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Abstract. One of the key questions about gene regulatory networks
is how to predict complex dynamical properties based on the influence
graph’s topology. Earlier theoretical studies have identified conditions for
complex dynamical properties, like multistability or oscillations, based
on topological features, like the presence of a positive (negative) feedback
loop. This work follows this path and aims to find a sufficient and neces-
sary condition for the existence of a periodic attractor in 4-dimensional (4
genes) repressilators based on a discrete modeling framework under some
dynamical assumptions. These networks are extensions of the widely
studied 3-dimensional repressilator, which has been used in synthetic
biology to produce synthetic oscillations. While other researchers have
explored specific extensions of the 3-dimensional repressilator to improve
synthetic oscillation control, our work investigates all 4-dimensional net-
works with only inhibitions. By uncovering new insights about periodic
attractors in these small networks, our findings could aid the design of
new synthetic oscillations. We search for condition for period attractor
in an exhaustive manner with the guide of a decision tree model. Our
major contributions include: 1) discovering that, with one exception, the
relations between gene regulation thresholds do not impact the existence
of periodic attractors in any of the influence graphs considered in this
study; 2) identifying a sufficient and necessary condition of simple form
for the existence of a periodic attractor when the exception is ignored;
3) identifying new topological features of influence graphs that are nec-
essary for predicting the existence of periodic attractor in 4-dimensional
repressilators.

Keywords: Periodic attractor · Discrete dynamical system · Repressi-
lator · Decision tree · Gene regulatory networks.

1 Introduction

Gene expression is not an isolated biological process as the expression of a single
gene could activate or inhibit the expression of one or multiple other genes. These
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complex interdependencies among genes constitute the gene regulatory network,
which is always represented mathematically as a directed graph known as the
influence graph. The vertices in the influence graph correspond to individual
genes, while the arcs denote the relations between genes.

Our work focuses on a fundamental question about gene regulatory networks:
how can we predict a system’s dynamical properties from its influence graph?
In fact, the dynamical properties do not only depend on the topology of the
influence graph, but also depend on the dynamical model used to model the
gene regulatory network. In the literature, different modeling frameworks have
been applied to model gene regulatory networks, mainly continuous models [3, 4,
13], discrete models [14, 32, 33, 15, 6, 7] and hybrid models [5, 10, 31, 9]. This work
is based on Thomas’ discrete modeling framework of gene regulatory networks
[32, 33], where the continuous expression values of all genes in the system are
abstracted by a vector of integers, called discrete state, describing the discrete
expression levels of all genes, and the system’s dynamics are then captured by
the transitions between discrete states. Using this discrete modeling framework,
we can describe the dynamical properties of the system in terms of the existence
of different attractors. There are two types of attractors: fixed-point attractors,
which correspond to stable states, and periodic attractors, which correspond to
oscillations. One major advantage of using discrete modeling is its simplicity in
implementation and analysis.

Our study investigates all 4-dimensional (with 4 genes) gene regulatory net-
works with only inhibition relations, called 4-dimensional repressilators, as they
can be considered extensions of the 3-dimensional canonical repressilator. The 3-
dimensional canonical repressilator is a network of three genes having a unique
feedback loop with only inhibitions between genes [30, 11, 8, 23]. It is widely
studied in synthetic biology due to its ability to generate synthetic oscillations.
However, controlling these synthetic oscillations remains an open problem. To
address this issue, there are works studying extensions of 3-dimensional canoni-
cal repressilator by adding more genes into the network [19, 22, 12, 34, 35]. Most
of these works focus on some specific networks and are mostly based on ordinary
differential equations. In our work, we use discrete dynamical models to study
all possible combinations of 4-dimensional networks with only inhibitions, under
some dynamical assumptions. Our goal is to identify a sufficient and necessary
condition for the existence of a periodic attractor. The existence of a periodic
attractor in discrete models is linked to the presence of oscillations in certain
hybrid models, which is significant from the perspective of synthetic biology as
sometimes the goal is to have synthetic oscillations.

