Learning Biological Regulatory Networks from Time Series with LFIT: Theory and Practice

Maxime Folschette

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

2023-07-03 Workshop on network and model inference (CIRM)

Joint work with: Tony Ribeiro (Independant researcher, France), Omar Ikne (Univ. Lille, France), Morgan Magnin (Centrale Nantes, France), Katsumi Inoue (NII, Tokyo, Japan)

Outline

- Semantics
- Logic Rules

2 Learning From Interpretation Transition (LFIT)

- Intuition
- GULA

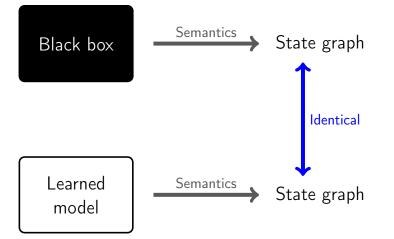
3 Two Heuristic on LFIT

- Weighted Likeliness/Unlikeliness Rules
- PRIDE: Greedy Algorithm

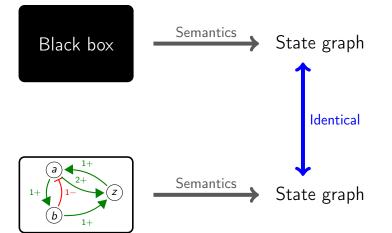
Application: Dynamics of Marine Phytoplankton

Conclusion

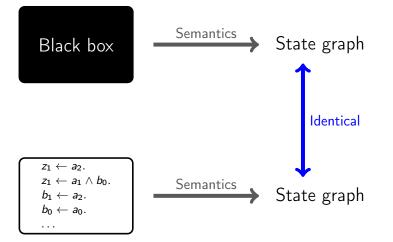
Introduction



Introduction



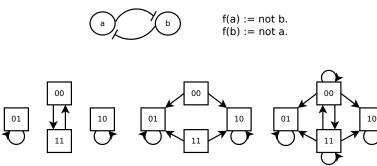
Introduction



General Definitions

Dynamical Semantics

A Boolean network is a (syntactical) structure. It must be interpreted with a semantics to run.



Synchronous

Asynchronous

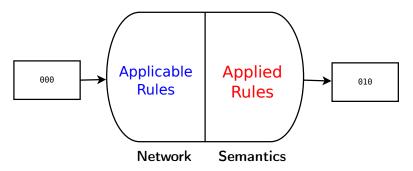
General

- Synchronous: all variables are updated
- Asynchronous: only one variable is updated
- General: any number of variables can be updated

Maxime Folschette (CRIStAL) Learning from Time Series with LFIT

Definition of Semantics

In a given state, among the possible changes permited by the network (structure), the semantics select which ones to apply and how to combine them.



Logic Rules

LFIT learns a logic program, which is a set of logic rules. It is an alternative representation of biological networks.

 $a_1 \leftarrow a_0, b_0, c_2$. The network states that if *a* and *b* are at level 0 and *c* is at level 2, then *a* can change its value to 1.

 $a_1 \leftarrow c_2.$ Whenever *c* is at level 2, *a* can change its value to 1.

 $a_1 \leftarrow .$

a can change its value to 1 anytime.

Logic Rules

LFIT learns a logic program, which is a set of logic rules. It is an alternative representation of biological networks.

 $a_1 \leftarrow a_0, b_0, c_2$. The network states that if a and b are at level 0 and c is at level 2, then a can change its value to 1.

 $a_1 \leftarrow c_2$. Whenever *c* is at level 2, *a* can change its value to 1.

 $a_1 \leftarrow .$

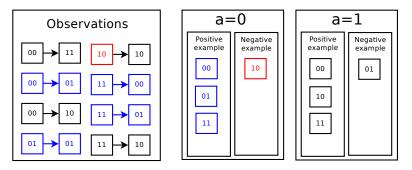
a can change its value to 1 anytime.

When will a take value 1? This depends on the semantics

Learning From Interpretation Transition (LFIT)

Learning Algorithm Intuition: Classification Problem

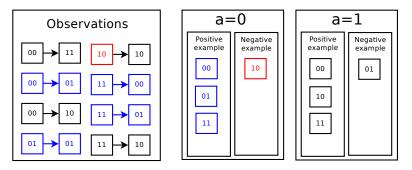
Learn applicable rules: conditions so that a variable **can** take a certain value in next state.



Equivalent to a classification problem: What is a typical state where a can take value 0 in the next state ? Here: when a_0 or b_1 is present.

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable **can** take a certain value in next state.



Equivalent to a classification problem: What is a typical state where a can take value 0 in the next state? Here: when a_0 or b_1 is present.

$$a_0 \leftarrow a_0$$
. $a_0 \leftarrow b_1$.

Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions $(s_1 \rightarrow s_2)$

Output: a logic program that respects:

- Consistency: the program allows no negative examples
- Realization: the program covers all positive examples
- Completeness: the program covers all the state space
- Minimality of the rules (most general conditions)

Method: start from most general rules and specialize iteratively.

