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Analysis and Learning of Dynamical Biological Networks ◦ Introduction

Introduction & Résumé
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Analysis of the Dynamics
→ Efficient reachability analysis on large networks
→ Dynamical patterns enumeration with answer set

programming
→ Complex patterns enumeration with polyadic μ-calculus

Learning Models from Data
→ Inference of constraints on hybrid parameters
→ Learning models from time series data

Learning New Knowledge from Models
→ Computational model to study hepatocellular

carcinoma progression
→ Integrate heterogeneous clinical, genetic, imaging data

with semantic web in order to learn variables of interest
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Frameworks
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Preliminary Abstraction

Maxime FOLSCHETTE 4/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

Preliminary Abstraction

Gene a

RNA a

Protein a

++

+ −

+ −

Maxime FOLSCHETTE 4/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

Preliminary Abstraction

a

+ −

+ −

Maxime FOLSCHETTE 4/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

Preliminary Abstraction

a

+ −

+ −

{
0 = inactive
1 = active

}

Maxime FOLSCHETTE 4/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

Preliminary Abstraction
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{
0 = complete degradation
1 = traces
2 = saturation

}
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Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

• A set of components N = {a, b, z}

• A discrete domain for each component dom(a) = J0; 2K
• Discrete parameters / evolution functions f a : S → dom(a)
• Signs & thresholds on the edges (redundant) a 2+−→ z

z

a

b

a f b

0 0
1 1
2 1

z b f a

0 0 1
0 1 0
1 0 1
1 1 2

a b f z

0 0 0
0 1 0
1 0 0
1 1 0
2 0 0
2 1 1

Semantics = From this information, what is (are) the next state(s)?
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Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

Asynchronous Automata Networks (AAN)
[Paulevé et al., Transactions on Computational Systems Biology, 2011]

[Folschette et al., Theoretical Computer Science, 2015a]

Model from [François et al., Molecular Systems Biology, 2007]

c

0

1

f
0 1

a

0

1

{a1, f1}

Semantics = How to combine actions to compute the next state(s)?
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Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

Semantics

00 01

10 11

focal point

00 01

10 11

focal point
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focal point
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Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

State-graph
The state-graph depicts explicitly the whole dynamics

000 010 001 011

100 110 101 111

200 210 201 211

abz

z

a

b

• Stable state = state with no successors
• Complex attractor = minimal loop or composition of loops from which
the dynamics cannot escape
• Reachability = from 201, can I reach 000?
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Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

Combinatorial explosion

Model Possible states

a b 4

a bc 8

a b
c

d
16

...
...

(10) 1024

(20) 1048576

(100) 1267650600000000000000000000000
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Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

Translation of AAN models
[Folschette et al., Computational Methods in Systems Biology, 2012]
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Widespread & readable

Maxime FOLSCHETTE 10/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

Translation of AAN models
[Folschette et al., Computational Methods in Systems Biology, 2012]

a

0

1

b

0

1

z

0

1

ab

00

01

10

11

Before: Process Hitting
Efficient but recent

a

b

z
+

−

Thomas modeling
Widespread & readable

Maxime FOLSCHETTE 10/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

Translation of AAN models
[Folschette et al., Computational Methods in Systems Biology, 2012]
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Analysis and Learning of Dynamical Biological Networks ◦ Frameworks

Towards AANs
[Folschette et al., CS2Bio’13, 2013]
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Towards AANs
[Folschette et al., CS2Bio’13, 2013]
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Analysis and Learning of Dynamical Biological Networks ◦ Efficient reachability analysis on large networks

Analysis of the Dynamics

Efficient reachability analysis on large
networks
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Analysis and Learning of Dynamical Biological Networks ◦ Efficient reachability analysis on large networks

Approximations of the Dynamics
[Paulevé et al., Mathematical Structures in Computer Science, 2012]

[Folschette et al., Theoretical Computer Science, 2015a]

• Directly checking R is hard (exponential)
• Rather check approximations P and Q so that: P⇒ R⇒ Q

so that computing P and Q is faster (roughly polynomial)

Exact solution

R
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Analysis and Learning of Dynamical Biological Networks ◦ Efficient reachability analysis on large networks

Abstract Interpretation (Under-approximation)
[Folschette et al., Theoretical Computer Science, 2015b]

c

0

1

f
0 1

a

0

1 Sufficient condition:
• No cycle
• No conflict
• All leaves are ∅

a1 a0 �∗ a1 {c0, f1}

f1

c0

f1 �∗ f1 ∅

c0 �∗ c0 ∅

P is true ⇒ R is true
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Abstract Interpretation (Under-approximation)
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Implementation of the Abstract Interpretation
[Folschette et al., Theoretical Computer Science, 2015b]

Complexity:
• Computation of the local causality graph:

• Polynomial in the number of automata
• Exponential in the number of local states of each automata (usually low)

• Check of the sufficient condition:
• Polynomial in the size of the abstract graph

• Enumeration of the subsets of solutions, if needed:
• Exponential in the size of the abstract graph

