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Introduction & Résumé

Analysis of the Dynamics
Efficient reachability analysis on large networks

Dynamical patterns enumeration with answer set
programming

Complex patterns enumeration with polyadic p-calculus

Learning Models from Data
Inference of constraints on hybrid parameters

Learning models from time series data

Learning New Knowledge from Models

Computational model to study hepatocellular
carcinoma progression

Integrate heterogeneous clinical, genetic, imaging data
with semantic web in order to learn variables of interest
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Frameworks
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Preliminary Abstraction
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Preliminary Abstraction
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Preliminary Abstraction
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Preliminary Abstraction

0 = inactive
1 = active
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Preliminary Abstraction

0 = complete degradation
1 = traces
2 = saturation
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Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

® A set of components N = {a, b, z}
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Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

® A set of components N = {a, b, z}

® A discrete domain for each component  dom(a) = [0; 2]

8
®
@ [0:1]

[0;1]
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Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

® A set of components N = {a, b, z}
® A discrete domain for each component  dom(a) = [0; 2]

® Discrete parameters / evolution functions f?:S — dom(a)
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Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]

[Thomas, Journal of Theoretical Biology, 1973]
® A set of components N = {a, b, z}
® A discrete domain for each component  dom(a) = [0; 2]
® Discrete parameters / evolution functions f?:S — dom(a)
. 2
® Signs & thresholds on the edges (redundant) a 2z
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Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]

[Thomas, Journal of Theoretical Biology, 1973]
® A set of components N = {a, b, z}
® A discrete domain for each component  dom(a) = [0; 2]
® Discrete parameters / evolution functions f?:S — dom(a)
. 2
® Signs & thresholds on the edges (redundant) a 2z
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Semantics = From this information, what is (are) the next state(s)?
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Asynchronous Automata Networks (AAN)

[Paulevé et al., Transactions on Computational Systems Biology, 2011]
[Folschette et al., Theoretical Computer Science, 2015a]
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Asynchronous Automata Networks (AAN)

[Paulevé et al., Transactions on Computational Systems Biology, 2011]
[Folschette et al., Theoretical Computer Science, 2015a]
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Asynchronous Automata Networks (AAN)

[Paulevé et al., Transactions on Computational Systems Biology, 2011]
[Folschette et al., Theoretical Computer Science, 2015a]
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Asynchronous Automata Networks (AAN)

[Paulevé et al., Transactions on Computational Systems Biology, 2011]
[Folschette et al., Theoretical Computer Science, 2015a]
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Asynchronous Automata Networks (AAN)

[Paulevé et al., Transactions on Computational Systems Biology, 2011]
[Folschette et al., Theoretical Computer Science, 2015a]

Maxime FOLSCHETTE 6/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks o Frameworks

Asynchronous Automata Networks (AAN)
[Paulevé et al., Transactions on Computational Systems Biology, 2011]
[Folschette et al., Theoretical Computer Science, 2015a]

Model from [Francois et al., Molecular Systems Biology, 2007]

Semantics = How to combine actions to compute the next state(s)?
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Semantics

10 11

Maxime FOLSCHETTE 7/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks o Frameworks

focal point
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focal point
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focal point
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Semantics
focal point focal point focal point
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The state-graph depicts explicitly the whole dynamics
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The state-graph depicts explicitly the whole dynamics
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The state-graph depicts explicitly the whole dynamics
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State-graph

The state-graph depicts explicitly the whole dynamics
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State-graph

The state-graph depicts explicitly the whole dynamics
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® Stable state = state with no successors
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State-graph

The state-graph depicts explicitly the whole dynamics

® Stable state = state with no successors

® Complex attractor = minimal loop or composition of loops from which
the dynamics cannot escape
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State-graph

The state-graph depicts explicitly the whole dynamics

.abz

® Stable state = state with no successors

® Complex attractor = minimal loop or composition of loops from which
the dynamics cannot escape

® Reachability = from 201, can | reach 0007
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Combinatorial explosion

Model Possible states
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Translation of AAN models
[Folschette et al., Computational Methods in Systems Biology, 2012]

Before: Process Hitting Thomas modeling
Efficient but recent Widespread & readable
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Translation of AAN models
[Folschette et al., Computational Methods in Systems Biology, 2012]

Before: Process Hitting Thomas modeling
Efficient but recent Widespread & readable
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Translation of AAN models
[Folschette et al., Computational Methods in Systems Biology, 2012]

Before: Process Hitting Thomas modeling
Efficient but recent Widespread & readable
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Towards AANs

[Folschette et al., CS2Bio’13, 2013)]

Before: Process Hitting Thomas modeling
Loose behavior Expected behavior
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Towards AANs

[Folschette et al., CS2Bio’13, 2013)]

Q QP [q OF
\

Now: AANs Thomas modeling
Accurate behavior Expected behavior
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Analysis of the Dynamics

Efficient reachability analysis on large

networks
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Approximations of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
[Folschette et al., Theoretical Computer Science, 2015a]

® Directly checking R is hard (exponential)

® Rather check approximations P and Q so that: P = R = Q
so that computing P and Q is faster (roughly polynomial)

