because 
∀(s, s�) ∈ T �, s� = {�0} (property 2).

From Theorem 5, P� = {R ∈ PO(T
�) ∣ head(R) = �1} . From Definition 9, PO(T

�) is com-
plete thus ∀(s, s�) ∈ S

F × S
T, ss� ∶= s ∪ s�, ss� ∉ f irst(T �),∃R ∈ P�,R ⊓ ss� (property 3).

From definition of T ′ , (s, s�) ∈ T ⟹ (s ∪ s�, {�0}) ∈ T � , thus ∀C ∈ P�,C is a con-
straint (property 4).

• From property 2 and 4: (s, s�) ∈ T ⟹ (s ∪ s�, {𝜀0}) ∈ T �
⟹ ∄C ∈ P�,C ⊓ (s, s�) , 

P′ consistent with T.
• From property 3 and 4: (s, s�) ∉ T ⟹ (s ∪ s�) ∉ f irst(T �) ⟹ ∃R ∈ P�,R ⊓ (s, s�) , 

P′ is complete with T.
• If there exists a constraint consistent with T that is not dominated by a constraint in P′ it 

implies that a rule consistent with T ′ whose head is �1 is not dominated by a rule in G2 
wich is in contradiction with Theorem 5. All constraint consistent with T are dominated 
by a constraint in P′.
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• From Theorem 5, the rules of G2 do not dominate eachover, thus the same hold for the 
constraint of P′.

• From Definition 25, P� = CO(T) (property 5).

Now let us prove that P�� = C�
O
(T) . Let us suppose that P�� ≠ C�

O
(T) . Since P�� ⊆ CO(T) , 

according to Definition 26, therefore P′′ is missing a useful optimal constraint 
( C�

O
(T) ⧵ P�� ≠ � ), or contains a useless optimal constraint ( P�� ⧵ C�

O
(T) ≠ �).

1) Suppose that C ∉ P�� but C ∈ C�
O
(T) , meaning that P′′ misses a useful con-

straint C. Since C ∈ C�
O
(T) , ∃(s, s�)s

PO(T)
���������������������→ s� , C ⊓ (s, s�) . Since s

PO(T)
���������������������→ s� , accord-

ing to Definition 5 ∃S ⊆ PO(T), s
� = {head(R) ∣ R ∈ S} ∧ ∀R ∈ S,R ⊓ s . By Definition 

21, C ⊆ s ∪ s� thus body(C) ∩AF ⊆ s and body(C) ∩AT ⊆ s� . By definition of Crules , 
∀vval ∈ body(C) ∩AT,∀R ∈ S,

(
var(head(R)) = v ∧ head(R) ∈ body(C) ⟹ R ∈ Crules(v)

)
 

and since s
PO(T)
���������������������→ s� , ∀v ∈ Ctargets,Crules(v) ≠ � . Thus there exists a combi such that 

∀v ∈ F, |{vval ∈ body(R) ∣ val ∈ ���(v) ∧ R ∈ combi}| ≤ 1 , contradiction.
2) Suppose that C ∉ C�

O
(T) but C ∈ P�� , meaning that P′′ contains a useless con-

straint C. Thus, {(s, s�) ∈ S
F × S

T ∣ s
PO(T)
���������������������→ s� ∧ C ⊓ (s, s�)} = � . Since C ∈ P�� 

there is a combi such that |{vval ∈ body(R) ∣ val ∈ ���(v) ∧ R ∈ combi}| ≤ 1 , 
thus ∃s ∈ S

F, body(C) ∩AT ⊆ s ∧ ∀R ∈ combi,R ⊓ s . Let 
S ∶= {s� ∈ S

T ∣ s
PO(T)
���������������������→ s�} . Because PO(T) is complete, S ≠ ∅ . Since 

∀R ∈ combi,R ∈ PO(T),∃s
� ∈ S,∀R ∈ combi, head(R) ∈ s� . Since 

body(C) ∩AT = {head(R) ∣ R ∈ combi} ⊆ s� , C ⊓ (s, s�).
Thus P�� = C�

O
(T) (property 6).

From property 1 and 6, Synchronizer(A, T ,F, T) = PO(T) ∪ C�
O
(T).

  ◻

Theorem  9 (Synchronizer Complexity)) Let T ⊆ S
F × S

T  be a set of transitions, let 
n ∶= max(|F|, |T|) and d ∶= max({|���(v)| ∈ ℕ ∣ v ∈ F ∪ T}) and m ∶= |F| + |T|.

The worst-case time complexity of Synchronizer when learning from T belongs to 
O((d2n + 2ndn+1 + ndn+2) + (|T|2 + |T| × (2m4d2m+2 + 2m3dm+1)) + (dn

n

)) and its worst-
case memory use belongs to O((d2n + 2ndn+1 + ndn+2) + (d2m + 2mdm+1 + mdm+2) + (ndn))
.