The method to find such conditions for a periodic attractor has two major
steps. Firstly, we exhaustively generate all discrete models of 4-dimensional re-
pressilators and compute various topological features of their influence graphs.
Using these features we construct a highly accurate machine learning model
which predicts the existence of periodic attractor with an accuracy close to 1.0.
Secondly, we manually analyze this machine learning model to develop a suffi-
cient and necessary condition for periodic attractor. In fact, the idea of studying
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certain classes of networks in an exhaustive manner has been used in the liter-
ature [17, 16, 24] but, as far as we know, it has not yet been applied specifically
to 4-dimensional repressilators.

It is worth noting that some theoretical works have investigated the relation-
ship between the dynamical properties of discrete models and the topological
structures of influence graphs [21, 28, 27, 25, 29]. Specifically, these studies have
employed topological characteristics such as the presence of positive or negative
feedback loops in the influence graph to describe conditions that lead to the
emergence of complex dynamical properties, such as multistability, oscillations
or attractors. In line with these studies, we also adopt topological features to
develop the desired condition. Furthermore, we have identified new features that
are essential for predicting the existence of a periodic attractor in 4-dimensional
repressilators.

We also want to highlight that the machine learning-based approach used in
this work for exhaustively searching for conditions could be potentially extended
for the search of conditions that determine various properties in other systems.

We summarize the main contributions of this work as follows:

– We show that with the exception of one particular influence graph, the re-
lations between the thresholds of gene regulations have no impact on the
existence of a periodic attractor; in other words, the existence of a periodic
attractor is solely dependent on the topology of the influence graph.

– We introduce new features, namely total out-degree of cycles of length n,
which characterize the influence graph’s topology and are essential to de-
scribe the condition for the existence of a periodic attractor in 4-dimensional
repressilators.

– Based on these new features, we find a new sufficient and necessary condi-
tion for the existence of a periodic attractor in 4-dimensional repressilators,
except for the aforementioned particular influence graph.

The paper is organized as follows. In Section 2, we introduce the discrete
modeling framework used in this work. In Section 3, we present the 4-dimensional
repressilators and some dynamical assumptions used in this work. In Section 4,
we represent step by step how we develop a sufficient and necessary condition
for periodic attractor. Finally, in Section 5, we make a conclusion and discuss
our future works.

2 Discrete modeling of gene regulatory networks

This section introduces the pre-existing discrete modeling of gene regulatory
networks used in this work. A gene regulatory network can be described by
a directed graph IG = (V,A) called influence graph, where V is the set of
vertices describing the genes in the system and A is the set of arcs describing
the regulations (activation or inhibition) between genes. For example, Fig 1-Left
represents an influence graph of a 3-dimensional gene regulatory network. In
this gene regulatory network, the expression of gene G0 (resp. G1) activates the



4 H. Sun et al.

expression of gene G1 (resp. G2) (the sign “+” on the arc denotes an activation)
and the expression of G0 inhibits the expression of G2 (the sign “−” on the arc
denotes an inhibition).

G0

G1 G2

+

+

−

000 001

010 011

100 101

110 111

Fig. 1. Left: a 3-dimensional influence graph. Right: a transition graph of discrete
states, based on the influence graph on the left and the logic program of Eq. 3.

An influence graph can only describe partially a gene regulatory network,
as it lacks the description of some dynamical properties. In this work, we use a
discrete modeling framework of gene regulatory networks. In this discrete mod-
eling framework, the continuous expression of a gene is abstracted by an integer
(e.g. 0, 1, 2, ...), called discrete level, which describes the discrete expression
level of a gene. More formally, for any gene G ∈ V , there exists a set of integers
a(G) which gives all possible discrete levels of G; for instance, if G has only two
discrete levels, then a(G) = {0, 1}. A discrete model is a logic program which is
a set of logic rules. The form of a logic rule is shown as follows:

Gi = k ← ϕi (1)

where Gi ∈ V is a gene in the system, k ∈ a(Gi) is a possible discrete level of
Gi, and ϕi is a logic formula. The form of a logic formula ϕ is given as follows:

ϕ :== ∅ | G ∼ k | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 (2)

where k ∈ a(G) is a possible discrete level of gene G, ∼ is one of the relations
{>,<,=,≥,≤}, ϕ1 and ϕ2 are also logic formulas.

