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Abstract. In this work, we study the reachability analysis method of
a class of hybrid system called HGRN which is a special case of hybrid
automata. The reachability problem concerned in this work is, given a
singular state and a region (a set of states), to determine whether the
trajectory from this singular state can reach this region. This problem
is undecidable for general hybrid automata, and is decidable only for a
restricted class of hybrid automata, but this restricted class does not in-
clude HGRNs. A priori, reachability in HGRNs is not decidable; however,
we show in this paper that it is decidable in certain cases, more precisely
if there is no chaos. Based on this fact, the main idea of this work is that if
the decidable cases can be determined automatically, then the reachabil-
ity problem can be solved partially. The two major contributions are the
following: firstly, we classify trajectories into different classes and provide
theoretical results about decidability; then based on these theoretical re-
sults, we propose a reachability analysis algorithm which always stops in
finite time and answers the reachability problem partially (meaning that
it can stop with the inconclusive result, for example with the presence
of chaos).

Keywords: Reachability · Hybrid system · Decidability · Gene regula-
tory networks · Limit cycle.

1 Introduction

Reachability problem of dynamical system has been investigated on differ-
ent formalisms, majorly on discrete systems [14,23,6] and hybrid systems
[19,2,3,15,8,25]. In this work, we study a reachability analysis method on a class
of hybrid system called hybrid gene regulatory network (HGRN) [7,4], which is
an extension of Thomas’ discrete modeling framework [27,28]. This hybrid sys-
tem is proposed to model gene regulatory networks, which are networks of genes
describing the regulation relations between genes.

HGRNs are similar to piecewise-constant derivative systems (PCD systems)
[2] which is a special case of hybrid automata [1]. The major difference between
⋆ Supported by China Scholarship Council.
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HGRNs and PCD systems of the works [2,3,25] is the existence of sliding mode,
which means that when a trajectory reaches a black wall (a boundary of the
discrete state which can be reached but cannot be crossed by trajectories), it
is forced to move along the black wall. There exist other methods to define
behaviors of trajectories on a black wall [17,24] which are different from the
sliding mode in HGRNs.

The reachability problem concerned in this work is to determine whether
the trajectory from certain state can reach a certain region (a set of states).
We mainly focus on the decidability problem, that is, whether we can find an
algorithm to determine the reachability problem such that this algorithm always
stops in finite time and gives a correct answer.

The decidability problem among hybrid systems that are close to HGRNs
is already studied in the literature. It has been proved that, for PCD systems,
it is decidable in 2 dimensions [21] but it is undecidable in 3 dimensions [2].
For general hybrid automata, there exists a restricted class called initialized
rectangular automata which is decidable in any dimension [19], but this class
does not include HGRNs.

Up to now, there is no theoretical results of the decidability of this problem
on HGRNs. A priori, we can expect that it is not decidable because of the
existence of chaos. However, if we can show that it is decidable in certain cases,
for example, when the trajectory considered in a reachability problem converges
asymptotically to a n-dimensional limit cycle, and if these cases can be identified
automatically, then the reachability problem can be answered partially, which is
the main idea of this work. In order to prove the existence of chaos in HGRNs,
we exhibit a HGRN with a chaotic attractor based on a different pre-existing
hybrid system [18]. This work has the following contributions:

– We classify trajectories of HGRNs into three classes: trajectories halting in
finite time, trajectories attracted by regularly oscillating cycles and chaotic
trajectories. For the first two classes, we prove that the reachability problem
is decidable and we provide methods to determine automatically their classes.
For the third class, a priori, it is undecidable, and we provide a necessary
condition for that a trajectory is chaotic.

– Based on the above theoretical results, we propose a reachability analysis
algorithm for HGRNs which always stops in finite time and once it stops,
it returns whether the set of target states is reached, not reached or if the
result is unknown. The unknown result is related to the existence of chaos.
To our knowledge, this is the first reachability analysis algorithm for HGRNs
and it can be applied to HGRNs in any dimension.

This paper is organized as follows. In Section 2, we introduce basic notions
of HGRNs. In Section 3, we present our reachability analysis method, including
theoretical results and the reachability analysis algorithm. And finally in Sec-
tion 4, we make a conclusion by discussing the merits and limits of this method
and our future work.
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2 Preliminary Definitions

In this section, we present HGRNs and its basic notions. Consider a gene regu-
latory network with N genes; the set of genes is denoted G = {G1, G2, ..., GN}.
A discrete state is an integer vector of length N , noted by ds, which assigns the
discrete level dis to gene Gi, where i ∈ {1, 2, 3, ..., N} and dis is the ith component
of ds. The set of all discrete states is denoted by Ed.