Proof Let df ∶= max({|���(v)| ∈ ℕ ∣ v ∈ F}) (resp. dt ∶= max({|���(v)| ∈ ℕ ∣ v ∈ T}) ) 
be the maximal number of values of features (resp. target) variables. Let n ∶= max(|F|, |T|) 
and d ∶= max({|���(v)| ∈ ℕ ∣ v ∈ F ∪ T}) and m ∶= |F| + |T|.

The first call to GULA has complexity of O(|T|2 + |T| × (2n4d2n+2 + 2n3dn+1)) and the 
memory is bound by O(d2n + 2ndn+1 + ndn+2) according to Theorem 6.

Computing T � ∶= {(s ∪ s�, {�0}) ∣ (s, s�) ∈ T} has a linear complex-
ity of O(|T|) . The call GULA(AF∪T∪{�1}, T

�,F ∪ T, {�}) considers target vari-
ables as features variables to learn constraints, i.e., the body of constraints 
can have m conditions. Thus the complexity of this call to GULA is bound by 
O(|T �|2 + |T �| × (2m4d2m+2 + 2m3dm+1)) = O(|T|2 + |T| × (2m4d2m+2 + 2m3dm+1)) since 
|T �| = |T| and the memory is bound by O(d2m + 2mdm+1 + mdm+2) according to Theorem 6.

To discard useless constraints, Algorithm  3 searches for a set of rules 
that can be applied at the same time as the constraint: first it extract the con-
straint target variables Ctargets ∶= {v ∈ T ∣ ∃val ∈ ���(v), vval ∈ body(C)} 
and search for compatible rules with the constraint 
∀v ∈ Ctargets,Crules(v) ∶= {R ∈ P ∣ var(head(R)) = v ∧ head(R) ∈ body(C) ∧ ∀w ∈ F,∀val,
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val
� ∈ ���(w),

(
wval ∈ body(R) ∧ wval

�

∈ body(C)
)

⟹ val = val
�} . The constraint con-

tains at most |T| target conditions. For each target variable, there is at most d|F|
f

 rules in P. 
Thus, computing the Cartesian product of rules grouped by head variables has a time com-
plexity of O(d|F|

|T|
f

) which is bound by O(dn
n

) and a memory complexity of O(|P|) which is 
bound by O(ndn).

The computational complexity of Synchronizer is thus 
O((d2n + 2ndn+1 + ndn+2) + (|T|2 + |T| × (2m4d2m+2 + 2m3dm+1)) + (dn

n

)) and its memory 
is bound by O((d2n + 2ndn+1 + ndn+2) + (d2m + 2mdm+1 + mdm+2) + (ndn)) .   ◻

Appendix 5: Proofs of Sect. 6

Proposition 4 (Uniqueness of Impossibility-Optimal Program) Let T ⊆ S
F × S

T  . The 
DMVLP impossibility-optimal for T is unique and denoted PO(T).

Proof Same proof than for Proposition 1 by replacing “suitable” by “impossibility-suita-
ble”.   ◻

Fig. 15  Run time of Synchronizer from a random set of 1%, 5%, 10%, 25%, 50%, 75%, 100% of the transi-
tions of a Boolean network from Boolenet and PyBoolNet with size varying from 3 to 10 variables. Time 
out is set at 1000 s and 10 runs where performed for each setting
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Appendix 6: Detailed pseudo‑code of Sect. 4

Algorithms 5 and 6 provide the detailed pseudocode of GULA. Algorithm 5 learns from a 
set of transitions T the conditions under which each value val of each variable v may appear 
in the next state. Here, learning is performed iteratively for each value of variable to keep 
the pseudo-code simple. But the process can easily be parallelized by running each loop in 
an independent thread, bounding the run time to the variable for which the learning is the 
longest. In the case where we are not interested about the dynamics of some variables, the 
parameter A′ and T′ can be reduced accordingly.

The algorithm starts by the pre-processing of the input transitions. Lines 7-18 of 
Algorithm  5 correspond to the extraction of Negvval , the set of all negative examples of 
the appearance of vval in next state: all states such that v never takes the value val in the 
next state of a transition of T. For efficiency purpose, it is important that the negatives 
examples are ordered in a way that reduce the difference between nearby elements, for 
example lexicographically. Indeed, it increase the proportion of revised rules (produced 
to satisfy a previous example) still consistent with the following examples, reducing the 
average number of rules stored and thus checked in the following processes. Those nega-
tive examples are then used during the following learning phase (lines 21-50) to iteratively 
learn the set of rules PO(T) . The learning phase starts by initializing a set of rules Pvval to 
{R ∈ PO(�) ∣ head(R) = vval} = {vval ← �} (see Proposition 2).