Very efficient on biological networks
Model Automata Actions States libddd1 GINsim2 PINT3

egfr20 35 670 264 <1s 0.02s
tcrsig40 54 301 273 ∞ 0.02s
tcrsig94 133 1124 2194 [>1min – ∞] 0.03s
egfr104 193 2356 2320 [>1min – ∞] 0.16s
1 LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]
2 TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]
3 Loïc Paulevé [Paulevé, Computational Methods for Systems Biology, 2017]
egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
egfr104 : Epithelial Growth Factor Receptor (104 components) [Samaga et al., 2009]
tcrsig40 : T-Cell Receptor (40 components) [Klamt et al., 2006]
tcrsig94 : T-Cell Receptor (94 components) [Saez-Rodriguez et al., 2007]
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Analysis of the Dynamics

Dynamical Patterns Enumeration with
Answer Set Programming
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Using Answer Set Programming
for Model-Checking

Useful when:
• The abstract method is inconclusive
• Looking for complex patterns (attractors)
• Using a different update dynamics (synchronous)

Idea: Go back to an exhaustive analysis, but with heuristics
⇒ Answer Set Programming
⇒ Clingo grounder + solver (Potassco project)

Approach:
1) Describe the problem
2) Enumerate all candidate solutions
3) Filter out unwanted results (not part of the final solution)
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Answer Set Programming Concepts

Answer Set Programming (ASP): Declarative & logic programming

Rule: A0︸︷︷︸
head

← A1, ..., An, not An+1, ..., not Am︸ ︷︷ ︸
body

.

• not Ai is true if there is no proof of Ai (negation by failure)
• If body is true, then head must be true (logical consequence)
• We search for minimal answer sets (there can be 0, 1, many)

Fact: head ← >. • head is always true
Constraint: ⊥ ← body . • Invalidate this answer set if body is true

1) Describe the problem with facts and rules
node(a). node(b). node(c).
edge(a, b). edge(b, c). edge(a, c).
edge(X ,Y )← edge(Y ,X).

a

bc

Answer set 1: node(a) node(c) node(b)
edge(a,b) edge(b,c) edge(a,c)
edge(b,a) edge(c,b) edge(c,a)
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Answer Set Programming Concepts

Enumeration: atom : criterion
• Enumerates all atoms of the form atom according to criterion

Cardinalities: min { atom : criterion } max ← body .
• Keep between min and max possibilities
• Creates as many answer sets as there are combinations

2) Enumerate of all candidate solutions using cardinalities
color(red). color(green). color(blue).
1 { attrib(X ,C) : color(C) } 1← node(X).

Answer set 1: attrib(b,red) attrib(c,red) attrib(a,red)
Answer set 2: attrib(b,red) attrib(c,red) attrib(a,blue)
Answer set 3: attrib(b,red) attrib(c,green) attrib(a,blue)

... (27 answer sets) a

bc

a

bc

a

bc
. . .
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Answer Set Programming Concepts

3) Filter out the undesired candidates using constraints
⊥ ← attrib(X ,C), attrib(Y ,C), edge(X ,Y ).

Answer set 1: attrib(b,green) attrib(c,blue) attrib(a,red)
Answer set 2: attrib(b,green) attrib(c,red) attrib(a,blue)
Answer set 3: attrib(b,blue) attrib(c,green) attrib(a,red)
Answer set 4: attrib(b,blue) attrib(c,red) attrib(a,green)
Answer set 5: attrib(b,red) attrib(c,green) attrib(a,blue)
Answer set 6: attrib(b,red) attrib(c,blue) attrib(a,green)

a

bc

a

bc

a

bc

a

bc

a

bc

a

bc
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Steady States
[Ben Abdallah et al., IEEE Int. Conf. on Bioinformatics and Biomedicine, 2015]

Steady States Enumeration (fixed points)
1) Describe the raw model with facts (automata, actions, playability)
2) Enumerate all possible states
3) Filter out states where at least one action is playable

Note: Identical for both synchronous and asynchronous semantics
→ Consistent with existing results on steady states
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Reachability & Attractors
[Ben Abdallah et al., IEEE Int. Conf. on Bioinformatics and Biomedicine, 2015]

[Ben Abdallah et al., Algorithms for Molecular Biology, 2017]

Reachability analysis (reaching a given state)
1) Describe the raw model with facts

(automata, actions, initial states, targets)
2) Develop the dynamics:

[a] describe playability with rules
[b] enumerate potential futures with cardinalities and constraints

3) Filter out paths that don’t contain the target state

Attractors Enumeration (find all smallest terminal components)
3) Filter out paths that are not cyclic and that can be escaped

Note: [a] can be adapted to any semantics
→ Already tested with synchronous & asynchronous
→ Other possible: general, with delay, with memory...
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Conclusion on ASP for Model-Checking
[Ben Abdallah et al., IEEE Int. Conf. on Bioinformatics and Biomedicine, 2015]

[Ben Abdallah et al., Algorithms for Molecular Biology, 2017]

Pros:
• Very flexible (programming language)
• Complexity handled by the solver

Cons:
• Incremental approach (size of the paths)
• Still computational

Models Stable states Reachability analysis
Name Size ASP libddd1 GINsim2 ASP
egfr20 20 0.017s 1min 55s 2min 32s 12s

tcrsig40 40 0.021s ∞ ∞ 4min 28s

1 LIP6/Move [Couvreur et al., Lecture Notes in Computer Science, 2002]
2 TAGC/IGC [Chaouiya, Naldi, Thieffry, Methods in Molecular Biology, 2012]
egfr20 : Epithelial Growth Factor Receptor (20 components) [Sahin et al., 2009]
tcrsig40 : T-Cell Receptor (40 components) [Klamt et al., 2006]
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Conclusion on ASP for Model-checking
[Ben Abdallah et al., Algorithms for Molecular Biology, 2017]