Exact solution
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Approximations of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
[Folschette et al., Theoretical Computer Science, 2015a]

® Directly checking R is hard (exponential)

® Rather check approximations P and Q so that: P = R = Q
so that computing P and Q is faster (roughly polynomial)

-Q

Over-approximation

\

Exact solution
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Approximations of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
[Folschette et al., Theoretical Computer Science, 2015a]

® Directly checking R is hard (exponential)

® Rather check approximations P and Q so that: P = R = Q
so that computing P and Q is faster (roughly polynomial)
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Over-approximation
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Approximations of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
[Folschette et al., Theoretical Computer Science, 2015a]

® Directly checking R is hard (exponential)

® Rather check approximations P and Q so that: P = R = Q
so that computing P and Q is faster (roughly polynomial)

-Q

Over-approximation

\

Exact solution \

Under-approximation
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Approximations of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
[Folschette et al., Theoretical Computer Science, 2015a]

® Directly checking R is hard (exponential)

® Rather check approximations P and Q so that: P = R = Q
so that computing P and Q is faster (roughly polynomial)

-Q

Over-approximation

\

Exact solution \

Under-approximation
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Approximations of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
[Folschette et al., Theoretical Computer Science, 2015a]

® Directly checking R is hard (exponential)

® Rather check approximations P and Q so that: P = R = Q
so that computing P and Q is faster (roughly polynomial)

Q [ )
Over-approximation
o P
[ J
[ ] \

Under-approximation
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Approximations of the Dynamics

[Paulevé et al., Mathematical Structures in Computer Science, 2012]
[Folschette et al., Theoretical Computer Science, 2015a]

® Directly checking R is hard (exponential)

® Rather check approximations P and Q so that: P = R = Q
so that computing P and Q is faster (roughly polynomial)

Q [ )
Over-approximation
\ :
o P
[ J
[ ] o \

Under-approximation
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]

a M a —
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]

a r* ay >0—
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]

. Sufficient condition:

® No cycle

® No conflict

® All leaves are

firtf —o—o{2]
aor)*a1

ol o

P is true = R is true
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]

. Sufficient condition:

® No cycle

® No conflict

~ Albdeaves are |

Clr*Co%Hn—’-—’aoﬁ ao%
o—{ (B} —{a}— 55

fi P*fi >0

for™fi
P is false = Cannot conclude
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]

. Sufficient condition:

® No cycle

® No conflict

~ Albdeaves are |

fi P*fy >0

for™fi
P is false = Cannot conclude
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]

. Sufficient condition:

® No cycle

® No conflict

® All leaves are

fi P*fy >0

i XA
P is false = Cannot conclude
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Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]

. Sufficient condition:

® No cycle

® No conflict

® All leaves are

P is true = R is true
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Implementation of the Abstract Interpretation
[Folschette et al., Theoretical Computer Science, 2015b]
Complexity:
® Computation of the local causality graph:
® Polynomial in the number of automata
® Exponential in the number of local states of each automata (usually low)
® Check of the sufficient condition:
® Polynomial in the size of the abstract graph
® Enumeration of the subsets of solutions, if needed:
® Exponential in the size of the abstract graph
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Implementation of the Abstract Interpretation
[Folschette et al., Theoretical Computer Science, 2015b]
Complexity:
® Computation of the local causality graph:
® Polynomial in the number of automata
® Exponential in the number of local states of each automata (usually low)
® Check of the sufficient condition:
® Polynomial in the size of the abstract graph
® Enumeration of the subsets of solutions, if needed:
® Exponential in the size of the abstract graph

Very efficient on biological networks

Model || Automata | Actions | States libddd?! GINsim? | PINT3

egfr20 35 670 2064 <ls 0.02s
tcrsigd0 54 301 273 00 0.02s
tcrsig94 133 1124 2194 >1min — 0o 0.03s
egfr104 193 2356 2320 >1min — co 0.16s

1 LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]

2 TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]

3 Loic Paulevé [Paulevé, Computational Methods for Systems Biology, 2017]

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]
tersigd0 : T-Cell Receptor (40 components) [Klamt et al., 2006]

tersig94 : T-Cell Receptor (94 components) [Saez-Rodriguez et al., 2007]
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Analysis of the Dynamics

Dynamical Patterns Enumeration with

Answer Set Programming
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Using Answer Set Programming
for Model-Checking

Useful when:
® The abstract method is inconclusive
® Looking for complex patterns (attractors)

® Using a different update dynamics (synchronous)

Idea: Go back to an exhaustive analysis, but with heuristics
= Answer Set Programming
= Clingo grounder + solver (Potassco project)

Approach:
1) Describe the problem
2) Enumerate all candidate solutions

3) Filter out unwanted results (not part of the final solution)
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Answer Set Programming Concepts

Answer Set Programming (ASP): Declarative & logic programming

Rule: Ay < Ai, ..., An, not Apy1, ..., not Ap.
~—
head body

® not A; is true if there is no proof of A; (negation by failure)
® If body is true, then head must be true (logical consequence)
® We search for minimal answer sets (there can be 0, 1, many)
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Answer Set Programming Concepts