A hybrid gene regulatory network (HGRN) is noted H = (Ed, c). c is a func-
tion from Ed to RN . For each ds ∈ Ed, c(s), also noted cs, is called the celerity
of discrete state ds and describes the temporal derivative of the system in ds. A
2-dimensional HGRN is shown in Fig 1. In this system, each of these two genes
(A = G1, B = G2) has two discrete levels: 0 and 1, so there are 4 discrete states:
00, 01, 10, 11. Black arrows represent the celerities (temporal derivatives) of each
discrete state.

In HGRNs, a state is also called a hybrid state, which is a couple h = (π, ds)
containing a fractional part π, which is a real vector [0, 1]N , and a discrete state
ds. The set of all hybrid states is denoted by Eh.

A (hybrid) trajectory τ of HGRN is a function from a time interval [0, t0]
to Eτ = Eh ∪ Esh, where t0 ∈ R+ ∪ {∞}, and Esh is the set of all finite or
infinite sequences of states: Esh =

{
(h0, h1, ..., hm) ∈ (Eh)

m+1 | m ∈ N ∪ {∞}
}
.

A trajectory τ is called a closed trajectory if it is defined on [0,∞[ and ∃T >
0,∀t ∈ [0,∞[, τ(t) = τ(t+T ). In Fig 1, red arrows represent a possible trajectory
of this system, which happens, in this particular case, to be a closed trajectory.

A B CA CB

0 0 0.6 −0.7
0 1 −0.7 −0.9
1 0 0.7 0.8
1 1 −0.6 0.9

Fig. 1: Example of a HGRN in 2 dimensions. Left: Influence graph (negative feed-
back loop with 2 genes). Middle: Example of corresponding parameters (celer-
ities). Right: Corresponding example of dynamics; abscissa represents gene A
and ordinate represents gene B.

A boundary in a discrete state ds is a set of states defined by e(Gi, π0, ds) ={
(π, ds) ∈ Eh | πi = π0,

}
, where i ∈ {1, 2, ..., N} , ds ∈ Ed and π0 ∈ {0, 1}. In

the rest of this paper, we simply use e to represent a boundary.
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In Fig 1, the state hM = ((π1
M , 1), (1, 1)) of point M belongs to e1 =

(B, 1, (1, 1)), that is, the upper boundary in the second dimension (the dimension
of gene B) of the discrete state 11. Since there is no other discrete state on the
other side of e1, the trajectory from hM cannot cross e1 and has to slide along e1
(e1 can be called a black wall). The existence of such sliding mode is a speciality
of HGRNs. Boundaries like e1, which can be reached by trajectories but cannot
be crossed, are defined as attractive boundaries. The state hP = ((π1

P , 0), (0, 1))
of point P belongs to e2 = (B, 0, (0, 1)), the lower boundary in the second
dimension of the discrete state 01. The trajectory from hP reaches instantly
hQ = ((π1

Q, 1), (0, 0)), which belongs to e3 = (B, 1, (0, 0)), the upper boundary
in the second dimension of discrete state 00, because the celerities on both sides
allow this (instant) discrete transition. e2 is called an output boundary of 01 and
e3 is called an input boundary of 00.

When a trajectory reaches several output boundaries at the same time (Fig 2
left), it can cross any of them but can only cross one boundary at a time, which
causes non-deterministic behaviors. The simulation of HGRNs is presented more
formally in the Appendix.

Fig. 2: Left: Illustration of a non-deterministic behavior. Right: Illustration of
all discrete domains of state 11, and a sequence of discrete domains in the other
states.

In order to analyze dynamical properties of HGRNs, the concepts of discrete
domain, transition matrix and compatible zone are introduced in [26]. A discrete
domain D(ds, S−, S+) is a set of states inside one discrete state ds, defined by:

D(ds, S−, S+) = {(π, ds) | ∀i ∈ {1, 2, ..., N}, πi ∈

 {1} if i ∈ S+

{0} if i ∈ S−
]0, 1[ if i ̸∈ S− ∪ S+

}

where S+ and S− are power sets of {1, 2, ..., N} such that S+ ∩ S− = ∅ and
S+ ∪ S− ̸= ∅. In fact, S+ (S−) represents the dimensions in which the upper
(lower) boundaries are reached by any state h ∈ D(ds, S−, S+). In the rest of
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this paper, we simply use D to represent a discrete domain when there is no
ambiguity.