A logic rule (see Eq 1) indicates that if ϕi at discrete time t (t is an integer)
is satisfied, then at time t+1 the value of Gi can be updated to k. For example,
a possible discrete model of the influence graph in Fig 1-Left is given as follows:

G0 = 1← ∅
G1 = 1← (G0 = 1)

G1 = 0← (G0 = 0)

G2 = 1← (G0 = 0) ∧ (G1 = 1)

G2 = 0← (G0 = 1) ∨ (G1 = 0)

(3)

In this example, the second line indicates that, if at time t the discrete level of
G0 is 1, then at time t + 1 the discrete level of G1 can be updated to 1; this
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logic rule corresponds to the activation from G0 to G1 in the influence graph.
The first line indicates that for any moment t, the discrete level of G0 can be
updated to 1 at time t+1 (in fact, once the discrete level of G0 reaches 1, it will
remain at 1).

The simulation of a discrete model is not solely dependent on these logic rules,
but also relies on the semantics of the model. Intuitively, the semantics dictates
the number of genes that can be updated simultaneously. Various semantics,
such as synchronous, asynchronous, general and most permissive, have been
proposed in the literature [26, 20]. In this work, we adopt the asynchronous
semantics, meaning that the discrete level of only one gene is updated at a time.
The asynchronous semantics is formally defined as follows.

We consider a system with N genes noted as G1, G2, ..., GN . We define that
a discrete state ds of a system is an integer vector of length N , which assigns
the discrete level dis to gene Gi, where i ∈ {1, 2, 3, ..., N} and dis is the ith

component of ds. For any discrete state ds at time t, if there exists a logic rule
Gi0 = k ← ϕ where i0 ∈ {1, 2, 3, ..., N}, such that ds satisfies ϕ (meaning that
the assignment Gi = dis for i ∈ {1, 2, 3, ..., N} satisfies ϕ) and di0s ̸= k, then at
time t+ 1, the system can reach the new discrete state d′s such that d′is = dis for
i ∈ {1, 2, 3, ..., N} \ {i0} and d′i0s = k.

Based on the choice of semantics, we can get the transition graph of dis-
crete states of a discrete model, which is a directed graph containing all possible
transitions between discrete states from t to t + 1. The transition graph of dis-
crete states describes the dynamics of a discrete model. Note that depending
on the semantics, the dynamics can be non-deterministic, as is the case for the
asynchronous semantics. For example, Fig 1-Right presents the transition graph
of discrete states, derived by asynchronous semantics, of the discrete model de-
scribed by the logic program in Eq 3. Consider the discrete state 101 (represent-
ing the assignment G0 = 1, G1 = 0, G2 = 1), according to the logic program in
Eq 3, G1 can be updated from 0 to 1 and G2 can be updated from 1 to 0. Since
we use asynchronous semantics, only one gene can be updated, so it can reach
100 or 111, but it cannot make two updates at the same time to reach 110.

3 4-dimensional repressilator

The scope of this work is limited to 4-dimensional gene regulatory networks
where genes are linked only through inhibition, and where every gene has an
impact on at least one other gene. In fact, the 3-dimensional network with a
unique negative feedback loop with only inhibitions, called canonical repressila-
tor, has been proved in the literature to be able to generate oscillations, while
the understanding of oscillations in its 4-dimensional extensions is still limited.
We call these networks 4-dimensional repressilators. An influence graph of such
networks is shown in Fig 2.