Models
Attractors enumeration

asynchronous scheme synchronous scheme
(Size) n ∆t (ms) ∃?A ∆t (ms) ∃?A
Lambda
phage
(4)

2 14 yes 14 yes
10 1,352 no 842 no
20 15,656 no 14,452 no

Tcrsig
(40)

2 26 no 25 no
6 353 no 288 yes
10 2,420 no 1,841 no
20 85,599 no 27,078 no

FGF
(59)

2 38 no 36 no
10 2,080 no 1,953 no
20 30,861 no 29,838 no

T-helper
(101)

2 180 no 125 yes
4 782 no 1,064 no
6 4,271 no 2,372 yes
9 26,443 no 7,042 yes
12 107,358 no 28,520 yes
20 4,230,836 ∼ 1h17 no 187,105 ∼ 3min no

Lambda phage: Lysis/lysogenization decision in bacteriophage lambda [Thieffry & Thomas, 1995]
FGF: Drosophila FGF signaling pathway [Mbodj et al., 2013]
T-helper: T-helper cell differentiation [Abou-Jaoudé et al., 2014]
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Learning Models from Data

Learning Models from Time Series Data
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Learning Models from Execution Traces
[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Black box

Learned
model

Semantics

Semantics

State graph

State graph
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Learning Models from Execution Traces
[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Black box

Learned
model

Semantics

Semantics

State graph

State graph

Identical
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Learning Models from Execution Traces
[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Black box
Semantics

Semantics

State graph

State graph

Identical

z(1)← a(2).
z(1)← b(1).
z(1)← a(1) ∧ b(0).
b(1)← a(2).
b(0)← a(0).
. . .
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Learning Models from Execution Traces
[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Black box
Semantics

Semantics

State graph

State graph

Identical

z

a

b

1+ 1−
2+

1+

1+
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Learning Models from Execution Traces
[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Semantics

Semantics

State graph

State graphz

a

b

1+ 1−
2+

1+

1+

Biological
system
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Learning Models from Execution Traces
[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)
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Semantics
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system
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Learning Models from Execution Traces
[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Semantics

Semantics

State graph

State graphz

a

b

1+ 1−
2+

1+

1+

Equivalent
(discretization)

Biological
system

No discretization
(ACEDIA)
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Learning Models from Execution Traces
[Ribeiro et al., Inductive Logic Programming, 2018] (ACEDIA)
[Ribeiro et al., Inductive Logic Programming, 2017] (GULA)

Semantics

Semantics

State graph

State graphz

a

b

1+ 1−
2+

1+

1+

Equivalent
(discretization)

Biological
system

No discretization
(ACEDIA)

Unknown semantics
(GULA)
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Logic Rule

x val0
0 (t)︸ ︷︷ ︸
head

← x val1
1 (t − 1) ∧ x val2

2 (t − 1) ∧ . . . ∧ x valn
n (t − 1)︸ ︷︷ ︸

body

.

→ When body is true, head is a potential outcome

Examples:
a1 ← {a2, b0, c1}.
b1 ← {c1}.
c0 ← ∅.

}
all match 〈a2, b0, c1〉

A rule R matches a state s iff body ⊆ s

→ If the rule matches a state s then
there exists a successor state s → s ′ so that head ∈ s ′

Semantics: same as for discrete networks
(synchronous, asynchronous, generalized)

Maxime FOLSCHETTE 28/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Learning Models from Time Series Data

Logic Rule

x val0
0 (t)︸ ︷︷ ︸
head

← { x val1
1 (t − 1), x val2

2 (t − 1), . . . , x valn
n (t − 1) }︸ ︷︷ ︸

body

.

→ When body is true, head is a potential outcome

Examples:
a1 ← {a2, b0, c1}.
b1 ← {c1}.
c0 ← ∅.

}
all match 〈a2, b0, c1〉

A rule R matches a state s iff body ⊆ s

→ If the rule matches a state s then
there exists a successor state s → s ′ so that head ∈ s ′

Semantics: same as for discrete networks
(synchronous, asynchronous, generalized)

Maxime FOLSCHETTE 28/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Learning Models from Time Series Data

Logic Rule

x val0
0︸ ︷︷ ︸

head

← { x val1
1 , x val2

2 , . . . , x valn
n }︸ ︷︷ ︸

body

.

→ When body is true, head is a potential outcome

Examples:
a1 ← {a2, b0, c1}.
b1 ← {c1}.
c0 ← ∅.

}
all match 〈a2, b0, c1〉

A rule R matches a state s iff body ⊆ s

→ If the rule matches a state s then
there exists a successor state s → s ′ so that head ∈ s ′

Semantics: same as for discrete networks
(synchronous, asynchronous, generalized)

Maxime FOLSCHETTE 28/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Learning Models from Time Series Data

Logic Rule

x val0
0︸ ︷︷ ︸

head

← { x val1
1 , x val2

2 , . . . , x valn
n }︸ ︷︷ ︸

body

.

→ When body is true, head is a potential outcome

Examples:
a1 ← {a2, b0, c1}.
b1 ← {c1}.
c0 ← ∅.