Some discrete domains are illustrated in Fig 2 right. For example, 11+ denotes
the discrete domain inside discrete state 11 where the upper boundary is reached
for the second dimension and no boundary is reached for the first dimension,
that is: D((1, 1), ∅, {2}) =

{
(π, (1, 1)) | π1 ∈ ]0, 1[ ∧ π2 = 1

}
. The state D in this

figure belongs to the discrete domain 1−0. The discrete state 11 contains 8
discrete domains: 1−1−, 11−, 1+1−, 1−1+, 11+, 1+1+, 1−1 and 1+1, which are
depicted in Fig 2 right. Note that, for instance, 1+1+ is represented by a small
red rectangle for readability, but in fact it only contains one singular hybrid state
((1, 1), (1, 1)).

To order to introduce the concepts of transition matrix and compatible zone,
consider a sequence of discrete domains T = (Di,Di+1,Di+2, ...,Dj) in the rest
of this section and assume that there is a trajectory τ which starts from hi =
(πi, dsi) ∈ Di, reaches all discrete domains of T in order without reaching any
other discrete domain, and finally reaches hj = (πj , dsj ) ∈ Dj . In this case, we
say that τ is inside T . For example, in Fig 2 right, the red trajectory is inside
the sequence of discrete domains (01−, 00+, 0+0, 1−0, 10+).

The relation between πi and πj can be described by a transition matrix M :
πj = s−1(Ms(πi)), where s is a function that adds an extra dimension and the
value in the extra dimension is always 1: s((a1, a2, ..., aN )) = (a1, a2, ..., aN , 1).
The transition matrix M only depends on T . The transition πj = s−1(Ms(πi))
can be reformulated by another affine application xj = Axi + b, where xi (resp.
xj) is the short version of πi (resp. πj) by only considering the dimensions where
boundaries are not reached in Di (resp. Dj). The matrix A is called the reduction
matrix of T , b is called the constant vector of T and the vector xi is called the
reduction vector of hi, which is noted by xi = r(hi). For example, for the state
hM = ((π1

M , 1), (1, 1)) in Fig 1, r(hM ) = (π1
M ) which is a 1-dimensional vector.

A priori, not all trajectories from Di stay inside T . The maximal sub-
set of Di from which the trajectories stay inside T is called the compati-
ble zone of T , noted by S. The compatible zone can also be described by
S = {(π, dsi) ∈ Di | r(π) ∈ Sr} where Sr is a set of reduction vectors of states
in Di and Sr is called the reduction compatible zone.

3 Reachability analysis method

In this section, we firstly define the reachability problem concerned in this work.

Problem 1 (Reachability). Consider a hybrid state h1 = (π1, ds1) and a region
R2 =

{
(π, ds2) | πi ∈ [ai, bi], i ∈ {1, 2, ..., N}

}
, where ai, bi ∈ R and 0 ≤ ai ≤

bi ≤ 1,∀i ∈ {1, 2, ..., N}. Does the trajectory τ from h1 enter the region R2? In
other words, does there exist t0 such that τ(t0) ∈ R2?

Problem 1 is illustrated in the examples of Fig 3, where the initial state of
the trajectory (red arrows) is h1 and the blue rectangle represents R2.

The following assumptions are made in this work.
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Fig. 3: Left: Illustration of Problem 1 and trajectory halting in finite time. Blue
rectangle represents R2 of Problem 1. Middle and right: Illustration of trajecto-
ries attracted by cycles of discrete domains and predecessor in the same discrete
state. Blues rectangles represent R2 of Problem 1 and blue boxes represent their
predecessors in the same discrete state.

Assumption 1 For any sequence of discrete domains T of which the compatible
zone is not empty, we assume that all eigenvalues of the reduction matrix of T
are real.

For now, we have not found such reduction matrix with complex eigenvalues.

Assumption 2 The trajectory from h1 has no non-deterministic behavior.