Suppose: dom(a) = dom(b) = $\{0, 1\}$ and dom(c) = $\{0, 1, 2\}$ and the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

Suppose: dom(a) = dom(b) = $\{0, 1\}$ and dom(c) = $\{0, 1, 2\}$ and the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states. Minimal refinement to make the rules inapplicable in this state:

$$a_1 \leftarrow a_0, c_2.$$

$$a_1 \leftarrow b_1, c_2.$$

$$a_1 \leftarrow c_2, c_0.$$

$$a_1 \leftarrow c_2, c_1.$$

$$a_1 \leftarrow b_1$$
.
(No change)

Suppose: dom(a) = dom(b) = $\{0, 1\}$ and dom(c) = $\{0, 1, 2\}$ and the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states. Minimal refinement to make the rules inapplicable in this state:

$$a_1 \leftarrow a_0, c_2.$$

 $a_1 \leftarrow b_1, c_2.$
 $a_1 \leftarrow c_2, c_0.$
 $a_1 \leftarrow c_2, c_1.$

$$a_1 \leftarrow b_1$$
.

Suppose: dom(a) = dom(b) = $\{0, 1\}$ and dom(c) = $\{0, 1, 2\}$ and the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states. Minimal refinement to make the rules inapplicable in this state:

$$a_1 \leftarrow a_0, c_2.$$

 $a_1 \leftarrow b_1, c_2.$

Suppose: dom(a) = dom(b) = $\{0, 1\}$ and dom(c) = $\{0, 1, 2\}$ and the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

$$a_1 \leftarrow a_0, c_2.$$
 $a_1 \leftarrow b_1.$

Results

Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Learning any memory-less discrete semantics for dynamical systems represented by logic programs. *Machine Learning* 111, Springer. November 2021. https://doi.org/10.1007/s10994-021-06105-4

- Allows to learn the network (structure of the model)
- Independent of the semantics (characterization of applicable memoryless semantics)

Nice in theory, but in practice?

- Exponential complexity → How to handle big datasets? (many transitions, many variables)
- Exact learning \rightarrow How to handle noise?

Two Heuristic on LFIT

Weighted Likeliness/Unlikeliness Rules

• Use the algorithm twice to learn two logic programs:

- likeliness rules: what is possible
- unlikeliness rules: what is impossible
- Weight each rule by the number of observations it matches

Statistical overlay \Rightarrow usable on **noisy datasets**

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$
:	:

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow probability P
- Rules with highest weights \Rightarrow explanation *E* predict : (*atom. state*) \mapsto (*P*, *E*)

Likeliness rules $(3, a_0 \leftarrow b_1)$ $(15, a_1 \leftarrow b_0)$ Unlikeliness rules (30, $a_0 \leftarrow c_1$) (5, $a_1 \leftarrow c_0$)

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow probability P
- Rules with highest weights \Rightarrow explanation *E* predict : (*atom*, *state*) \mapsto (*P*, *E*)

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$

 $\mathsf{predict}(a_1, \langle a_1, b_1, c_0 \rangle) = (0.75, ((15, a_1 \leftarrow b_0), (5, a_1 \leftarrow c_0))) \Rightarrow \mathsf{Likely}$

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

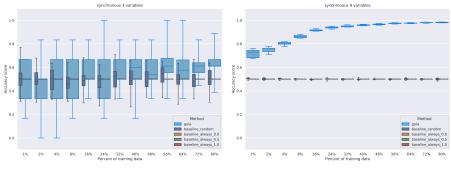
- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow probability P
- Rules with highest weights \Rightarrow explanation *E*

predict : $(atom, state) \mapsto (P, E)$

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$
predict $(a_1, \langle a_1, b_1, c_0 \rangle) = (0.75, ((15, $	$a_1 \leftarrow b_0$, $(5, a_1 \leftarrow c_0)$) \Rightarrow Likely

 $predict(a_{1}, \langle a_{1}, b_{1}, c_{0} \rangle) = (0.75, ((15, a_{1} \leftarrow b_{0}), (5, a_{1} \leftarrow c_{0}))) \Rightarrow Likely$ $predict(a_{0}, \langle a_{1}, b_{1}, c_{0} \rangle) = (0.09, ((3, a_{0} \leftarrow b_{1}), (30, a_{0} \leftarrow c_{1}))) \Rightarrow Unlikely$

Prediction power



3 variables

9 variables

Training data = X% of transitions Tested against unseen states (not in the training data)

PRIDE: Polynomial Alternative to GULA

GULA: Exponential complexity in the number of variables

PRIDE: Greedy version of **GULA** that only keeps the first compatible minimal refinement \Rightarrow subset of rules