Our analysis of these 4-dimensional repressilators is based on two underlying
assumptions about their dynamics.
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Fig. 2. An influence graph of a 4-dimensional repressilator.

Assumption 1 If one gene influences m different genes, then it has m distinct
thresholds that correspond to each of these m genes.

Consider the influence graph of Fig 2, G2 inhibits G0 and G3, so G2 has two
distinct thresholds because of Assumption 1, meaning that it has three discrete
levels: 0, 1, 2. Since other genes only influence one other gene, they only have
two discrete levels: 0, 1. A similar assumption can be found in [1] for example.

The relations between the two thresholds of G2 can have impact on the
dynamical properties of the system. To show the relations between thresholds
on an influence graph, we introduce the notion of influence graph with thresholds
which is defined as IGS = (V,A, s) where V and A are the sets of genes and
regulations between genes respectively, as in the definition of an influence graph,
and the function s assigns an integer to each regulation that represents the
minimum discrete level of the source gene necessary to inhibit the target gene.
Thus, the function s also characterizes the relationship between thresholds.

From the influence graph of Fig 2, by considering all different relations be-
tween thresholds, we can get two different influence graphs with thresholds as
illustrated in Fig 3. For the regulation G2 → G3 in the left influence graph with
thresholds, s(G2 → G3) = 2 (which is the number on the arc) means that G3

is inhibited by G2 if the discrete level of G2 is bigger or equal to 2. For the
regulation G2 → G0 in the same graph, s(G2 → G0) = 1 means that G0 is
inhibited by G2 if the discrete level of G2 is bigger or equal to 1. We can see
that, in the left influence graph with thresholds, the threshold of G2 triggering
the inhibition of G0 is smaller than the threshold triggering the inhibition of G3,
while in the right influence graph with thresholds, the situation is reversed. We
can also see that the function s gives all possible discrete levels of the system.

A priori, different discrete models (logic programs) can be associated to the
same influence graph with thresholds, particularly when one gene is inhibited
by several genes. Moreover, different choices of logic programs lead to different
transition graphs, in other words different dynamical properties. In this work, we
make an assumption about the dynamics when one gene is inhibited by several
genes.

Assumption 2 In an influence graph with threshold IGS = (V,A, s), for any
gene G, its discrete level can decrease by 1 if there exists a regulation from G′ to
G and the current discrete level of G′ is bigger or equal to s(G′ → G), otherwise
its discrete level can increase by 1.
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Fig. 3. Different influence graphs with thresholds corresponding to the influence graph
of Fig 2.

In fact, Assumption 2 is equivalent to assume that the inhibitions are dis-
junctive, meaning that only one inhibitor is enough to decrease the target gene.
Similar assumptions about the disjunction or conjunction of gene regulation can
be found in [18, 2]. Consider the influence graph with thresholds on the left of
Fig 3; Assumption 2 leads to the following logic program:

G0 = 0← (G2 ≥ 1)

G0 = 1← (G2 < 1)

G1 = 0← (G0 ≥ 1) ∨ (G3 ≥ 1)

G1 = 1← (G0 < 1) ∧ (G3 < 1)

G2 = 0← (G1 ≥ 1) ∧ (G2 ≤ 1)

G2 = 1← (G1 ≥ 1) ∧ (G2 = 2)

G2 = 1← (G1 < 1) ∧ (G2 = 0)

G2 = 2← (G1 < 1) ∧ (G2 ≥ 1)

G3 = 0← (G2 ≥ 2)

G3 = 1← (G2 < 2)

(4)

Note that, for instance, there needs to be two rules in order to make G2 increase
to the expression level 2: one to update it from level 0 to level 1 (line 7) and one
to make it increase from 1 to 2 (line 8); this is because we didn’t constraint the
dynamics to be unitary and we thus need to encode this property inside the rules.
Using Assumption 2, we get a unique discrete model from any influence graph
with thresholds, which simplifies the analysis. The transition graph of discrete
states corresponding to the discrete model of Eq 4 is illustrated in Fig 4.