Generally, trajectories with non-deterministic behaviors exist, but among state-
of-the-art HGRNs of gene regulatory networks, the probability of a randomly
chosen initial state that leads to non-deterministic behaviors is almost 0. There-
fore, we ignore this kind of trajectory in this work. In fact, the method of this
work could also be adapted for non-deterministic trajectories (each time when a
non-deterministic state is reached, the current trajectory splits into two or sev-
eral trajectories, and same method is applied on each of these new trajectories).

Assumption 3 Any non-instant transition on a limit cycle does not reach more
than one new boundary at the same time.

In real-life systems, it is indeed very unlikely for parameters to be that con-
strained due to the existence of noise.

3.1 Different classes of hybrid trajectories

In this section, we classify trajectories of HGRNs into three classes: trajecto-
ries halting in finite time, trajectories attracted by cycles of discrete domains
and chaotic trajectories. And we provide some theoretical results regarding this
reachability problem.
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Trajectories halting in finite time A trajectory τ is a trajectory halting in
finite time if ∃t0 such that the derivative of τ(t0) is 0 in any dimension, in other
words τ(t0) is a fixed point. The trajectory in Fig 3 left is a trajectory halting in
finite time. We can easily see that Problem 1 is decidable if the trajectory from
h1 is a trajectory halting in finite time, because, in this case, the trajectory is a
composition of a finite number of n-dimensional “straight lines”; to verify if this
trajectory reaches R2, we only need to verify if any of these “straight lines” cross
R2, which can be verified in finite time.

Trajectories attracted by cycles of discrete domains A trajectory τ is
a trajectory attracted by a cycle of discrete domains if ∃t0 such that after t0,
τ always stays inside a cycle of discrete domains CT = (D0,D1,D2, ...,Dp,D0),
meaning that τ crosses this cycle an infinite number of times without leaving it.
Intuitively, if a trajectory τ is attracted by a cycle of discrete domains, then τ
converges to or reaches a limit cycle. In Fig 3 middle and right, both trajectories
are attracted by a cycle of discrete domains: indeed, these trajectories converge
to the limit cycle in the center of the figure (which only has instant transitions).

To prove the decidability of trajectories attracted by cycles of discrete do-
mains, we introduce the notion of predecessor in the same discrete state: for any
set of hybrid states in the same discrete state defined by R = {(π, ds) | π ∈ E}
where E ⊆ [0, 1]N is a closed set, the predecessor of R in the same discrete
state, noted by Preds

(R), is the union of sets of hybrid states: Preds
(R) =⋃

i∈{1,2,...,q} Zi, such that: 1) each Zi belongs to a different discrete domain on
an input boundary of ds, 2) any trajectory from Preds

(R) reaches R directly
("reach R directly" means that reach R before reaching a new discrete state),
3) any trajectory from an input boundary of dS but not from Preds

(R) does
not reach directly R. For Problem 1, we can see that if the trajectory τ from h1

has already crossed at least one discrete state (we say τ has already crossed a
discrete state at t0 if there exists t < t0 such that τ(t0) and τ(t) do not belong
to the same discrete state) without reaching the region R2, then Problem 1 is
equivalent to “Does τ reach Preds2

(R2)?”.
Examples of predecessors in the same discrete state are illustrated in Fig 3

middle and right where blues rectangles represent R2 and blue boxes present
their predecessors in the same discrete state.

Theorem 1. Problem 1 is decidable if the trajectory from h1 is a trajectory
attracted by a cycle of discrete domains.

The proof of Theorem 1 is given in the Appendix. The idea of this proof
can be explained intuitively by 2-dimensional examples in Fig 3 middle and
right. In Fig 3 middle, the trajectory which reaches state A, noted by τ , can be
considered as two trajectories: the first one is the part of τ before reaching A and
the second one is the part of τ after reaching A. This first one can be considered
as a trajectory halting in finite time so whether it reaches R2 is decidable, and
in this example it does not reach R2. For the second one, these two following
statements can be verified: 1. The intersection points between this trajectory
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and the “right” boundary of discrete state 01 must be located in the line segment
AB. 2. The line segment AB does not intersect with the predecessor of R2 in
the same discrete state. Based on these two statements, we can prove that this
second part cannot reach R2 either. In this way, we prove theoretically that R2

is not reached by τ , and since this process can be done automatically in finite
time, the problem is decidable. Note that in the general case, this “line segment
AB” is a (n−1)-dimensional region such that the trajectory always returns to
this region and this region does not intersect the predecessor of R2 in the same
discrete state. In Fig 3 right, it can be verified automatically in finite time that
the limit cycle with only instant transitions (at the center) reaches R2, and that
τ converges to this limit cycle, so we can prove that τ finally reaches R2, and
this case is thus decidable too.