}
all match 〈a2, b0, c1〉

A rule R matches a state s iff body ⊆ s

→ If the rule matches a state s then
there exists a successor state s → s ′ so that head ∈ s ′

Semantics: same as for discrete networks
(synchronous, asynchronous, generalized)

Maxime FOLSCHETTE 28/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Learning Models from Time Series Data

Logic Rule

x val0
0︸ ︷︷ ︸

head

← { x val1
1 , x val2

2 , . . . , x valn
n }︸ ︷︷ ︸

body

.

→ When body is true, head is a potential outcome

Examples:
a1 ← {a2, b0, c1}.
b1 ← {c1}.
c0 ← ∅.

}
all match 〈a2, b0, c1〉

A rule R matches a state s iff body ⊆ s

→ If the rule matches a state s then
there exists a successor state s → s ′ so that head ∈ s ′

Semantics: same as for discrete networks
(synchronous, asynchronous, generalized)

Maxime FOLSCHETTE 28/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Learning Models from Time Series Data

Logic Rule

x val0
0︸ ︷︷ ︸

head

← { x val1
1 , x val2

2 , . . . , x valn
n }︸ ︷︷ ︸

body

.

→ When body is true, head is a potential outcome

Examples:
a1 ← {a2, b0, c1}.
b1 ← {c1}.
c0 ← ∅.

}
all match 〈a2, b0, c1〉

A rule R matches a state s iff body ⊆ s

→ If the rule matches a state s then
there exists a successor state s → s ′ so that head ∈ s ′

Semantics: same as for discrete networks
(synchronous, asynchronous, generalized)

Maxime FOLSCHETTE 28/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Learning Models from Time Series Data

Logic Rule

x val0
0︸ ︷︷ ︸

head

← { x val1
1 , x val2

2 , . . . , x valn
n }︸ ︷︷ ︸

body

.

→ When body is true, head is a potential outcome

Examples:
a1 ← {a2, b0, c1}.
b1 ← {c1}.
c0 ← ∅.

}
all match 〈a2, b0, c1〉

A rule R matches a state s iff body ⊆ s

→ If the rule matches a state s then
there exists a successor state s → s ′ so that head ∈ s ′

Semantics: same as for discrete networks
(synchronous, asynchronous, generalized)

Maxime FOLSCHETTE 28/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Learning Models from Time Series Data

Model as a Logic Program

Discrete model:

z

a

b

1+ 1−
2+

1+

1+

+ Parameters
or logic gates

Logic program:

b(1)← a(1).
b(1)← a(2).
b(0)← a(0).

z(1)← a(2) ∧ b(1).
z(0)← a(0).
z(0)← a(1).
z(0)← b(0).

etc...
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GULA: Algorithm

• Start from the most general program: {x val ← ∅. | x ∈ V ∧ val ∈ dom(x)}

• For each state s, for each rule R that allows a behavior not observed after
s:
→ Make minimal revisions on R (add an atom not in s)

• Remove all rules that are not the most general

Formally proved with transitions generated in synchronous, asynchronous and
generalized semantics; should also work for a wider class of semantics

But what if the semantics “hides” some parts of the program?

→ We should learn the semantics too! (In progress...)
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(Continuum) Logic Program

z

a

b

1,+ 1,− 2,+

1,+

1,+
Discrete partitioning:

a = J0; 2K
b = J0; 1K
z = J0; 1K

Discrete Logic Program:

b(1)← a(1).
b(1)← a(2).
b(0)← a(0).

z(1)← a(2) ∧ b(1).

...

Continuous partitioning:

a = [0− 0.3− 0.6− 1]
b = [0 − 0.5 − 1]
z = [0 − 0.8− 1]

Continuum Logic Program:

b([0.5, 1])← a([0.3, 0.6]).
b([0.5, 1])← a([0.6, 1]).
b([0, 0.5])← a([0, 0.3]).

z([0.8, 1])← a([0.3, 0.6]) ∧ b([0.5, 1]).

...
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ACEDIA: Refinement of the Continuum Logic Program

INPUT:
A set of time series data

OUTPUT:
A continuum logic program

Equivalent to a regulatory network

p([0, 0.5])← q([0, 0.5]).
p([0.5, 1])← q([0.5, 1]).
q([0, 0.5])← p([0, 0.5]) ∧ r([0.5, 1]).
q([0.5, 1])← p([0.5, 1]) ∧ r([0.5, 1]).
r([0, 0.5])← p([0.5, 1]).
r([0.5, 1])← p([0, 0.5]).

• Pros: No discretization of the data
• Cons: Sensitive to noise,
synchronous semantics only
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Conclusion: Learning from Time Series

Challenges:
• Discretization → ACEDIA

A different discretization gives a different result
• Partial data → LUST

Predict parts of the system
• Unknown semantics → GULA

Measurment-dependent
• Heterogeneous “semantics” → Ongoing...

Organism-dependent
• Changing behavior → Ongoing...