The general logic rules for an arbitrary IGS are given in Eq 5.

Gi = k + 1← (Gi = k) ∧ (k < Max(a(Gi))) ∧ (∀G ∈ reg(Gi), G < s(G→ Gi))

Gi = k − 1← (Gi = k) ∧ (k > 0) ∧ (∃G ∈ reg(Gi), G ≥ s(G→ Gi))

(5)

where Max(a(Gi)) is the maximum discrete level of Gi and reg(Gi) is the set
of all genes that inhibit Gi. Obviously, the rules of Eq 4 can be derived from the
ones of Eq 5 by simplification. Some simplifications also involve the knowledge
of the dynamics given in Section 2.
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Fig. 4. Transition graph of discrete states of a model of 4-dimensional repressilator
(corresponding to Eq 4). Red discrete states represent a periodic attractor.
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4 Condition for a periodic attractor

In this section, we present our contribution: a step by step method to find a
sufficient and necessary condition for the existence of a periodic attractor in 4-
dimensional repressilators. Additionally, we also discuss the number of oscillatory
dimensions in these periodic attractors. The definition of a periodic attractor is
given as follows.

Definition 1. A periodic attractor is a set of discrete states Ea such that:

– Ea contains at least two discrete states.
– For any two discrete states ds, d

′
s ∈ Ea, there exists a path in the transition

graph of discrete states from ds to d′s.
– For any discrete state ds ∈ Ea and for any discrete state d′s /∈ Ea, there is

no path in the transition graph of discrete states from ds to d′s.

One example of periodic attractor is given by the red discrete states in Fig 4.

4.1 Feature selection and search of candidate condition based on
decision tree

In order to find such condition, we firstly construct a decision tree model follow-
ing the five steps below. The reason why we want to construct a decision tree
model is that if we could obtain a decision tree with a classification accuracy
of 1.0 to predict the existence of a periodic attractor, then this decision tree is
equivalent to a sufficient and necessary condition for this periodic attractor in
4-dimensional repressilators. This work indeed only considers a finite number of
discrete models, and a decision tree can be intuitively explained.

1. Generate all influence graphs with thresholds of 4-dimensional repressilators.
2. For each influence graph with thresholds, check the existence of a periodic at-

tractor using an attractor identification algorithm. Here, an influence graph
having a periodic attractor means that the associated discrete model (which
is unique because of Assumption 2) has a periodic attractor.

3. Compute manually some features which could be potentially used to predict
the existence of a periodic attractor.

4. Construct a decision tree model which uses the features in the previous step
to predict the existence of a periodic attractor.

5. Manually drop some features which do not influence the prediction result.

In step 1, there are 50625 influence graphs with thresholds in total without
removing the graphs that are equivalent.

In step 2, we use the function attracting components of the Python library
NetworkX to verify the existence of a periodic attractor. We find that any influ-
ence graph with thresholds which has a periodic attractor has only one periodic
attractor.
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In step 3, we compute two classes of features on the influence graph to de-
scribe the topology of the influence graph: the number of cycles of length n and
the total out-degree of cycles of length n.

For the first class, since the system has 4 genes, there are only cycles of length
2, 3 and 4. We use C2, C3 and C4 to represent the numbers of cycles of length
2, 3 and 4, respectively. For example, for the influence graph in Fig 2, there is
no cycle of length 2 or 4 (C2 = 0, C4 = 0) and two cycles of length 3 (C3 = 2).
It is logical to use these features to predict the existence of a periodic attractor
because, in this class of repressilators, the length of a cycle determines whether it
is a negative feedback loop or a positive feedback loop as there is only inhibition
regulations and the presence of loops is related to the existence of attractor(s).
For example, it is already known that the presence of a negative feedback loop is
a necessary condition for sustained oscillations [27] and the presence of positive
feedback loop is a necessary condition for multistability [28].