We also develop the following theorem to determine if a trajectory is attracted
by a cycle of discrete domains. In order to simplify this theorem, for the cycle
of discrete domains CT = (D0,D1,D2, ...,Dp,D0) and the hybrid state h0 ∈ D0

considered in this theorem, we note that:

– The reduction matrix and the constant vector of CT are A and b respectively.
– The reduction compatible zone of CT is described by linear constraints

{x | Wx > c} where c is a vector and W is a matrix. W is of size n0 × n1,
where n1 is the number of dimensions of r(h0). Wi is the ith line of matrix
W (Wi is of size 1× n1) and ci is the ith component of vector c.

– r∞ = limn→∞ fn(r(h0)) where f(x) = Ax+ b.
– The eigenvalues and eigenvectors of A are {λi | i ∈ {1, 2, ..., n1}} and {vi | i ∈

{1, 2, ..., n1}} respectively. λ1 is chosen as the eigenvalue with the maximum
absolute value among the eigenvalues that differ from 1.

– The decomposition of r(h0) − r∞ in the directions of eigenvectors of the
reduction matrix A is noted as r(h0)− r∞ =

∑n1

i=1 αivi.

Theorem 2. A trajectory τ is attracted by a cycle of discrete domains if and
only if τ reaches h0 which belongs to the compatible zone of a cycle of dis-
crete domains CT = (D0,D1,D2, ...,Dp,D0) such that D0 has no free dimension
(meaning that, in D0, boundaries are reached in all dimensions) or the following
conditions are satisfied.

– D0 has at least one free dimension.
– ∀i ∈ {1, 2, ..., n1}, |λi| ≤ 1 ∧ λi ̸= −1.
– ∀i ∈ {1, 2, ..., n0}, we have either Wir∞ = ci or Wir∞ > ci. We use Ie to

represent the maximum set of integers such that ∀i ∈ Ie,Wir∞ = ci and we
use In to represent the maximum set of integers such that ∀i ∈ In,Wir∞ >
ci.

– If λ1 ̸= 0 (we assume that λ1 is unique if λ1 ̸= 0) and Ie is not empty, then
λ1 is positive.

– If λ1 ̸= 0, then ∀i ∈ Ie,∀j ∈ {2, ..., n1} , |Wiv1α1| > n1|Wivjαj | (we ignore
the case that ∃i ∈ Ie,Wiv1 = 0).

– If λ1 ̸= 0, then ∀i ∈ In,maxβ∈{−1,1}n1∥
∑n1

j=1 βjαjvj∥2< Wir∞−ci
∥Wi∥2

.
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The proof of Theorem 2 is given in the Appendix. The main idea of The-
orem 2 is illustrated in Fig 4 where the huge rectangle represents a discrete
domain D which has two free dimensions and the zone surrounded by dashed
lines represents the compatible zone S (which is a open set) of a certain cycle
of discrete domains CT . Each dashed line lci represents a linear constraint of the
form wTx > c where w, x are vectors and c is a real number. The fact that a
trajectory τ is attracted by CT is equivalent to the fact that the intersection
points between τ and D, noted by the sequence (h1, h2, ...), always stay inside
S and converge to (λ1 ̸= 0) or reach (λ1 = 0) h∞, which belongs to the closure
of S. Need to mention that this idea of using the intersection points between a
trajectory and a hyperplan to study the properties of this trajectory is based on
the idea of Poincaré map. Similar ideas have been widely used in the literature
to study limit cycles of other hybrid systems [5,12,29,13,11,16,20,10,22] and also
have been applied to analyze the stability of limit cycles of HGRNs in [26].