Stochasticity
• Chronometry over chronology

Learn time delays
• Learn from real data

Avoid learning noise
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A B S T R A C T

The link between harmful algal blooms, phytoplankton community dynamics and global environmental
change is not well understood. To tackle this challenging question, a new method was used to reveal how
phytoplankton communities responded to environmental change with the occurrence of an harmful
algae, using the coastal waters of the eastern English Channel as a case study. The great interannual
variability in the magnitude and intensity of Phaeocystis spp. blooms, along with diatoms, compared to
the ongoing gradual decrease in anthropogenic nutrient concentration and rebalancing of nutrient ratios;
suggests that other factors, such as competition for resources, may also play an important role. A realized
niche approach was used with the Outlying Mean Index analysis and the dynamics of the species’ realized
subniches were estimated using the Within Outlying Mean Indexes calculations under low (L) and high
(H) contrasting Phaeocystis spp. abundance. The Within Outlying Mean Indexes allows the decomposition
of the realized niche into realized subniches, found within the subset of habitat conditions and
constrained by a subset of a biotic factor. The two contrasting scenarios were characterized by
significantly different subsets of environmental conditions and diatom species (BV-step analysis), and
different seasonality in salinity, turbidity, and nutrients. The subset L environmental conditions were
potentially favorable for Phaeocystis spp. but it suffered from competitive exclusion by key diatom species
such as Skeletonema spp., Thalassiosira gravida, Thalassionema nitzschioides and the Pseudo-nitzchia seriata
complex. Accordingly, these diatoms species occupied 81% of Phaeocystis spp.'s existing fundamental
subniche. In contrast, the greater number of diatoms, correlated with the community trend, within
subset H exerted a weaker biological constraint and favored Phaeocystis spp. realized subniche expansion.
In conclusion, the results strongly suggest that both abiotic and biotic interactions should be considered
to understand Phaeocystis spp. blooms with greater consideration of the preceeding diatoms. HABs needs
must therefore be studied as part of the total phytoplankton community.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The unprecedented rate of global environmental change
(Drijfhout et al., 2015), is potentially increasing the spread and
impact of harmful algae blooms (HAB) worldwide (Fu et al., 2012;
Hallegraeff, 2010; Wells et al., 2015). Attempts to link HABs or
undesirable species and anthropogenically-altered environments
have often been unclear and contradictory (Anderson, 2009;
Davidson et al., 2012; Gowen et al., 2012; Wells et al., 2015).

Moreover, the role of biotic interactions in shaping HABs, such as
competition for resources, is still poorly studied. Yet, the variability
in the magnitude and duration of reported HAB blooms
emphasizes the idea that other factors, aside from abiotic variables,
play an important role in driving HABs (Bianchi et al., 2000;
Borkman et al., 2016; Yin, 2003). Previous research strategies,
methods and hypotheses of how environmental pressures
mechanistically affect HAB species (Wells et al., 2015) have used
modeling (Passy et al., 2016), experiments (Veldhuis et al., 1991), in
situ measurements (Houliez et al., 2013), and remote sensing
imaging (Kurekin et al., 2014) to explore these links. The former
studies were based on the hypothesis that HABs could be predicted
from environmental variables only.

* Corresponding author.
E-mail address: stephane.karasiewicz@wanadoo.fr (S. Karasiewicz).
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Thank you

Frameworks
• Thomas modeling, asynchronous automata networks

Analysis of the Dynamics
• Efficient reachability analysis on large networks
• Dynamical patterns enumeration with answer set programming
• Complex patterns enumeration with polyadic μ-calculus

Learning Models from Data
• Inference of constraints on hybrid parameters
• Learning models from time series data

Learning New Knowledge from Models
• Computational model to study hepatocellular carcinoma progression
• Integrate heterogeneous clinical, genetic, imaging data with semantic web
in order to learn variables of interest
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Analysis of the Dynamics

Using μ-calculus for Complex Dynamical
Patterns Enumeration
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Polyadic μ-calculus

Polyadic
μ-calculus

Multiple dynamical tokens

Modal
μ-calculus

Explicit fixed points

CTL*

CTL LTL

Polyadic (modal) μ-calculus allows to manipulate several tokens in parallel

ϕ = pi | i ← j | i = j | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦iϕ | �iϕ | µX .ϕ | νX .ϕ | X

• Modal operators: � (“for all successors”), ♦ (“there exists a successor”)
• Fixed points: µ (least fixed point), ν (greatest fixed point)
• Tokens (i , j) and their manipulation (i = j and i ← j)
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Learning Models from Biological Data

Learning Models from Time Series Data:
Complements
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GULA: Algorithm

• Start from the most general program:

P := {x val ← ∅. | x ∈ V ∧ val ∈ dom(x)}

• For each state s:
→ For each rule in conflict with the outcomes of s
(that is, each rule R that allows a behavior not allowed after s)
→ Make minimal revisions on R to prevent this conflict

• Remove all rules that are not the most general
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GULA: Minimal Revision of a Rule

The algorithm successively takes into account groups of transitions and
performs minimal modifications on the program learned so far

Let R a rule in conflict with the current transitions, that is: there exists a state
s so that R matches s, but ∀s ′ ∈ S so that s → s ′, head(R) /∈ s ′
That is: R expresses a potential outcome for a variable which never happens in
s

Least specialization of R by s:

R := head ← body

Lspe(R, s) := {head ← body ∪ {x val} | x val /∈ s ∧ ∀val ′ ∈ N, x val′ /∈ body}

Least revision of P by a set of transitions T :

Lrev (P,T ) := (P \ RP) ∪
⋃

R∈RP

Lspe(R, s)
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Scope of GULA

This learning should be independent from the semantics!