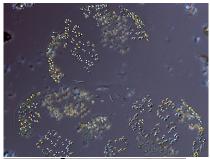
- Consistency: the program allows no negative examples
- Realization: the program covers all positive examples
- Completeness: the program covers all the state space
- Minimality of the rules (most general conditions)

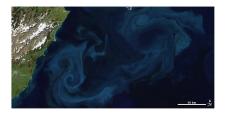
...And the results depends on the ordering of variables

Polynomial complexity \Rightarrow usable on large datasets

Application: Dynamics of Marine Phytoplankton

Phytoplankton Blooms





SRN Dataset

https://www.seanoe.org/ data/00397/50832/

Sampling location	Sampling date	Taxon	Value	Sampling depth
001-P-015	1992-05-18	CHLOROA	6.0	Surface (0-1m)
006-P-001	2019-12-02	Chaetoceros	1000.0	Surface (0-1m)
002-P-007	1994-05-25	Pleurosigma	100.0	Surface (0-1m)
002-P-030	2005-10-19	SALI	34.83	Surface (0-1m)
006-P-007	2015-09-28	Guinardia delicatula	11400.0	Surface (0-1m)

Environmental variables (7) Phytoplankton species (12)

Applying LFIT

Expectations

- Find known abiotic influences (of environment on phytoplankton)
- Find new biotic influences (of phytoplankton species on others)

Input

- Pre-processing: data cleaning + discretization
- 253 training transitions
- 53 testing transitions

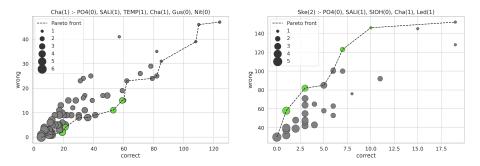
Output

- Run time = 2.35s (**PRIDE**)
- 1683 likeliness rules
- 1981 unlikeliness rules
- Model accuracy: 0.670

Model Improvement

Pareto frontier

- For likeliness rules : maximize correct and minimize wrong weights
- For unlikeliness rules : maximize wrong and minimize correct weights



Accuracy improvement: 0.670 \rightarrow 0.716 Likeliness rules: 1683 \rightarrow 1609

Unlikeliness rules: $1981 \rightarrow 1405$

Maxime Folschette (CRIStAL) Learning from Time Series with LFIT

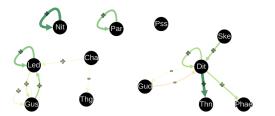
Global Influences

Process: Search and count patterns in rules that characterize an activation/inhibition

Hypotheses: Monotonous influences & same threshold for all variables **Result:** Score [-1; +1] between each pair of variables (no threshold)

Influences on phytoplankton specie Led: SIOH Variable Positive Negative Global P04 +0-58-0.36CHLOROA SALI +71-4 +0.42CHLOROA +84-22+0.39-161 -0.98STOH +3NH4 +25-5+0.12+106 $^{-5}$ TEMP +0.63ÞΟ -87TURB +10-0.48 $\mathsf{global_influence(P04 \rightarrow Led)} = \frac{+0 + (-58)}{161} = -0.36$

Global influence graph (biotic and abiotic interactions)



Biotic interactions (between phytoplankton only)

Very few biotic interactions... Future work: integrate knowledge + validate results

Conclusion

Conclusion

- Learn the network with LFIT (theory)
- Heuristics to tackle real data (practice)
- Application to phytoplankton

Outlooks:

- Quatify how many rules are "missed" by PRIDE
- Integrate biological knowledge to improve learning
- Improve the Biological network inference

...

Thanks

Omar

Tony RIBEIRO

Cédric LHOUSSAINE

Morgan MAGNIN

Katsumi INOUE

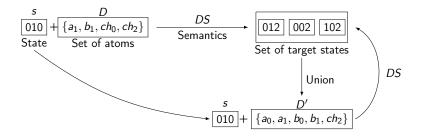
Sébastien LEFEBVRE

Bibliography

- About GULA: Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Learning any memory-less discrete semantics for dynamical systems represented by logic programs. Machine Learning 111, Springer. November 2021. https://doi.org/10.1007/s10994-021-06105-4
- pyLFIT Python library: https://github.com/Tony-sama/pylfit
- About PRIDE: Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Polynomial Algorithm For Learning From Interpretation Transition. Poster at the 1st International Joint Conference on Learning & Reasoning. October 2021, Online. https://hal.science/hal-03347026v1
- About the application: Omar Iken, Maxime Folschette and Tony Ribeiro.
 Automatic Modeling of Dynamical Interactions Within Marine
 Ecosystems. Poster in the 1st International Joint Conference on Learning & Reasoning. October 2021, Online.
 https://hal.science/hal-03347033v1

Pseudo-idempotent semantics

GULA can model observations from any pseudo-idempotent semantics.



$$\longrightarrow DS(s,D) = DS(s,\bigcup_{s'\in DS(s,D)}s')$$

where DS is the dynamical semantics, and D is set of heads of rules of a multi-valued logic program that match the sate s.