The second class of features is a new class of features introduced in this work
which is defined formally as follows.

Definition 2 (Total out-degree of cycles of length n). The total out-degree
of cycles of length n is the total number of arcs which go from a vertex which
belongs to a cycle of length n to a vertex which does not belong to this cycle.

For example, for the influence graph in Fig 2, the arc G2 → G3 goes from
the cycle of length 3: G0 → G1 → G2, to G3, which does not belong to this
cycle. There are two arcs like this in this influence graph: G2 → G3 (for the
cycle G0 → G1 → G2) and G2 → G0 (for the cycle G1 → G2 → G3). So the
total out-degree of cycles of length 3 is 2. Since, in this influence graph, there
is no cycle of length 2, the total out-degree of cycles of length 2 is 0. Since the
graph considered in this work has only 4 genes, the total out-degree of cycles of
length 4 is always 0. We use OD2 and OD3 to denote the total out-degree of
cycles of length 2 and 3, respectively.

To explain the motivation about these features describing the total out-
degree of cycles, let’s consider the two influence graphs in Fig 5. The dynamical
properties of these two influence graphs are different: any influence graph with
thresholds associated to the left influence graph has a periodic attractor while
any influence graph with threshold associated to the right influence graph does
not have a periodic attractor. However, the topologies of these two influence
graphs are similar: the numbers of cycles of length 2, 3 and 4 of these two
graphs are identical and they both have 6 arcs. In order to find a condition for
periodic attractor, we need to find a way to exhibit the topological difference be-
tween these two graphs, and these new features are effective: for the left graph,
OD2 = 1, OD3 = 3; for the right one, OD2 = 2, OD3 = 2. Note that these
features do not depend on the relations between thresholds.

In step 4, we construct a decision tree to predict the existence of a periodic
attractor based on the 5 features C2, C3, C4, OD2 and OD3 using all influence
graphs with thresholds considered in this work. This decision tree is constructed
automatically using the decision tree model of the Python library Scikit-learn.
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Fig. 5. Left: influence graph always having a periodic attractor. Right: influence graph
never having a periodic attractor.

The accuracy of prediction of this decision tree is nearly 0.9990. Initially, we
wished this accuracy to be 1 because in that case, the decision tree would provide
a sufficient and necessary condition for the existence of a periodic attractor. This
small lack of accuracy is actually caused by a few influence graphs with thresholds
all related to the same influence graph. By analyzing this influence graph, a very
interesting result arises:

There exists one particular influence graph such that, for any influence graph
with thresholds that is not associated to this influence graph (or any isomor-
phism), the existence of a periodic attractor does not depend on the relations
between thresholds and can be predicted by this decision tree with an accuracy of
1.

This particular influence graph is shown in Fig 6. This figure also presents
all influence graphs with thresholds, associated to this influence graph, having
a periodic attractor. In fact, with the exception of the relation between the
thresholds presented in this figure (the only arcs assigned with numbers), the
relations between the thresholds of G2 do not influence the existence of a periodic
attractor, meaning that for any order of thresholds of G2 added to this figure,
it always has a periodic attractor.

G0 G1

G2

G3

−2

−2−2

−1

−1

−1

Fig. 6. The particular influence graph whose the relations between thresholds influence
the existence of a periodic attractor. Amongst all influence graphs with thresholds
associated to this influence graph, only a subset has a periodic attractor; this subset is
characterized by the thresholds depicted in the figure.
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In step 5, we manually drop features that do not influence the accuracy of
the decision tree model. To do so, we re-train the decision tree each time after
dropping one feature and observing if the accuracy decreases. Finally, we find
that only keeping the features OD2 and OD3 ensures the same accuracy. We
have also verified that this is the only couple of features that can maintain this
accuracy. The final decision tree is shown in Fig 7. In this tree, the blue leaves
predict the existence of a periodic attractor, and the other leaves predict the non-
existence of a periodic attractor. We can see that except the second leaf from
the right, models in all other leaves are classified correctly. In fact, this second
leaf from the right contains all models associated to the particular influence
graph of Fig 6. This means that apart from this particular influence graph, this
tree describes a sufficient and necessary condition for the existence of a periodic
attractor in 4-dimensional repressilators.