Answer Set Programming (ASP): Declarative & logic programming

Rule: Ay < Ai, ..., An, not Apy1, ..., not Ap.
~—
head body

® not A; is true if there is no proof of A; (negation by failure)
® If body is true, then head must be true (logical consequence)
® We search for minimal answer sets (there can be 0, 1, many)

Fact: head < T. e head is always true
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Answer Set Programming Concepts

Answer Set Programming (ASP): Declarative & logic programming

Rule: Ay < Ai, ..., An, not Apy1, ..., not Ap.
~—
head body

® not A; is true if there is no proof of A; (negation by failure)
® If body is true, then head must be true (logical consequence)
® We search for minimal answer sets (there can be 0, 1, many)

Fact: head. e head is always true

Constraint: | + body. e Invalidate this answer set if body is true
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Answer Set Programming Concepts

Answer Set Programming (ASP): Declarative & logic programming

Rule: Ay < Ai, ..., An, not Apy1, ..., not Ap.
~—
head body

® not A; is true if there is no proof of A; (negation by failure)
® If body is true, then head must be true (logical consequence)
® We search for minimal answer sets (there can be 0, 1, many)

Fact: head. e head is always true

Constraint: | + body. e Invalidate this answer set if body is true

1) Describe the problem with facts and rules

node(a). node(b). node(c). e
edge(a, b). edge(b,c). edge(a,c).

edge(X,Y) « edge(Y, X). e.e
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Answer Set Programming Concepts

Answer Set Programming (ASP): Declarative & logic programming

Rule: Ay < Ai, ..., An, not Apy1, ..., not Ap.
~—
head body

® not A; is true if there is no proof of A; (negation by failure)
® If body is true, then head must be true (logical consequence)
® We search for minimal answer sets (there can be 0, 1, many)

Fact: head. e head is always true

Constraint: | + body. e Invalidate this answer set if body is true

1) Describe the problem with facts and rules

node(a). node(b). node(c). e
edge(a, b). edge(b,c). edge(a,c).

edge(X,Y) « edge(Y, X). e.e

Answer set 1: node(a) node(c) node(b)
edge(a,b) edge(b,c) edge(a,c)
edge(b,a) edge(c,b) edge(c,a)
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Answer Set Programming Concepts

Enumeration:  atom : criterion

® Enumerates all atoms of the form atom according to criterion
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Answer Set Programming Concepts
Enumeration:  atom : criterion
® Enumerates all atoms of the form atom according to criterion

Cardinalities:  min { atom : criterion } max < body.

® Keep between min and max possibilities
® Creates as many answer sets as there are combinations

Maxime FOLSCHETTE 20/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks o Dynamical patterns enumeration with ASP

Answer Set Programming Concepts

Enumeration:  atom : criterion

® Enumerates all atoms of the form atom according to criterion

Cardinalities:  min { atom : criterion } max < body.

® Keep between min and max possibilities
® Creates as many answer sets as there are combinations

2) Enumerate of all candidate solutions using cardinalities
color(red). color(green). color(blue).
1 { attrib(X, C) : color(C) } 1 + node(X).

Answer set 1: attrib(b,red) attrib(c,red) attrib(a,red)
Answer set 2: attrib(b,red) attrib(c,red) attrib(a,blue)
Answer set 3: attrib(b,red) attrib(c,green) attrib(a,blue)

(27 answer sets)
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Answer Set Programming Concepts

3) Filter out the undesired candidates using constraints
L <« attrib(X, C), attrib( Y, C), edge(X, Y).

Answer set 1:
Answer set 2:
Answer set 3:
Answer set 4:
Answer set 5:
Answer set

o oe 0eo
oe os e

attrib(b,green) attrib(c,blue) attrib(a,red)
attrib(b,green) attrib(c,red) attrib(a,blue)
attrib(b,blue) attrib(c,green) attrib(a,red)
attrib(b,blue) attrib(c,red) attrib(a,green)
attrib(b,red) attrib(c,green) attrib(a,blue)
attrib(b,red) attrib(c,blue) attrib(a,green)

O (U1 [ (O [N) [
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Steady States
[Ben Abdallah et al., IEEE Int. Conf. on Bioinformatics and Biomedicine, 2015]

Steady States Enumeration (fixed points)
1) Describe the raw model with facts (automata, actions, playability)
2) Enumerate all possible states

3) Filter out states where at least one action is playable

Note: Identical for both synchronous and asynchronous semantics
— Consistent with existing results on steady states
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Reachability & Attractors

[Ben Abdallah et al., IEEE Int. Conf. on Bioinformatics and Biomedicine, 2015]
[Ben Abdallah et al., Algorithms for Molecular Biology, 2017]

Reachability analysis (reaching a given state)

1) Describe the raw model with facts
(automata, actions, initial states, targets)
2) Develop the dynamics:

[a] describe playability with rules
[b] enumerate potential futures with cardinalities and constraints

3) Filter out paths that don't contain the target state

Attractors Enumeration (find all smallest terminal components)

3) Filter out paths that are not cyclic and that can be escaped
Note: [a] can be adapted to any semantics

— Already tested with synchronous & asynchronous
—» Other possible: general, with delay, with memory...
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Conclusion on ASP for Model-Checking