Pvval is iteratively revised against each negative example neg in Negvval . All rules Rm of 
Pvval that match neg have to be revised. In order for Pvval to remain optimal, the revision of 
each Rm must not match neg but still matches every other state that Rm matches.

To ensure that, the least specialization (see Definition 18) is used to revise each conflict-
ing rule Rm . Algorithm 6 shows the pseudo code of this operation. For each variable of 
F

′ so that body(Rm) has no condition over it, a condition over another value than the one 
observed in state neg can be added (lines 3-8). None of those revision match neg and all 
states matched by Rm are still matched by at least one of its revisions.

Each revised rule can be dominated by a rule in Pvval or another revised rules and thus 
dominance must be checked from both. But only revised rule can be dominated by a revised 
rule: if a rule in Pvval is dominated by a revised rule, then it was dominated by its original 
rule and thus could not be part of Pvval since it would have been discard in a previous step. 
Thus we can safely only check the revised rules to discard the ones dominated by the new 
current revised rule. The non-dominated revised rules are then added to Pvval.

Once Pvval has been revised against all negatives example of Negvval , 
Pvval = {R ∈ PO(T) ∣ head(R) = vval} , that is, Pvval is the subset of rules of the final optimal 
program having vval as head. Finally, Pvval is added to P and the loop restarts with another 
atom. Once all values of each variable have been treated, the algorithm outputs P which is 
then equal to PO(T).
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Algorithm 5 GULA(A′,T ,F ′,T ′, learning mode)

1: INPUT: A set of atoms A′, a set of transitions T ⊆ SF′
× ST ′

, two sets of variables F′ and T ′, a
string learning mode ∈ {“possibility”, “impossibility”}.

2: OUTPUT: PO(T ) if learning mode = “possibility” or PO(T ) if learning mode = “impossibility”.

3: T := {(s1, {s2 | (s1, s2) ∈ T}) | s1 ∈ first(T )} // Group transitions by initial state
4: T := sort(T ) // Sort the transitions in Lexicographical order over feature states
5: P := ∅
6: for each vval ∈ A′ such that v ∈ T ′ do
7: // 1) Extraction of positives and negative examples of possibility
8: Posvval := ∅
9: Negvval := ∅
10: for each (s1, S) ∈ T do
11: negative example := true
12: for each s2 ∈ S do
13: if vval ∈ s2 then
14: negative example := false
15: Posvval := Posvval ∪ {s1}
16: break
17: if negative example == true then
18: Negvval := Negvval ∪ {s1}
19: if learning mode == “impossibility” then
20: Negvval = Posvval // Positive examples of possibility are negatives examples of impossibility.

21: // 2) Revision of the rules of vval to avoid matching of negative examples
22: Pvval := {vval ← ∅}
23: for each neg ∈ Negvval do

24: M := ∅ // Set of rules of Pvval that are in conflict
25: for each R ∈ Pvval do // Extract all rules that conflict and remove them from P

26: if body(R) ⊆ neg then
27: M := M ∪ {R}
28: Pval

v := Pval
v \ {R}

29: LS := ∅
30: for each Rm ∈ M do // Revise each conflicting rule
31: P ′ := least specialization(Rm, neg,A′,F′)

32: for each Rls ∈ P ′ do
33: dominated := false
34: for each Rp ∈ Pvval do // Check if the revision is dominated by Pvval

35: if body(Rp) ⊆ body(Rls) then
36: dominated := true
37: break
38: if dominated == true then
39: continue

40: for each Rp ∈ LS do // Check if the revision is dominated by LS

41: if body(Rp) ⊆ body(Rls) then
42: dominated := true
43: break
44: if dominated == true then
45: continue

46: for each Rp ∈ LS do// Remove previous specialization that are now dominated
47: if body(Rls) ⊆ body(Rp) then
48: LS := LS \ {Rp}

49: LS := LS ∪ {Rls} // Add the revision
50: Pvval := Pvval ∪ LS // Add non-dominated revisions

51: P := P ∪ Pvval

52: return P
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Algorithm 6 least specialization(R, s, A′, F ′) : specialize R to avoid matching of s

1: INPUT: a rule R, a state s, a set of atoms A′ and a set of variables F′

2: OUTPUT: a set of rules LS which is the least specialization of R by s according to F′ and A′.