4.2 Condition simplification

In this subsection, we compute a simplified sufficient and necessary condition
for the existence of a periodic attractor based on the decision tree of Fig 7. The
four paths which end at blue leaves, which are the leaves related to the existence
of a periodic attractor, are equivalent to the following logic rules:

(OD2 ≤ 4 ∧OD3 ≤ 4 ∧OD2 ≤ 1 ∧OD3 ≤ 2 ∧OD3 > 1 ∧OD2 ≤ 0) ∨
(OD2 ≤ 4 ∧OD3 ≤ 4 ∧OD2 ≤ 1 ∧OD3 > 2) ∨

(OD2 ≤ 4 ∧OD3 ≤ 4 ∧OD2 > 1 ∧OD2 ≤ 2 ∧OD3 > 3) ∨
(OD2 ≤ 4 ∧OD3 > 4)

(6)

Since OD2 and OD3 are integers, these logic rules can be simplified as follows.

(OD2 = 0 ∧OD3 = 2) ∨
(OD2 ∈ {0, 1} ∧OD3 ∈ {3, 4}) ∨

(OD2 = 2 ∧OD3 = 4) ∨
(OD2 ∈ {0, 1, 2, 3, 4} ∧OD3 ∈ {5, 6, 7, ...})

(7)

Moreover, for all influence graphs, OD2 and OD3 are not independent and
they are linked by the following constraints. Since there is a finite number of
models, these constraints can be easily obtained by enumerating all models and
comparing the values of OD2 and OD3.

If OD2 = 0 then OD3 ∈ {0, 1, 2, 3}
If OD2 = 1 then OD3 ∈ {0, 1, 2, 3, 4}

If OD2 = 2 then OD3 ∈ {0, 1, 2, 3, 4, 5}
If OD2 = 3 then OD3 ∈ {0, 1, 2, 3}

If OD2 = 4 then OD3 ∈ {0, 1, 2, 3, 4, 6, 8}

(8)

By combining Eq 7 and Eq 8, we get the following result, which is a sufficient
and necessary condition for the existence of a periodic attractor in case that the
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samples = 1416
value = [1416, 0]

class = N

gini = 0.0
samples = 96
value = [0, 96]

class = b

gini = 0.0
samples = 24264

value = [24264, 0]
class = N

outdegree_c2 <= 10.5
gini = 0.006

samples = 15792
value = [15744, 48]

class = N

outdegree_c2 <= 8.5
gini = 0.061

samples = 1536
value = [1488, 48]

class = N

gini = 0.0
samples = 14256

value = [14256, 0]
class = N

gini = 0.0
samples = 1152
value = [1152, 0]

class = N

gini = 0.219
samples = 384

value = [336, 48]
class = N

Fig. 7. A decision tree model to predict the existence of a periodic attractor. Blue
leaves represent the models classified as having a periodic attractor and orange leaves
represent the models classified as not having a periodic attractor. “gini” describes the
purity of models in a node regarding the two classes considered here: models having a
periodic attractor and models not having a periodic attractor; if all models in a node
belong to the same class then gini = 0, otherwise gini > 0 (gini = 1− (numberclass1

numbertotal
)2−

(numberclass2
numbertotal

)2). “sample” represents the number of models in a node. The first value
of “value” represents the number of models not having a periodic attractor and the
second value of “value” represents the number of models having a periodic attractor.
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influence graph is not equivalent to the one in Fig 6:

(OD2 = 0 ∧OD3 ∈ {2, 3}) ∨
(OD2 = 1 ∧OD3 ∈ {3, 4}) ∨
(OD2 = 2 ∧OD3 ∈ {4, 5}) ∨
(OD2 = 4 ∧OD3 ∈ {6, 8})

(9)

This result is of simple form and we can also find some patterns in it: the values of
OD2 are powers of 2 (20, 21, 22) except 0, and OD3 increases as OD2 increases.
These patterns might lead to some general theoretical results for N-dimensional
repressilators.