[Ben Abdallah et al., IEEE Int. Conf. on Bioinformatics and Biomedicine, 2015]
[Ben Abdallah et al., Algorithms for Molecular Biology, 2017]

® Very flexible (programming language)

Pros: ® Complexity handled by the solver
C ® Incremental approach (size of the paths)
ons: . .
® Still computational
Models Stable states Reachability analysis
Name | Size ASP libddd" | GINsim® | ASP
egfr20 | 20 0.017s 1min 55s | 2min 32s 12s
tersigd0 | 40 0.021s 00 00 4min 28s

1 LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]
2 TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]

egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
tersigd0 : T-Cell Receptor (40 components) [Klamt et al., 2006]
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Conclusion on ASP for Model-checking
[Ben Abdallah et al., Algorithms for Molecular Biology, 2017]

Attractors enumeration

Models asynchronous scheme synchronous scheme
(Size) n At (ms) I7A At (ms) 37A
Lambda 2 14 yes 14 yes
phage 10 1,352 no 842 no
(4) 20 15,656 no 14,452 no
2 26 no 25 no
Tersig 6 353 no 288 yes
(40) 10 2,420 no 1,841 no
20 85,599 no 27,078 no
2 38 no 36 no
(FS%'): 10 2,080 no 1,953 no
20 30,861 no 29,838 no
2 180 no 125 yes
4 782 no 1,064 no
T-helper 6 4,271 no 2,372 yes
(101) 9 26,443 no 7,042 yes
12 107,358 no 28,520 yes
20 | 4,230,836 ~ 1h17 no 187,105 ~ 3min no

Lambda phage: Lysis/lysogenization decision in bacteriophage lambda [Thieffry & Thomas, 1995]
FGF: Drosophila FGF signaling pathway [Mbodj et al., 2013]
T-helper: T-helper cell differentiation [Abou-Jaoudé et al., 2014]
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Learning Models from Data

Learning Models from Time Series Data
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Learning Models from Execution Traces

ibeiro et al., Inductive Logic Programming, 2018
Rib 1., Ind| L P 20 ACEDIA
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Semantics

Black box —)  State graph

S ti
Learned % State gra ph

model
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Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Semantics
Black box —)  State graph
AN
Identical
v
S ti
Learned _)eman _ State graph

model
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Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Semantics

Black box —)  State graph
AN
Identical
2(1) + a(2). v

2(1) « b(1).

) Semantics
z(1 1 b(0).
bgl) : 322) A b(0) ﬁ State graph

) )-
b(0) « a(0).
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Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Semantics

Black box —)  State graph

AN

Identical

()X v
Semantics

1,‘ 1— < @ ﬁ State graph
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Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Semantics

Biological —)  State graph

system

Semantics

1-‘ 1— N @ ﬁ State gl’aph

Maxime FOLSCHETTE 27/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks o Learning Models from Time Series Data

Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Biological Semantics

ﬁ
system

2 S ti
HL X ©) w} State graph
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Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Biological Semantics

ﬁ
system

Equivalent
(discretization)

2 S ti
HL X ©) w} State graph
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Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Biological Semantics

system !

No discretization Equivalent
(ACEDIA) (discretization)

2 S ti
1-‘ 1— . @ % State gl’aph
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Learning Models from Execution Traces

[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Biological Semantics

system !

Unknown semantics
(GULA) No discretization Equivalent
(ACEDIA) (discretization)

2 S ti
1-‘ 1— . @ % State gl’aph
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Logic Rule
() — XM —1) A xR(E—1) A LA X (E—1) .
N—_——
head body
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Logic Rule

n

() = {q™(e-1), 5™ (1), ..., 7 (t-1) } .
——

head body
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Logic Rule
valy vah vah val,
Xp — {7 xR L X )
head body
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Logic Rule
val val val, val,
PSR (P SG S SN G
head body

— When body is true, head is a potential outcome
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Logic Rule
valy vah vah val, }
Xy — {7 xR L Xy
head body
— When body is true, head is a potential outcome
at < {a°, b° '},
Examples: b' + {c'}.
.
28/37 Séminaire MSV — 2020-01-07
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Logic Rule

valy vah val, val,
Xy — {7 xR L X )

head body

— When body is true, head is a potential outcome

at < {a°, b° '},
Examples: b' + {c'}. all match (2, b°, c*)
&« o

A rule R matches a state s iff body C s
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Logic Rule

valy vah val, val,
Xy — {7 xR L X )
head body

— When body is true, head is a potential outcome
at < {a°, b° '},

Examples: b' + {c'}. all match (2, b°, c*)
.

A rule R matches a state s iff body C s

— If the rule matches a state s then
there exists a successor state s — s’ so that head € s’

Semantics: same as for discrete networks
(synchronous, asynchronous, generalized)
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Model as a Logic Program

Discrete model: Logic program:

@
®)

+ Parameters
or logic gates
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Model as a Logic Program

Discrete model: Logic program:

b(1) + a(1).
O o o
o @
(b)

+ Parameters
or logic gates
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Model as a Logic Program

Discrete model: Logic program:
b(1) < a(1).
@ b(1) + a(2).
b(0) + a(0).
2+

and @ z(1) + a(2)
@ z(0) « a(0).
1+ z(0) «+ a(1).
(0) )
+ Parameters

or logic gates
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Model as a Logic Program

Discrete model: Logic program:
b(1) < a(1).
@ b(1) + a(2).
b(0) + a(0).
2+

or @ z(1) « a(2).
@ z(1) « b(1).
1+ 2(0) + a(1) A b(0).
(0) )
+ Parameters

or logic gates
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Model as a Logic Program

Discrete model: Logic program:

b(1) < a(1).