3: LS := ∅
// Revise the rules by least specialization

4: for each vval ∈ s do
5: if v /∈ var(body(R)) then // Add condition for all values not appearing in s

6: for each vval′ ∈ A′, v ∈ F′, val′ �= val do

7: R′ := head(R) ← (body(R) ∪ {vval′})
8: LS := LS ∪ {R′}
9: return LS

Appendix 7: Synchronizer scalability

Figure  15 shows the run time of Synchronizer when learning from transitions 
of Boolean networks from Boolenet (Dubrova & Teslenko, 2011) and PyBool-
net (Klarner et  al., 2016) with same settings as in the experiements of Table  4. For the 
synchronous and general semantics, it is only when we are given a subset of all possi-
ble transitions that the algorithm output constraints, since all combination of heads 
of matching rules are allowed for those two semantics. Those constraint at least pre-
vent transitions from unseen states and also some combination of atoms that are miss-
ing in next states but that are observed individually. Even when it outputs an empty set 
of constraint, the learning process needs to produce and revises constraint until its 
no more possible, so run time of full set of transitions is also considered. In the asyn-
chronous case, given a set of transitions T, it needs to learn the constraints ensuring at 
most one change per transitions, i.e., {

⊥
←������� ai

t
, b

j

t, a
i�

t−1
, b

j�

t−1
∣ a, b ∈ A

T
, i ≠ i� ∧ j ≠ j�} 

and the ones preventing the projection when only one variable can be updated: 
{C ∣ {ai

t
, ai

t−1
} ∈ body(C), a ∈ A

T
,∄(s, s�) ∈ T , body(C) ⊆ s ∪ s�} . Those second kind of 

constraint will be specific to the few states this limitation occurs and show the limits of 
propositional representation for the explanation of the dynamics.

Learning constraints is obviously more costly than learning regular rules since both 
features and targets variables can appear in the body, i.e., number of features becomes 
|F| + |T| . The algorithm reached the time out of 1000 s with benchmarks of 10 nodes for 
synchronous semantics and 7 nodes for asynchronous and general semantics. Scalability 
of the algorithm can be greatly improved by using the approximated version of GULA for 
learning both rules and constraints. If learning rules can be done in polynomial time, learn-
ing constraints remains exponential. Since we do not present this approximated algorithm in 
this paper we will not go into the details. In short, this approximated version needs positives 
examples and thus require to generate the Cartesian product of all applicable rules heads 
for each initial state observed which is exponential. Scalability, readability and applicability 
could be improved by considering first order generalization of both rule and constraints but 
those generalization are application dependant and thus remains as future work. Such gen-
eralization is required to perform proper prediction from unseen states, thus application of 
the synchronizer output for prediction from unseen states are out of the scope of this paper.

Appendix 8: Complete pruned WDMVLP of Sect. 7.4

See Fig. 16.
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Fig. 16  Final learned 
WDMVLP WP = (WP�,WP��) 
of Sect. 7.4 after pruning of 
(PO(T

�),PO(T
�)) for readabil-

ity, |WP�| = |WP��| = 80 . The 
rules that appear in the original 
DMVLP of Fig. 13 are colored 
in blue (Color figure online)