Formally proved: Compatible with transitions generated in synchronous,
asynchronous and generalized semantics

Expectation: Compatible with a wider class of “learnable” semantics
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Analysis and Learning of Dynamical Biological Networks ◦ Learning Models from Time Series Data: Complements

Limits of our Definition of Semantics

Formally, a semantics is a function that, to each program, associates a set of
transitions (with no dead-end)

{Set of all programs} → (S → ℘(S) \∅)

Not constrained enough as it allows some unwanted cases:
• a semantics where all variables are always updated to 0, disregarding any
actual rules
• a semantics which behaves differently on one specific program (exception)
→ The program can be “hidden” and thus cannot be learned

Outcomes:
• Semantics should take into account the given program
• We can also learn the semantics (for now, we give a characterization)

Maxime FOLSCHETTE 44/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Learning Models from Time Series Data: Complements

Limits of our Definition of Semantics

Formally, a semantics is a function that, to each program, associates a set of
transitions (with no dead-end)

{Set of all programs} → (S → ℘(S) \∅)

Not constrained enough as it allows some unwanted cases:
• a semantics where all variables are always updated to 0, disregarding any
actual rules
• a semantics which behaves differently on one specific program (exception)

→ The program can be “hidden” and thus cannot be learned

Outcomes:
• Semantics should take into account the given program
• We can also learn the semantics (for now, we give a characterization)

Maxime FOLSCHETTE 44/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Learning Models from Time Series Data: Complements

Limits of our Definition of Semantics

Formally, a semantics is a function that, to each program, associates a set of
transitions (with no dead-end)

{Set of all programs} → (S → ℘(S) \∅)

Not constrained enough as it allows some unwanted cases:
• a semantics where all variables are always updated to 0, disregarding any
actual rules
• a semantics which behaves differently on one specific program (exception)

→ The program can be “hidden” and thus cannot be learned

Outcomes:
• Semantics should take into account the given program
• We can also learn the semantics (for now, we give a characterization)

Maxime FOLSCHETTE 44/37 Séminaire MSV — 2020-01-07



Analysis and Learning of Dynamical Biological Networks ◦ Parameters Constraints Inference

Learning Models from Biological Data

Inference of Constraints on Hybrid
Parameters
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Hybrid Thomas Modeling

pc g L X

¬(pc > 1)

(g > 1) (L > 1)

(L > 1)

¬(X > 1)

Simplified circadian cycle Day/light cycle

01 11 21

00 10 20
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Hybrid Thomas Modeling

pc g L X

¬(pc > 1)

(g > 1) (L > 1)

(L > 1)

¬(X > 1)

Simplified circadian cycle Day/light cycle
B

A

1

210

0

CB,∅,0

CA,{m3},0

CB,∅,1

CA,∅,0 CA,{m1},1
CB,∅,1 CB,{m2},1

CA,{m1},2

slide(B)

CA,{m1,m3},2
CB,{m2},0

CA,{m1,m3},1
CB,∅,0
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Hybrid Hoare Logic to Infer Parameters
[Behaegel et al., TIME’17, 2017]{

???
???

}( T4
>

B+

)
;

( T3
slide+(B)

A−

)
;

( T2
>

B−

)
;

(T1
>

A+

){
D0 ≡ (ηA = 2 ∧ ηB = 0)

H0 ≡ (πinitial = πfinal)

}

B

A

1

210

0

CB,∅,0

CA,{m3},0

CB,∅,1

CA,∅,0 CA,{m1},1
CB,∅,1 CB,{m2},1

CA,{m1},2

slide(B)

CA,{m1,m3},2
CB,{m2},0

CA,{m1,m3},1
CB,∅,0
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((((((((((π0
g