@ b(1) + a(2).

b(0) + a(0).

@ z(1) « a(2).

@ z(1) « b(1).
z(0) < a(1) A b(0).

(0) )

+ Parameters
or logic gates etc...
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GULA: Algorithm

® Start from the most general program: {x** +~ @. | x € V Aval € dom(x)}
® For each state s, for each rule R that allows a behavior not observed after
s:

— Make minimal revisions on R (add an atom not in s)

® Remove all rules that are not the most general
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GULA: Algorithm

® Start from the most general program: {x** +~ @. | x € V Aval € dom(x)}

® For each state s, for each rule R that allows a behavior not observed after
s:
— Make minimal revisions on R (add an atom not in s)

® Remove all rules that are not the most general

Formally proved with transitions generated in synchronous, asynchronous and
generalized semantics; should also work for a wider class of semantics

But what if the semantics “hides” some parts of the program?

— We should learn the semantics too! (In progress...)
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(Continuum) Logic Program
D
@4

Discrete partitioning:

a=1[0;2]
b=10;1]
z=1[0;1]
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(Continuum) Logic Program

Discrete partitioning:

a=1[0;2]
b=10;1]
z=1[0;1]

Discrete Logic Program:

b(1) + a(1).
b(1) + a(2).
b(0) + a(0).

2(1) « a(2) A b(1).

Maxime FOLSCHETTE 31/37
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(Continuum) Logic Program

@ 1+
530
(b))~

Discrete partitioning: Continuous partitioning:

a=1[0;2] a=[0-03-06-1]
b=[0;1] b=[0 — 05 — 1]
z =[0;1] z=[0 — 08-1]

Discrete Logic Program:

b(1) + a(1).
b(1) + a(2).
b(0) + a(0).

2(1) « a(2) A b(1).
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(Continuum) Logic Program

@ 1+
530
(b))~

Discrete partitioning: Continuous partitioning:

a=1[0;2] a=[0-03-06-1]
b =[0;1] b=[0 - 05 — 1]
z =[0;1] z=[0 — 08-1]
Discrete Logic Program: Continuum Logic Program:
b(1) + a(1). b([0.5,1]) « a([0.3,0.6]).
b(1) < a(2). b([0.5,1]) « a([0.6, 1]).
b(0) + a(0). b([0,0.5]) « a([0,0.3]).
z(1) < a(2) A b(1). z([0.8,1]) < a([0.3,0.6]) A b([0.5,1]).
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ACEDIA: Refinement of the Continuum Logic Program

INPUT: OUTPUT:
A continuum logic program
Equivalent to a regulatory network

A set of time series data

p([0,0.5]
p([0.5,1]
q([0,0.5]
q([05,1]
r([0,0.5]
r([0.5,1]

+ q([0,0.5]).
+ q([0.5,1]).

+ p([0,0.5]) A r([0.5,1]).
+ p([0.5,1]) A r([0.5,1]).
)

).

+ p([0.5,1]
+ p([0,0.5]

— — — — — —
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ACEDIA: Refinement of the Continuum Logic Program

INPUT: OUTPUT:
A continuum logic program
Equivalent to a regulatory network

A set of time series data

- p([0,0.5]) + ([0, 0.5]).
— S p([0.5,1]) + q([0.5,1]).
4([0,0.5]) + p([0,0.5]) A r([0.3,1]).
q([0.5,1]) « p([0.5,1]) A r([0.3,1]).
’ r([0,0.3]) < p([0.5,1]).
r([0.3,1]) < p([0,0.5]).
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ACEDIA: Refinement of the Continuum Logic Program

INPUT:
A set of time series data

Maxime FOLSCHETTE

OUTPUT:
A continuum logic program
Equivalent to a regulatory network

p([0,0.5]) < q([0,0.5]).
p([0.5,1]) < q([0.5, 1]).
4([0,0.5]) « p([0,0.5]) A r([0.3, 1]).
q([0.5,1]) « p([0.5,1]) A r([0.3, 1]).
r([0,0.3]) « p(]0.5, 1]).
r([0.3,1]) < p([0,0.5]).