WP ′ = {
(54, CycD t0 ← CycD t 10),
(10, CycD t0 ← CycA t 11 ∧ UbcH10 t 10 ∧ cdh1 t 11),
(8, CycD t0 ← Cdc20 t 11 ∧ Rb t 11 ∧ UbcH10 t 10 ∧ cdh1 t 11),
(8, CycD t0 ← Cdc20 t 11 ∧ CycE t 10 ∧ UbcH10 t 10 ∧ cdh1 t 11),
(48, CycD t1 ← CycD t 11),
(6, CycD t1 ← E2F t 11 ∧ Rb t 11 ∧ UbcH10 t 11 ∧ p27 t 11),
(6, CycD t1 ← CycA t 10 ∧ CycE t 10 ∧ UbcH10 t 11 ∧ p27 t 11),
(6, CycD t1 ← Cdc20 t 10 ∧ CycB t 10 ∧ CycE t 10 ∧ UbcH10 t 11),
(58, Cdc20 t0 ← CycB t 10),
(8, Cdc20 t0 ← Cdc20 t 10 ∧ E2F t 11 ∧ UbcH10 t 10 ∧ p27 t 11),
(8, Cdc20 t0 ← Cdc20 t 11 ∧ CycA t 11 ∧ cdh1 t 10 ∧ p27 t 11),
(7, Cdc20 t0 ← Cdc20 t 10 ∧ CycE t 11 ∧ UbcH10 t 10 ∧ p27 t 11),
(44, Cdc20 t1 ← CycB t 11),
(6, Cdc20 t1 ← Cdc20 t 11 ∧ E2F t 10 ∧ UbcH10 t 10 ∧ p27 t 10),
(6, Cdc20 t1 ← CycA t 10 ∧ E2F t 10 ∧ Rb t 10 ∧ UbcH10 t 10),
(6, Cdc20 t1 ← CycD t 10 ∧ Cdc20 t 11 ∧ E2F t 10 ∧ cdh1 t 11),
(57, CycA t0 ← Rb t 11),
(53, CycA t0 ← Cdc20 t 11),
(28, CycA t0 ← CycB t 10 ∧ UbcH10 t 11),
(28, CycA t0 ← UbcH10 t 11 ∧ cdh1 t 11),
(7, CycA t1 ← Cdc20 t 10 ∧ CycA t 11 ∧ Rb t 10 ∧ cdh1 t 10),
(7, CycA t1 ← Cdc20 t 10 ∧ CycA t 11 ∧ Rb t 10 ∧ p27 t 11),
(7, CycA t1 ← Cdc20 t 10 ∧ CycB t 10 ∧ Rb t 10 ∧ UbcH10 t 10),
(6, CycA t1 ← Cdc20 t 10 ∧ E2F t 11 ∧ Rb t 10 ∧ UbcH10 t 10),
(53, CycB t0 ← Cdc20 t 11),
(50, CycB t0 ← cdh1 t 11),
(17, CycB t0 ← CycA t 11 ∧ UbcH10 t 11 ∧ p27 t 10),
(16, CycB t0 ← CycD t 10 ∧ CycA t 11 ∧ CycE t 11),
(25, CycB t1 ← Cdc20 t 10 ∧ cdh1 t 10),
(9, CycB t1 ← Cdc20 t 10 ∧ E2F t 10 ∧ Rb t 10),
(7, CycB t1 ← Cdc20 t 10 ∧ CycA t 11 ∧ CycE t 10 ∧ p27 t 11),
(7, CycB t1 ← CycD t 11 ∧ Cdc20 t 10 ∧ CycA t 11 ∧ p27 t 11),
(57, CycE t0 ← Rb t 11),
(51, CycE t0 ← E2F t 10),
(15, CycE t0 ← Cdc20 t 11 ∧ CycE t 11 ∧ cdh1 t 10),
(15, CycE t0 ← CycD t 11 ∧ CycE t 11 ∧ cdh1 t 10),
(21, CycE t1 ← E2F t 11 ∧ Rb t 10),
(7, CycE t1 ← Cdc20 t 10 ∧ Rb t 10 ∧ cdh1 t 11),
(6, CycE t1 ← CycA t 10 ∧ CycB t 10 ∧ Rb t 10 ∧ UbcH10 t 10),
(5, CycE t1 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ Rb t 10),
(57, E2F t0 ← Rb t 11),
(44, E2F t0 ← CycB t 11),
(26, E2F t0 ← CycA t 11 ∧ p27 t 10),
(15, E2F t0 ← Cdc20 t 10 ∧ CycA t 11 ∧ UbcH10 t 11),
(15, E2F t1 ← CycB t 10 ∧ Rb t 10 ∧ p27 t 11),
(11, E2F t1 ← CycA t 10 ∧ CycB t 10 ∧ Rb t 10),
(9, E2F t1 ← CycB t 10 ∧ E2F t 11 ∧ Rb t 10 ∧ UbcH10 t 10),
(7, E2F t1 ← Cdc20 t 11 ∧ CycB t 10 ∧ E2F t 10 ∧ Rb t 10),
(48, Rb t0 ← CycD t 11),
(44, Rb t0 ← CycB t 11),
(26, Rb t0 ← CycE t 11 ∧ p27 t 10),
(26, Rb t0 ← CycA t 11 ∧ p27 t 10),
(16, Rb t1 ← CycD t 10 ∧ CycB t 10 ∧ p27 t 11),
(6, Rb t1 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ CycE t 10),