′ = 0.12) ∧ ((π0
pc

′ = 0.12) ∧ (π0
L

′ = 0))) ∧ (((π1
L = 1) ∧ ((CL,{m5},0 > 0) ∧ (π1

L
′ =

(π1
L − (CL,{m5},0 × 6.6))))) ∧ ((¬((Cg,∅,0 > 0) ∧ (π1

g
′
> (π1

g − (Cg,∅,0 × 6.6)))) ∧ (¬((Cpc,∅,1 < 0) ∧ (π1
pc

′
<

(π1
pc − (Cpc,∅,1 × 6.6)))) ∧ ¬((CX,∅,0 > 0) ∧ (π1

X
′
> (π1

X − (CX,∅,0 × 6.6)))))) ∧ ((π1
L = (1− π0

L
′)) ∧ ((π1

g =
π0

g
′)∧((π1

pc = π0
pc

′)∧(π1
X = π0

X
′)))))))∧(((π2

X = 0)∧((CX,∅,1 < 0)∧(π2
X

′ = (π2
X−(CX,∅,1×0.6)))))∧((¬((Cg,∅,0 >

0) ∧ (π2
g

′
> (π2

g − (Cg,∅,0 × 0.6)))) ∧ (¬((Cpc,∅,1 < 0) ∧ (π2
pc

′
< (π2

pc − (Cpc,∅,1 × 0.6)))) ∧ ¬((CL,∅,0 >

0) ∧ (π2
L

′
> (π2

L − (CL,∅,0 × 0.6)))))) ∧ (((π2
L = 0) ∧ ((CL,∅,0 < 0)⇒ (π2

L
′
< (π2

L − (CL,∅,0 × 0.6))))) ∧ ((π2
X =

(1− π1
X

′)) ∧ ((π2
g = π1

g
′) ∧ ((π2

pc = π1
pc

′) ∧ (π2
L = π1

L
′))))))))÷ ∧ (((π3

g = 0) ∧ ((Cg,∅,1 < 0) ∧ (π3
g

′ =
(π3

g − (Cg,∅,1 × 5.4))))) ∧ ((¬((Cpc,{m2},1 < 0) ∧ (π3
pc

′
< (π3

pc − (Cpc,{m2},1 × 5.4)))) ∧ (¬((CL,∅,0 > 0) ∧ (π3
L

′
>

(π3
L − (CL,∅,0 × 5.4)))) ∧ ¬((CX,∅,1 < 0) ∧ (π3

X
′
< (π3

X − (CX,∅,1 × 5.4)))))) ∧ (((π3
pc = 1) ∧ ((Cpc,{m2},1 > 0)⇒

(π3
pc

′
> (π3

pc − (Cpc,{m2},1 × 5.4))))) ∧ ((π3
g = (1− π2

g
′)) ∧ ((π3

pc = π2
pc

′) ∧ ((π3
L = π2

L
′) ∧ (π3

X =
π2

X
′)))))))) ∧ (((π4

L = 0) ∧ ((CL,∅,1 < 0) ∧ (π4
L

′ = (π4
L − (CL,∅,1 × 0.47))))) ∧ ((¬((Cg,{m3},1 < 0) ∧ (π4

g
′
<

(π4
g − (Cg,{m3},1 × 0.47)))) ∧ (¬((Cpc,{m2},1 < 0) ∧ (π4

pc
′
< (π4

pc − (Cpc,{m2},1 × 0.47)))) ∧ ¬((CX,{m4},1 <

0) ∧ (π4
X

′
< (π4

X − (CX,{m4},1 × 0.47)))))) ∧ ((π4
L = (1− π3

L
′)) ∧ ((π4

g = π3
g

′) ∧ ((π4
pc = π3

pc
′) ∧ (π4

X =
π3

X
′)))))))∧ (((π5

pc = 1)∧ ((Cpc,{m2},0 > 0)∧ (π5
pc

′ = (π5
pc − (Cpc,{m2},0× 5.53)))))∧ ((¬((Cg,{m1,m3},1 < 0)∧ (π5

g
′
<

(π5
g − (Cg,{m1,m3},1 × 5.53)))) ∧ (¬((CL,∅,1 < 0) ∧ (π5

L
′
< (π5

L − (CL,∅,1 × 5.53)))) ∧ ¬((CX,{m4},1 < 0) ∧ (π5
X

′
<

(π5
X − (CX,{m4},1 × 5.53)))))) ∧ (((π5

g = 1) ∧ ((Cg,{m1,m3},1 > 0)⇒ (π5
g

′
> (π5

g − (Cg,{m1,m3},1 × 5.53))))) ∧ ((π5
pc =

(1− π4
pc

′)) ∧ ((π5
g = π4

g
′) ∧ ((π5

L = π4
L

′) ∧ (π5
X = π4

X
′)))))))) ∧ (((π6

X = 1) ∧ ((CX,{m4},0 > 0) ∧ (π6
X

′ =
(π6

X − (CX,{m4},0 × 0.6))))) ∧ ((¬((Cg,{m1,m3},1 < 0) ∧ (π6
g

′
< (π6

g − (Cg,{m1,m3},1 × 0.6)))) ∧ (¬((Cpc,{m2},0 >

0) ∧ (π6
pc

′
> (π6

pc − (Cpc,{m2},0 × 0.6)))) ∧ ¬((CL,{m5},1 < 0) ∧ (π6
L

′
< (π6

L − (CL,{m5},1 × 0.6)))))) ∧ ((π6
X =

(1− π5
X

′)) ∧ ((π6
g = π5

g
′) ∧ ((π6

pc = π5
pc

′) ∧ (π6
L = π5

L
′))))))) ∧ (((π7

g = 1) ∧ ((Cg,{m1,m3},0 > 0) ∧ (π7
g

′ =
(π7

g − (Cg,{m1,m3},0 × 4.5)))))∧ ((¬((Cpc,∅,0 > 0)∧ (π7
pc

′
> (π7

pc − (Cpc,∅,0 × 4.5))))∧ (¬((CL,{m5},1 < 0)∧ (π7
L

′
<

(π7
L−(CL,{m5},1×4.5))))∧¬((CX,{m4},0 > 0)∧(π7

X
′
> (π7

X−(CX,{m4},0×4.5))))))∧((π7
g = (1−π6

g
′))∧((π7

pc = π6
pc

′)∧
((π7

L = π6
L

′)∧ (π7
X = π6

X
′)))))))∧ (((π8

pc = 0)∧ ((Cpc,∅,1 < 0)∧ (π8
pc

′ = (π8
pc − (Cpc,∅,1× 0.9)))))∧ ((¬((Cg,{m3},0 >

0) ∧ (π8
g

′
> (π8

g − (Cg,{m3},0 × 0.9)))) ∧ (¬((CL,{m5},1 < 0) ∧ (π8
L

′
< (π8

L − (CL,{m5},1 × 0.9)))) ∧ ¬((CX,{m4},0 >

0) ∧ (π8
X

′
> (π8

X − (CX,{m4},0 × 0.9)))))) ∧ ((π8
pc = (1− π7

pc
′)) ∧ ((π8

g = π7
g

′) ∧ ((π8
L = π7

L
′) ∧ (π8

X = π7
X

′)))))))
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Results

• Simplifications of the constraints → Not very effective
• Using a non-linear solver: AbSolute → We obtain solutions
• Results checked with a simulation:

 0

 0.5

 1

 1.5

 2

 0  12  24  36  48

Simulation with 1 set of compatible values Experiments
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Learning New Knowledge from Models

Computational Model to Study
Hepatocellular Carcinoma Progression
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Graph content:
• 3’383 nodes
• 13’771 edges

— 11’661
activations

— 2’110
inhibitions

1913 genes from the
differential expression
Only 209 are found
in Kegg:

138 up-regulated
71 down-regulated
3174 new nodes

Nodes with up to:
92 incoming influences
79 outgoing influences
→ Nodes with a lot of
impact on the network
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Graph Coloring

• Coloring = information attached to nodes about over- or under-expression

X = over-expressed Y = under-expressed

• Provenance = experimental (expression data) & computational (inference)

A B

C D

↖ ↗
Given by the

experimental data
• Compute all colorings without inconsistencies
• Prediction = a node that is always colored the same

Here, only 1 prediction: D

• All computed by Iggy [Thiele et al., BMC Bioinformatics, 2015] (Answer
Set Programming)
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Knowledge from
experiments:

138 up-regulated
71 down-regulated

Computational
predictions:

92 predicted +

24 non-trivial
54 predicted −

33 non-trivial

70% more information
compared to only knowl-
edge from experiments
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Analysis and Learning of Dynamical Biological Networks ◦ Computational Model to Study Hepatocellular Carcinoma Progression

Prediction Results

New results compared to experimental data: complexes

Complexes predicted:

• NFKB1::BCL3 ( + )

• NFKB2::RELB ( + )

• JUND::NACA ( − )

Results conflicting with experimental data

Predictions which are different from differential analysis:
• BAK1_gen, BMP4_gen, CREB1_prot, EIF4EBP2_prot, IGFBP3_gen,
IGFBP3_prot, NR0B2_gen, NR0B2_prot, NR1H4_gen, NR1H4_prot,
NR3C2_gen, NR3C2_prot, SESN3_gen, SESN3_prot, THBS1_gen,
TNFRSF10A_gen, TP53_prot
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Prediction Results

New results compared to experimental data: complexes

Complexes predicted:

• NFKB1::BCL3 ( + )

• NFKB2::RELB ( + )

• JUND::NACA ( − )

Results conflicting with experimental data

Predictions which are different from differential analysis:
• BAK1_gen, BMP4_gen, CREB1_prot, EIF4EBP2_prot, IGFBP3_gen,
IGFBP3_prot, NR0B2_gen, NR0B2_prot, NR1H4_gen, NR1H4_prot,
NR3C2_gen, NR3C2_prot, SESN3_gen, SESN3_prot, THBS1_gen,
TNFRSF10A_gen, TP53_prot
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Hub example: TP53_prot

MDM4_prot

BAX_genMDM2_gen

MDM2_prot

MAPK9_prot

TP53_prot

MAPK1_prot

CREBBP_prot

MAPK3_prot

MAPK10_prot

MAPK12_prot

MAPK8_prot

MAPK11_prot

PTEN_genCCNG1_genSERPINE1_genSFN_genGADD45B_genSESN1_genBBC3_genTHBS1_gen BID_genPMAIP1_genCDKN1A_gen TP73_gen GADD45G_gen SHISA5_gen

TP73_prot

TSC2_gen TNFRSF10A_gen GADD45A_genBAK1_gen SESN3_genTNFRSF10B_gen

HIPK3_prot HIPK2_prot HIPK4_prot TP53_gen MAPK14_prot HIPK1_prot PRKDC_prot EP300_protMAPK13_prot

SESN2_gen FAS_gen IGFBP3_genAPAF1_genPIDD1_gen SIVA1_gen

ATM_prot

CHEK1_protCHEK2_protSIRT1_prot

ATR_prot

18 predictions directly depend of TP53_prot
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Learning New Knowledge from Models

Create a Knowledge Graph of Clinical Data
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INEX-MED Project

!
!

!
• Multiple data sources:
clinical/diagnosis, imaging, microscopy,
genomics
• Text/tabulated, not interoperable
• 2 use cases: intracranial aneurysm &
congenital myopathies

Objectives:
• Create a general knowledge graph of
Linked Data
• SPARQL queries on all sources
• Machine learning on the complete
graph
• FAIR principles (Findability,
Accessibility, Interoperability,
Reusability)
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Knowledge Graph
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position
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loss-of-function
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SNP
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has-value
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Project INEX-MED

Moteur de recherche FAIR data 
(REST APIs)

Triple store

Ontologies
+

Imagerie
IRM

Imagerie
histopathologie

Clinique Séquençage

Analyses de données prédictives 
(REST APIs)

Démonstrateur 
“anévrismes”

Démonstrateur 
“myopathies”

WP2

WP1

WP3
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