® Pros: No discretization of the data

® Cons: Sensitive to noise,
synchronous semantics only
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Conclusion: Learning from Time Series

Challenges:

® Discretization
A different discretization gives a different result

® Partial data
Predict parts of the system

® Unknown semantics
Measurment-dependent

® Heterogeneous “semantics”
Organism-dependent

® Changing behavior
Stochasticity

® Chronometry over chronology
Learn time delays

® Learn from real data
Avoid learning noise
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Conclusion: Learning from Time Series

Challenges:

® Discretization — ACEDIA
A different discretization gives a different result

® Partial data — LUST
Predict parts of the system

® Unknown semantics — GULA
Measurment-dependent

® Heterogeneous “semantics”
Organism-dependent

® Changing behavior
Stochasticity

® Chronometry over chronology
Learn time delays

® Learn from real data
Avoid learning noise
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Conclusion: Learning from Time Series

Challenges:

® Discretization — ACEDIA
A different discretization gives a different result

® Partial data — LUST
Predict parts of the system

® Unknown semantics — GULA
Measurment-dependent

® Heterogeneous “semantics” — Ongoing...
Organism-dependent

® Changing behavior — Ongoing...
Stochasticity

® Chronometry over chronology
Learn time delays

® |earn from real data
Avoid learning noise
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Future works

Harmful Algae 72 (2018) 1-13

Contents lists available at ScienceDirect

Harmful Algae

R journal homepage: www.elsevier.com/locate/hal

Realized niche analysis of phytoplankton communities involving HAB: | ®)

. Ghack for

Phaeocystis spp. as a case study

Stéphane Karasiewicz™*, Elsa Breton?, Alain Lefebvre®, Tania Hernandez Farifias®,

4 : d

Sébastien Lefebvre®

2 Univ. Lille, CNRS, Univ. Littoral Cote d’Opale, UMR 8187, LOG Laboratoire d'Océanologie et Géosciences, F 62930 Wimereux, France

® Ifremer, laboratoire Environnement et ressources du centre Manche Mer du Nord, 150 quai Gambetta, BP 699, 62321 Boulogne-sur-Mer, France

©Ifremer, Laboratoire Environnement Ressources de Normandie, Avenue du Général de Gaulle, BP 32, 14520 Port en Bessin, France

< [fremer, Laboratoire Ressources Halieutiques, 150 Quai Gambetta BP 699, F-62321 Boulogne sur mer, France

ARTICLE INFO ABSTRACT

Article history:

Received 9 June 2017 The link between harmful algal blooms, phytoplankton community dynamics and global environmental

Received in revised form 9 December 2017 change is not well understood To tackle this cha]lengmg question, a new method was used to reveal how

Accgpted 1 pecember 2017 C itie to change with the occurrence of an harmful

Available online xxx a]gae using the coastal waters of the eastern English Channel as a case study. The great interannual
variability in the magnitude and intensity of Phaeocystis spp. blooms, along with diatoms, compared to

Keywords: the ongoing gradual decrease in anthropogenic nutrient concentration and rebalancing of nutrient ratios;

H?"“f“' algae bloom suggests that other factors, such as competition for resources, may also play an important role. A realized

WitoMI niche annraach wac nced with the Ontlvine Mean Index analvcic and the dunamics of the sneciec’ realized

Maxime FOLSCHETTE Séminaire MSV — 2020-01-07




Analysis and Learning of Dynamical Biological Networks o Learning Models from Time Series Data

Future works

FISEVIER

Boulogne
—
-~ Liane
/

Realized nic
Phaeocystis s

Gheck for
updates.

Stéphane Karasi
Sébastien Lefeby =
2 Univ. Lille, CNRS, Univ. Litt 8
® Ifremer, laboratoire Environ]
€ [fremer, Laboratoire Enviro
< Ifremer, Laboratoire Ressou =z

&

2
ARTICLE INFO 0 10 20 km
Article history: z [
Received 9 June 2017 g T and global environmental
Received in revised form 9| n . Source : IFREMER | hod was used to reveal how
Accepted 11 December 20 T T T T occurrence of an harmful
Available online xxx 1.0°E 1.5°E 2.0°E 2.5°E udy. The great interannual

ith diatoms, compared to

Keywords: . [NCONgomMg graduar decTease M antNTopogenic NUTITENT CONCentration and rebalancing of nutrient ratios;
Harmful algae bloom suggests that other factors, such as competition for resources, may also play an important role. A realized
WitoMI niche annraach wac nced with the Ontlvine Mean Index analvcic and the dunamics of the sneciec’ realized

Maxime FOLSCHETTE 34/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks o Learning Models from Time Series Data

Future works

SEANSE

SRN dataset - Regional Observation and
Monitoring Program for Phytoplankton and
Hydrology in the eastern English Channel.
1992-2016
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Abstract
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Maxime FOLSCHETTE

2017-09
19922016

SRN - Regional Observation and Monitoring program for Phytoplankton and Hydrology in the
eastern English Channel

Lefebvre Alain®, Blondel Camille, Duquesne Vincent, Hebert Pascale, Cordier Remy, Belin Catherine
®, Huguet Antoine, Durand Gaetane, Soudant Dominique(®

10.17882/50832

NOE

This SRN dataset includes long-term time series on marine phytoplankton and physico-chemical
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Future works
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Thank you

Frameworks

® Thomas modeling, asynchronous automata networks

Analysis of the Dynamics
o Efficient reachability analysis on large networks
e Dynamical patterns enumeration with answer set programming

e Complex patterns enumeration with polyadic p-calculus

Learning Models from Data
o Inference of constraints on hybrid parameters

e Learning models from time series data

Learning New Knowledge from Models
e Computational model to study hepatocellular carcinoma progression

e Integrate heterogeneous clinical, genetic, imaging data with semantic web
in order to learn variables of interest
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Collaborations