(5, Rb t1 ← CycD t 10 ∧ Cdc20 t 11 ∧ CycA t 10 ∧ CycB t 10),
(5, Rb t1 ← CycD t 10 ∧ Cdc20 t 11 ∧ cdh1 t 10 ∧ p27 t 11),
(22, UbcH10 t0 ← UbcH10 t 10 ∧ cdh1 t 11),
(8, UbcH10 t0 ← Cdc20 t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ cdh1 t 11),
(8, UbcH10 t0 ← Cdc20 t 10 ∧ CycB t 10 ∧ cdh1 t 11 ∧ p27 t 11),
(6, UbcH10 t0 ← CycB t 10 ∧ CycE t 10 ∧ E2F t 11 ∧ cdh1 t 11),
(52, UbcH10 t1 ← cdh1 t 10),
(33, UbcH10 t1 ← CycA t 11 ∧ UbcH10 t 11),
(27, UbcH10 t1 ← Cdc20 t 11 ∧ UbcH10 t 11),
(25, UbcH10 t1 ← CycB t 11 ∧ UbcH10 t 11),
(19, cdh1 t0 ← Cdc20 t 10 ∧ CycB t 11),
(11, cdh1 t0 ← Cdc20 t 10 ∧ CycA t 11 ∧ p27 t 10),
(8, cdh1 t0 ← Cdc20 t 10 ∧ CycA t 11 ∧ UbcH10 t 11 ∧ cdh1 t 11),
(6, cdh1 t0 ← CycD t 10 ∧ Cdc20 t 10 ∧ CycE t 10 ∧ Rb t 10),
(53, cdh1 t1 ← Cdc20 t 11),
(35, cdh1 t1 ← CycB t 10 ∧ p27 t 11),
(26, cdh1 t1 ← CycA t 10 ∧ CycB t 10),
(20, cdh1 t1 ← CycB t 10 ∧ E2F t 11 ∧ UbcH10 t 10),
(48, p27 t0 ← CycD t 11),
(44, p27 t0 ← CycB t 11),
(29, p27 t0 ← CycA t 11 ∧ CycE t 11),
(26, p27 t0 ← CycE t 11 ∧ p27 t 10),
(7, p27 t1 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ p27 t 11),
(6, p27 t1 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ CycE t 10),
(6, p27 t1 ← CycD t 10 ∧ CycB t 10 ∧ CycE t 10 ∧ p27 t 11),
(5, p27 t1 ← CycD t 10 ∧ Cdc20 t 11 ∧ CycA t 10 ∧ CycB t 10),
}
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WP ′′ = {
(48, CycD t0 ← CycD t 11),
(6, CycD t0 ← E2F t 11 ∧ Rb t 11 ∧ UbcH10 t 11 ∧ p27 t 11),
(6, CycD t0 ← CycA t 10 ∧ CycE t 10 ∧ UbcH10 t 11 ∧ p27 t 11),
(6, CycD t0 ← Cdc20 t 10 ∧ CycB t 10 ∧ CycE t 10 ∧ UbcH10 t 11),
(54, CycD t1 ← CycD t 10),
(10, CycD t1 ← CycA t 11 ∧ UbcH10 t 10 ∧ cdh1 t 11),
(8, CycD t1 ← Cdc20 t 11 ∧ Rb t 11 ∧ UbcH10 t 10 ∧ cdh1 t 11),
(8, CycD t1 ← Cdc20 t 11 ∧ CycE t 10 ∧ UbcH10 t 10 ∧ cdh1 t 11),
(44, Cdc20 t0 ← CycB t 11),
(6, Cdc20 t0 ← Cdc20 t 11 ∧ E2F t 10 ∧ UbcH10 t 10 ∧ p27 t 10),
(6, Cdc20 t0 ← CycA t 10 ∧ E2F t 10 ∧ Rb t 10 ∧ UbcH10 t 10),
(6, Cdc20 t0 ← CycD t 10 ∧ Cdc20 t 11 ∧ E2F t 10 ∧ cdh1 t 11),
(58, Cdc20 t1 ← CycB t 10),
(8, Cdc20 t1 ← Cdc20 t 10 ∧ E2F t 11 ∧ UbcH10 t 10 ∧ p27 t 11),
(8, Cdc20 t1 ← Cdc20 t 11 ∧ CycA t 11 ∧ cdh1 t 10 ∧ p27 t 11),
(7, Cdc20 t1 ← Cdc20 t 10 ∧ CycE t 11 ∧ UbcH10 t 10 ∧ p27 t 11),
(7, CycA t0 ← Cdc20 t 10 ∧ CycA t 11 ∧ Rb t 10 ∧ cdh1 t 10),
(7, CycA t0 ← Cdc20 t 10 ∧ CycA t 11 ∧ Rb t 10 ∧ p27 t 11),
(7, CycA t0 ← Cdc20 t 10 ∧ CycB t 10 ∧ Rb t 10 ∧ UbcH10 t 10),
(6, CycA t0 ← Cdc20 t 10 ∧ E2F t 11 ∧ Rb t 10 ∧ UbcH10 t 10),
(57, CycA t1 ← Rb t 11),
(53, CycA t1 ← Cdc20 t 11),
(28, CycA t1 ← CycB t 10 ∧ UbcH10 t 11),
(28, CycA t1 ← UbcH10 t 11 ∧ cdh1 t 11),
(25, CycB t0 ← Cdc20 t 10 ∧ cdh1 t 10),