Whether h∞ belongs to the closure of S or not can be easily verified by using
these linear constraints. A necessary condition for this sequence to always satisfy
these linear constraints is that the absolute values of all eigenvalues of the reduc-
tion matrix of CT are less than or equal to 1. In case that these eigenvalues satisfy
this necessary condition, to verify if this sequence always satisfies these linear
constraints, we separate these constraints on two classes: the first class contains
all constraints which are not reached by h∞: lc2, lc3, lc4, the second class contains
all constraints which are reached by h∞: lc1, lc5. To verify if lc2, lc3, lc4 are always
satisfied, we can verify if this sequence enters and stays in a circle centered by h∞
which only contains states satisfying constraints lc2, lc3, lc4 (this is related to the
condition: if λ1 ̸= 0, then ∀i ∈ In,maxβ∈{−1,1}n1∥

∑n1

j=1 βjαjvj∥2< Wir∞−ci
∥Wi∥2

),
such circle can always be found if it is sufficiently small, for example, the circle
in Fig 4. To verify if lc1, lc5 are always satisfied, we can verify if this sequence
is sufficiently “close” to v1 which is the eigenvector related to the eigenvalue
with the maximum absolute value among the eigenvalues that differ from 1 and
which also “points into” S (this is related to the condition: if λ1 ̸= 0, then
∀i ∈ Ie,∀j ∈ {2, ..., n1} , |Wiv1α1| > n1|Wivjαj |). Here, sufficiently “close” to v1

means intuitively that the angle between
−−−→
h∞hi and v1 is sufficiently small.

Chaotic trajectories In this work, a trajectory of HGRN is called a chaotic
trajectory if it does not reach a fixed point and it is not attracted by a cycle of
discrete domains. So all trajectories which are not included in the previous two
classes are chaotic trajectories. Need to mention that the dynamics of chaotic
trajectories, a priori, can be different from the chaotic dynamics of classic non-
linear dynamical systems. The reason why we still use the terminology "chaotic"
is that similar concept of chaos has been used in some pre-existing works of other
hybrid systems[9,18].

To prove such chaotic trajectories exist, we have constructed a HGRN with
chaotic trajectories based on a pre-existing model of circuit with a chaotic at-
tractor [18]. Parameters of this HGRN are given in the code of our work.
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Fig. 4: Illustration of the idea of Theorem 2.

In our work, we have not yet found a method to check reachability for chaotic
trajectories, which, a priori, can be undecidable. So, in this subsection, we only
introduce a method to predict whether a trajectory is chaotic, based on a nec-
essary condition.

For a chaotic trajectory τ , there exist t0 and a finite set of discrete domains
LD, such that after t0, τ cannot reach any discrete domain which does not
belong to LD, and for any discrete domain D0 ∈ LD, D0 is reached by τ an
infinite number of times. This is a result of the fact that the number of discrete
domains is finite and the trajectory does not stay in a particular discrete domain.

For any D0 ∈ LD, we can find t1 > t0 such that, from t1, τ returns to D0

an infinite number of times, and each time it stays inside a sequence of discrete
domains of the form (D0, ...,D0). The set of all such sequences of discrete domains
is noted by LT . We assume that LT is a finite set, which is based on the fact
that the number of discrete domains is limited and the dynamics in the discrete
states is simple (a constant vector). Based on this, if t1 is sufficiently big, then
we can derive that from t1, ∀T ∈ LT is crossed by τ an infinite number of times.

Now the sequence of discrete domains crossed by τ from t1 can be described
by the infinite sequence (T1, T2, T3, ...), where ∀i ∈ N, Ti ∈ LT . And we can
get the following property of chaotic trajectories, which is used in the following
section to predict whether a trajectory is chaotic.

Property 1. ∃i ∈ N,∃k ∈ N, k ̸= 1, such that Ti ̸= Ti+1 and Ti = Ti+k.

Proof. This can be derived from the two facts: 1) ∃i ∈ N, such that Ti ̸= Ti+1;
2) ∀i ∈ N,∃k ∈ N, such that Ti = Ti+k. The first one is a direct result of the fact
that all elements of LT must appear in the sequence (T1, T2, T3, ...) and LT has
at least two elements. If the second one is not true, then Ti is crossed by τ for
finite times, which contradicts with the result that ∀T ∈ LT is crossed by τ an
infinite number of times. ⊓⊔
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3.2 Reachability analysis algorithm

In this section, we present our reachability analysis algorithm, see Algorithm 1,
where we call a transition from h to h′, noted h → h′, a minimal trajectory from
state h that reaches a new boundary in state h′. In other words, h → h′ can be
considered an atomic step of simulation, either instant (change of discrete state)
or not (with continuous time elapsed).