Olivier Morgan Katsumi Loic Emna Tony
ROUX MAGNIN INOUE PAULEVE BEN ABDALLAH RIBEIRO
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Analysis of the Dynamics

Using p-calculus for Complex Dynamical

Patterns Enumeration
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Polyadic p-calculus

Polyadic (modal) p-calculus allows to manipulate several tokens in parallel
e=pilijli=jl-elenpleVe|Oip|Lip|uXp|vXe|X

e Modal operators: [ (“for all successors”), ¢ (“there exists a successor”)
e Fixed points: u (least fixed point), v (greatest fixed point)
e Tokens (/, j) and their manipulation (i = j and i + j)
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Polyadic p-calculus

CTL*

Polyadic (modal) p-calculus allows to manipulate several tokens in parallel
e=pilijli=jl-elenpleVe|Oip|Lip|uXp|vXe|X

e Modal operators: [ (“for all successors”), ¢ (“there exists a successor”)
o Fixed points: y (least fixed point), v (greatest fixed point)
e Tokens (/, j) and their manipulation (i = j and i + j)
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Polyadic p-calculus

Modal
p-calculus

Explicit fixed points

Polyadic (modal) p-calculus allows to manipulate several tokens in parallel
e=pilijli=jl-elenpleVe|Oip|Lip|uXp|vXe|X

e Modal operators: O (“for all successors”), O (“there exists a successor”)
e Fixed points: p (least fixed point), v (greatest fixed point)
e Tokens (/, j) and their manipulation (i = j and i + j)
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Polyadic p-calculus

Polyadic Modal

p-calculus | p-calculus

|
Multiple dynamical tokens Explicit fixed points

Polyadic (modal) p-calculus allows to manipulate several tokens in parallel
e=pilijli=jl-elenpleVe|Oip|Lip|uXp|vXe|X

e Modal operators: O (“for all successors”), O (“there exists a successor”)
e Fixed points: p (least fixed point), v (greatest fixed point)
e Tokens (/, j) and their manipulation (i = j and i + j)
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Learning Models from Biological Data

Learning Models from Time Series Data:

Complements
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GULA: Algorithm

® Start from the most general program:
P = {x* « @.|x € V Aval € dom(x)}

® For each state s:
— For each rule in conflict with the outcomes of s
(that is, each rule R that allows a behavior not allowed after s)
— Make minimal revisions on R to prevent this conflict

® Remove all rules that are not the most general
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GULA: Minimal Revision of a Rule

The algorithm successively takes into account groups of transitions and
performs minimal modifications on the program learned so far

Let R a rule in conflict with the current transitions, that is: there exists a state
s so that R matches s, but Vs’ € S so that s — s, head(R) ¢ s’

That is: R expresses a potential outcome for a variable which never happens in
s

Least specialization of R by s:
R :
Lspe(R; 5)

head < body

{head < body U {x"'} | x*' ¢ s AWval' € N,x" ¢ body}

Least revision of P by a set of transitions T:

Le(P,T) == (P\Re)U | J Loe(R,5)

RERp
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Scope of GULA

This learning should be independent from the semantics!

Formally proved: Compatible with transitions generated in synchronous,
asynchronous and generalized semantics

Expectation: Compatible with a wider class of “learnable” semantics
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Limits of our Definition of Semantics

Formally, a semantics is a function that, to each program, associates a set of
transitions (with no dead-end)

{Set of all programs} — (S — p(S)\ @)

Maxime FOLSCHETTE 44/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks o Learning Models from Time Series Data: Complements

Limits of our Definition of Semantics

Formally, a semantics is a function that, to each program, associates a set of
transitions (with no dead-end)

{Set of all programs} — (S — p(S)\ @)

Not constrained enough as it allows some unwanted cases:

® a semantics where all variables are always updated to 0, disregarding any
actual rules

® a semantics which behaves differently on one specific program (exception)

— The program can be "hidden” and thus cannot be learned
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Limits of our Definition of Semantics

Formally, a semantics is a function that, to each program, associates a set of
transitions (with no dead-end)

{Set of all programs} — (S — p(S)\ @)

Not constrained enough as it allows some unwanted cases:

® a semantics where all variables are always updated to 0, disregarding any
actual rules

® a semantics which behaves differently on one specific program (exception)

— The program can be "hidden” and thus cannot be learned

Outcomes:
® Semantics should take into account the given program

® We can also learn the semantics (for now, we give a characterization)

Maxime FOLSCHETTE 44 /37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks o Parameters Constraints Inference

Learning Models from Biological Data

Inference of Constraints on Hybrid

Parameters
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Hybrid Thomas Modeling

Simplified circadian cycle Day/light cycle

01 11 ¢ 21
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Hybrid Thomas Modeling

BA
1 /
4
Caz.0 Ca{m}1 Ca{m}.2 AN
Ceoa B.o.1 CB,{m}.1 \
[
.
.
0
Ca{ms}.0 Ca {myms} 2
B,2,0 , CB,[m2},0
1 2 A
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Hybrid Hoare Logic to Infer Parameters
[Behaegel et al., TIME’17, 2017]