(9, CycB t0 ← Cdc20 t 10 ∧ E2F t 10 ∧ Rb t 10),
(7, CycB t0 ← Cdc20 t 10 ∧ CycA t 11 ∧ CycE t 10 ∧ p27 t 11),
(7, CycB t0 ← CycD t 11 ∧ Cdc20 t 10 ∧ CycA t 11 ∧ p27 t 11),
(53, CycB t1 ← Cdc20 t 11),
(50, CycB t1 ← cdh1 t 11),
(17, CycB t1 ← CycA t 11 ∧ UbcH10 t 11 ∧ p27 t 10),
(16, CycB t1 ← CycD t 10 ∧ CycA t 11 ∧ CycE t 11),
(21, CycE t0 ← E2F t 11 ∧ Rb t 10),
(7, CycE t0 ← Cdc20 t 10 ∧ Rb t 10 ∧ cdh1 t 11),
(6, CycE t0 ← CycA t 10 ∧ CycB t 10 ∧ Rb t 10 ∧ UbcH10 t 10),
(5, CycE t0 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ Rb t 10),
(57, CycE t1 ← Rb t 11),
(51, CycE t1 ← E2F t 10),
(15, CycE t1 ← Cdc20 t 11 ∧ CycE t 11 ∧ cdh1 t 10),
(15, CycE t1 ← CycD t 11 ∧ CycE t 11 ∧ cdh1 t 10),
(15, E2F t0 ← CycB t 10 ∧ Rb t 10 ∧ p27 t 11),
(11, E2F t0 ← CycA t 10 ∧ CycB t 10 ∧ Rb t 10),
(9, E2F t0 ← CycB t 10 ∧ E2F t 11 ∧ Rb t 10 ∧ UbcH10 t 10),
(7, E2F t0 ← Cdc20 t 11 ∧ CycB t 10 ∧ E2F t 10 ∧ Rb t 10),
(57, E2F t1 ← Rb t 11),
(44, E2F t1 ← CycB t 11),
(26, E2F t1 ← CycA t 11 ∧ p27 t 10),
(15, E2F t1 ← Cdc20 t 10 ∧ CycA t 11 ∧ UbcH10 t 11),
(16, Rb t0 ← CycD t 10 ∧ CycB t 10 ∧ p27 t 11),
(6, Rb t0 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ CycE t 10),
(5, Rb t0 ← CycD t 10 ∧ Cdc20 t 11 ∧ CycA t 10 ∧ CycB t 10),
(5, Rb t0 ← CycD t 10 ∧ Cdc20 t 11 ∧ cdh1 t 10 ∧ p27 t 11),
(48, Rb t1 ← CycD t 11),
(44, Rb t1 ← CycB t 11),
(26, Rb t1 ← CycE t 11 ∧ p27 t 10),
(26, Rb t1 ← CycA t 11 ∧ p27 t 10),
(52, UbcH10 t0 ← cdh1 t 10),
(33, UbcH10 t0 ← CycA t 11 ∧ UbcH10 t 11),
(27, UbcH10 t0 ← Cdc20 t 11 ∧ UbcH10 t 11),
(25, UbcH10 t0 ← CycB t 11 ∧ UbcH10 t 11),
(22, UbcH10 t1 ← UbcH10 t 10 ∧ cdh1 t 11),
(8, UbcH10 t1 ← Cdc20 t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ cdh1 t 11),
(8, UbcH10 t1 ← Cdc20 t 10 ∧ CycB t 10 ∧ cdh1 t 11 ∧ p27 t 11),
(6, UbcH10 t1 ← CycB t 10 ∧ CycE t 10 ∧ E2F t 11 ∧ cdh1 t 11),
(53, cdh1 t0 ← Cdc20 t 11),
(35, cdh1 t0 ← CycB t 10 ∧ p27 t 11),
(26, cdh1 t0 ← CycA t 10 ∧ CycB t 10),
(20, cdh1 t0 ← CycB t 10 ∧ E2F t 11 ∧ UbcH10 t 10),
(19, cdh1 t1 ← Cdc20 t 10 ∧ CycB t 11),
(11, cdh1 t1 ← Cdc20 t 10 ∧ CycA t 11 ∧ p27 t 10),
(8, cdh1 t1 ← Cdc20 t 10 ∧ CycA t 11 ∧ UbcH10 t 11 ∧ cdh1 t 11),
(6, cdh1 t1 ← CycD t 10 ∧ Cdc20 t 10 ∧ CycE t 10 ∧ Rb t 10),
(7, p27 t0 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ p27 t 11),
(6, p27 t0 ← CycD t 10 ∧ CycA t 10 ∧ CycB t 10 ∧ CycE t 10),
(6, p27 t0 ← CycD t 10 ∧ CycB t 10 ∧ CycE t 10 ∧ p27 t 11),
(5, p27 t0 ← CycD t 10 ∧ Cdc20 t 11 ∧ CycA t 10 ∧ CycB t 10),
(48, p27 t1 ← CycD t 11),
(44, p27 t1 ← CycB t 11),
(29, p27 t1 ← CycA t 11 ∧ CycE t 11),
(26, p27 t1 ← CycE t 11 ∧ p27 t 10),
}