Algorithm 1 Reachability analysis algorithm
Input 1: A hybrid state h1 = (π1, ds1)
Input 2: A region R2 =

{
(π, ds2) | πi ∈ [ai, bi], i ∈ {1, 2, ..., N}

}
Output: “R2 is reached”, “R2 is not reached” or “unknown result”

1: Current state h := h1

2: while h is not a fixed point do
3: h′ := next state so that h → h′ is a transition
4: if Transition h → h′ reaches R2 then
5: return “R2 is reached”
6: else
7: h := h′

8: if Current simulation is attracted by a cycle of discrete domains then
9: if Stop_condition(Cycleh, CycleD, R2) returns Yes then

10: return “R2 is not reached”
11: else if Stop_condition(Cycleh, CycleD, R2) returns Reached then
12: return “R2 is reached”
13: end if
14: else if Current simulation is probably a chaotic trajectory then
15: return “unknown result”
16: end if
17: end if
18: end while
19: return “R2 is not reached”

To determine if the current simulation is attracted by a cycle of discrete
domains (line 8) or if the current simulation is probably a chaotic trajectory
(line 14), we use Theorem 2 or Property 1 respectively.

The objective of the function Stop_condition is, knowing that this trajectory
is attracted by a cycle of discrete domains, to determine if the trajectory can
reach R2 after an infinite number of transitions (see Fig 3 right). If it is the case,
the function returns “Reached”. Otherwise, if from the current state, there is no
more chance to reach R2 (see Fig 3 middle), then the function returns “Yes”. For
both cases, this function can give the right answer in finite time, and the result
stops the algorithm. However, if both cases do not apply, the function returns
“No” and the algorithm continues. The idea of the function Stop_condition is
similar to the proof of Theorem 1. Details about the function Stop_condition
are given in the Appendix.
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It can be proved that Algorithm 1 always stops in finite time. Firstly, if the
trajectory from h1 is a trajectory halting in finite time, then the algorithm stops
after a finite number of transitions. Secondly, if the trajectory is a chaotic tra-
jectory, then Property 1 will be satisfied after a finite number of transitions, and
once it is satisfied, the algorithm stops. Thirdly, if the trajectory is attracted by
a cycle of discrete domains, then there are three cases: 1. The trajectory reaches
R2 in finite time; 2. The trajectory reaches R2 after an infinite number of transi-
tions; 3 The trajectory does not reach R2. We assume here that Property 1 is not
satisfied before the trajectory reaching the attractive cycle of discrete domains
(the cycle of discrete domains which attracts the trajectory from h1). For case
1, the algorithm must stop in finite time, as the trajectory will eventually reach
R2. For case 2, the function Stop_condition returns "Reached" in finite time.
For case 3, the function Stop_condition returns "Yes" in finite time. Need to
mention that, since Property 1 is a necessary condition for that a trajectory is
chaotic, the algorithm might return inconclusive results (“unknown result”) even
in the cases that are decidable (trajectories are non-chaotic). In fact, among
HGRNs of gene regulatory networks, the cases that satisfy this necessary condi-
tion are likely to be very rare: there is no identified HGRN of a gene regulatory
network with either chaos or non-chaotic trajectory that satisfies this condition.
So, for now, this algorithm is sufficient for checking reachability in practice.

4 Conclusion

In this work, we propose a reachability analysis method for HGRNs. In the first
part of this work, we classify trajectories of HGRNs into different classes: trajec-
tories halting in finite time, trajectories attracted by cycles of discrete domains
and chaotic trajectories, and provide some theoretical results about these tra-
jectories regarding the reachability problem. Then, based on these theoretical
results, we provide the first reachability analysis algorithm for HGRNs.

This algorithm always stops, and it returns the correct answer to the reacha-
bility problem if it does not stop with the inconclusive result ("unknown result").
In the presence of chaos, the algorithm always stops with this inconclusive result.
However, so far, no model with such chaotic behavior has been identified in the
model repositories we use from real-life case studies. But the fact that a HGRN
with a chaotic trajectory has been identified is a motivation to investigate more.

In our future work, we will try to find other applications of this reachability
analysis method and mainly focus on the development of control strategies of
gene regulatory networks. Moreover, we are interested in improving the current
method to analyze reachability problems in chaotic trajectories.

ADDITIONAL INFORMATION

Link to the code: https://github.com/Honglu42/Reachability_HGRN/. Link
to the Appendix: https://hal.science/hal-04182253.

https://github.com/Honglu42/Reachability_HGRN/
https://hal.science/hal-04182253
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