Ts T> T1
777 D()E(T]A:2/\7]B:0)
229 T | T T _
e B+ B— A+ Ho = (7Tinitial = ﬂ'final)
BA slide(B)
1 /
¥
Ca.0 Ca{m}a1 Ca{m}2 *
Coo1 B.z,1 C {my} .1 N
AY
L
N
N
.
- \
0 \
Ca{ms}.0 Ca,{my,m3}.1 Ca {myum} 2
CB,o.0 CB,z.0 LCB(m}.0
_____ 7 »
1 2 A
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(Y = 0.12) A (8, = 0.22) A () = ) A (7] = 1) A ((Ci,msy.0 > 0) A () =

(71 = (Cuogmsy,0 X 6:6))) A ((—((Cgoz.0 > 0) A (w2 > (mh — (Cgoz,0 X 66)))) A (—((Cpe,z1 < 0) A (. <
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(m3 = (Cooa ><54)))))A(( ((Cpc may1 < O) A (3, < (75, = (Cpe,gmay1 X 5.4))) A (—=((CLiz 0 > 0) A (m} >
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Results

¢ Simplifications of the constraints — Not very effective

® Using a non-linear solver: AbSolute — We obtain solutions

® Results checked with a simulation:

Simulation with 1 set of compatible values Experiments
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Learning New Knowledge from Models

Computational Model to Study

Hepatocellular Carcinoma Progression
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Graph content: -

® 3'383 nodes in -
® 13’771 edges s = -
11’661 - - - - - 7,
activations -: -
2'110 - e - )i
inhibitions - - -
- - - " =
- - -
- l-: - & - /.
1913 genes from the < T Y 1 e
differential expression - = L b T el __:.
Only 209 are found - o S S ===
in Kegg: e, = Ty - = =
® 138 up-regulated = - e - o
® 71 down-regulated g > - -
3174 new nodes - < LT S
Nodes with up to: o = -
92 incoming influences e, S

79 outgoing influences
— Nodes with a lot of
impact on the network
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Graph Coloring

® Coloring = information attached to nodes about over- or under-expression

@ = over-expressed @ = under-expressed

® Provenance = experimental (expression data) & computational (inference)

Given by the
experimental data
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Graph Coloring

® Coloring = information attached to nodes about over- or under-expression

@ = over-expressed @ = under-expressed

® Provenance = experimental (expression data) & computational (inference)

Consistent
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Graph Coloring

® Coloring = information attached to nodes about over- or under-expression

@ = over-expressed @ = under-expressed
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Consistent Consistent
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Graph Coloring

® Coloring = information attached to nodes about over- or under-expression

@ = over-expressed @ = under-expressed

® Provenance = experimental (expression data) & computational (inference)

o de o

Consistent Consistent Inconsistent
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Graph Coloring

® Coloring = information attached to nodes about over- or under-expression

@ = over-expressed @ = under-expressed

® Provenance = experimental (expression data) & computational (inference)

XTI IX L

Consistent Consistent Inconsistent Inconsistent
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Graph Coloring

® Coloring = information attached to nodes about over- or under-expression

@ = over-expressed @ = under-expressed

® Provenance = experimental (expression data) & computational (inference)

Consistent Consistent

® Compute all colorings without inconsistencies

® Prediction = a node that is always colored the same

Here, only 1 prediction: @

® All computed by lggy [Thiele et al., BMC Bioinformatics, 2015] (Answer
Set Programming)
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Prediction Results

p
New results compared to experimental data: complexes

Complexes predicted:

o NFKB1:BCL3 (@)
o NFKB2:RELB (@)
o JUND:NACA (@)

. J

Results conflicting with experimental data

Predictions which are different from differential analysis:

® BAK1_gen, BMP4_gen, CREB1_prot, EIF4AEBP2_prot, IGFBP3_gen,
IGFBP3_prot, NROB2_gen, NROB2_ prot, NR1H4_gen, NR1H4_ prot,
NR3C2_gen, NR3C2_ prot, SESN3_gen, SESN3_prot, THBS1_gen,
TNFRSF10A_gen, TP53_prot
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Hub example: TP53_prot

18 predictions directly depend of TP53_prot
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Learning New Knowledge from Models

Create a Knowledge Graph of Clinical Data
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INEX-MED Project

® Multiple data sources:
clinical /diagnosis, imaging, microscopy,
genomics

® Text/tabulated, not interoperable

® 2 use cases: intracranial aneurysm &
congenital myopathies

Objectives:

® Create a general knowledge graph of
Linked Data

® SPARQL queries on all sources

® Machine learning on the complete
graph

® FAIR principles (Findability,
Accessibility, Interoperability,
Reusability)
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Knowledge Graph

chromosme

position gene-id
ref-allele GWAS
alt-allele

171

has-value
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Project INEX-MED

=\ Ontologies @ é?@

Tebas™ +a Analyses de données prédictives

(REST APIs)
Démonstrateur
4 \ “anévrismes”
/ Démonstrateur
“myopathies”

Moteur de recherche FAIR data
(REST APIs)

Triple store

Imagerie Imagerie  Clinique Séquencage
IRM  histopathologie
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