4.3 Number of oscillatory dimensions in a periodic attractor

In this subsection, we also investigate the number of oscillatory dimensions in the
periodic attractors. For a periodic attractor, oscillating in 3 dimensions means
that there exists one dimension i0 and an integer a such that for any discrete
state ds in this periodic attractor, di0s = a, and for any dimension i which differs
from i0, we can find two discrete states ds1, ds2 in this periodic attractor, such
that dis1 ̸= dis2. An example of a periodic attractor that oscillates in 3 dimensions
is given in Fig 8 where there is no oscillation in the first dimension. Oscillating
in 4 dimensions means that for any dimension i, we can find two discrete states
ds1, ds2 in this periodic attractor, such that dis1 ̸= dis2. For example, the periodic
attractor in Fig 4 oscillates in 4 dimensions.

By automatically verifying the isomorphisms of all influence graphs with
periodic attractors except the influence graph of Fig 6, we find that there are,
in total, only 8 different (non-isomorphic) influence graphs which always have
periodic attractors. Any influence graph with thresholds corresponding to these
8 influence graphs has only one periodic attractor. Among these 8 influence
graphs, 2 of them (Fig 9) can have periodic attractors which oscillate in both 3
and 4 dimensions depending on different relations between thresholds, and the
other 6 (Fig 10) only have periodic attractors which oscillate in 4 dimensions.

5 Conclusion

In this work, we study the condition for the existence of a periodic attractor
in 4-dimensional repressilators under some dynamical assumptions. With the
guide of decision tree models, we find a special influence graph for which the
relations between thresholds influence the existence of a periodic attractor. For
all other influence graphs, we show that the existence of a periodic attractor
does not depend on the relations between thresholds and we find a sufficient and
necessary condition with a simple form, describing the topology of the influence
graph, for the existence of a periodic attractor.

In this work, we use an exhaustive and computational approach to find this
condition and we find some patterns in this condition. In our next step, we would
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Fig. 8. Example of a periodic attractor (red discrete states) that oscillates in 3 di-
mensions. The discrete model corresponds to the left influence graph in Fig 9, with
s(G1 → G0) = s(G2 → G0) = s(G3 → G0) = 1.



16 H. Sun et al.

G0 G1

G2 G3

G0 G1

G2 G3

Fig. 9. The two influence graphs which have periodic attractors oscillating in 3 or 4
dimensions. All arcs represent inhibitions between genes.
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G2 G3
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G2 G3

G0 G1

G2 G3

G0 G1

G2 G3

G0 G1

G2 G3

G0 G1
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Fig. 10. The six influence graphs which have periodic attractors oscillating only in 4
dimensions. All arcs represent inhibitions between genes.

like to prove this result in a more mathematical way, and try to extend this result
for repressilators in N dimensions.

We also want to apply this method for other models of interest in biology,
attempting to generalize this work to show that certain dynamic patterns are
caused by particular topological features.

The topological feature used in this work, that is, the total out-degree of
cycles of length n, could be potentially simplified based on other more common
features. If it is possible, the simplified result could be more easily used for the
design of new synthetic circuits.

Meanwhile, only the topology of influence graphs is considered in this paper.
For future works, we will also investigate how the relations between thresholds
influence some complex dynamical properties.

Finally, in this work, we only use a decision tree to guide the search of the
condition. For future works, we will also try other learning methods based on
logic programming which could be more adapted for this kind of problem.
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