Fig. 16  (continued)
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Appendix 9: Information about this paper

History of the paper

This paper is a substantial extension of Ribeiro et al. (2018) where a first version of GULA 
was introduced. In Ribeiro et al. (2018), there was no distinction between feature and target 
variables, i.e., variables at time step t and t + 1 . From this consideration, interesting prop-
erties arise and allow to characterize the kind of semantics compatible with the learning 
process of the algorithm (Theorem 1). It also allows to represent constraints and to propose 
an algorithm (Synchronizer, Sect. 5) to learn programs whose dynamics can mimic any 
given set of transitions with optimal properties on both rules and constraints. It also allows 
to use GULA to learn human readable explanations in form of rules on static classification 
problems (as long as all variables are discrete), which will be one of the focus of our future 
works.

Main contributions of the paper

The main contributions of this paper are:

• A modeling of discrete memory-less dynamics system as multi-valued propositional 
logic. This modeling is independent of the dynamical semantics the system relies on, 
as long as it respects some given properties we provided in this paper. The main con-
tributions of this formalism is the characterization of optimality and the study of which 
semantics are compatible with this formalism (which includes notably synchronous, 
asynchronous and general semantics).

• A first algorithm named GULA, to learn such optimal programs.
• The formalism is also extended to represent and use constraints. This allows to repro-

duce any discrete memory-less dynamical semantics behaviors inside the logic program 
when the original semantics is unknown.

• A second algorithm named Synchronizer, that exploits GULA to learn a logic pro-
gram with constraints that can reproduce any given set of state transitions. The method 
we proposed is able to learn a whole system dynamics, including its semantics, in the 
form of a single propositional logic program. This logic program not only explains the 
behavior of the system in the form of human readable propositional logic rules but also 
is able to reproduce the behavior of the observed system without the need of know-
ing its semantics. Furthermore, the semantics can be explained, without any previous 
assumption, in the form of human readable rules inside the logic program. In other 
words, the approach allows to learn all the previously cited semantics, as well as new 
ones.

• A heuristic method allowing to use GULA to learn a model able to predict from unseen 
case.

• Evaluation of these methods on benchmarks from biological litterature regarding scal-
ability, prediction accuracy and explanation quality.

What evidence is provided

We show through theoretical results the correctness of our approach for both modeling 
and algorithms (see above contribution for details). Empirical evaluation is performed on 
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benchmarks coming from biological literature. It shows the capacity of GULA to produce 
correct models when all transitions are available. Also, we observe that learned models 
generalize to unseen data when given a partial input in those experiments.

Related work

The paper refers to relevant related work. As we discussed in the related work section, our 
approach is quite related to Bain and Srinivasan (2018), Evans et  al. (2019, 2020), Kat-
zouris et al. (2015), Fages (2020).

The techniques we propose in this paper are a continuation of the works on the LFIT 
framework from Inoue et al. (2014), Ribeiro and Inoue (2015), Ribeiro et al. (2018).

In Inoue (2011), Inoue and Sakama (2012), state transitions systems are represented 
with logic programs, in which the state of the world is represented by a Herbrand inter-
pretation and the dynamics that rule the environment changes are represented by a logic 
program P. The rules in P specify the next state of the world as a Herbrand interpretation 
through the immediate consequence operator (also called the TPoperator) (Van Emden & 
Kowalski, 1976; Apt et al., 1988) which mostly corresponds to the synchronous semantics 
we present in Sect. 3. In this paper, we extend upon this formalism to model multi-valued 
variables and any memory-less discrete dynamic semantics including synchronous, asyn-
chronous and general semantics.

Inoue et al. (2014) proposed the LFIT framework to learn logic programs from traces 
of interpretation transitions. The learning setting of this framework is as follows. We 
are given a set of pairs of Herbrand interpretations (I, J) as positive examples such that 
J = TP(I), and the goal is to induce a normal logic program (NLP) P that realizes the given 
transition relations. As far as we know, this concept of learning from interpretation tran-
sition (LFIT) has never been considered in the ILP literature before (Inoue et al., 2014). 
In this paper, we propose two algorithms that extend upon this previous work: GULA to 
learn the minimal rules of the dynamics from any semantics states transitions that respect 
Theorem 1 and Synchronizer that can capture the dynamics of any memory-less discrete 
dynamic semantics.

Funding This work was supported by JSPS KAKENHI Grant Number JP17H00763 and by the “Pays de la 
Loire” Region through RFI Atlanstic 2020.
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