Learning any memory-less discrete semantics for dynamical systems represented by logic programs

Tony Ribeiro^{1,2,3}, **Maxime Folschette**⁴, Morgan Magnin^{2,3}, Katsumi Inoue³

¹Independant researcher

²Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France
 ³National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
 ⁴Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

2023-09-15

21st International Conference on Computational Methods in Systems Biology (CMSB 2023) Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Learning any memory-less discrete semantics for dynamical systems represented by logic programs. *Machine Learning* 111, Springer. November 2021. https://doi.org/10.1007/s10994-021-06105-4

SPRINGER LINK

Find a journal Publish with us Q Search	
Home > Machine Learning > Article	
Published: 24 November 2021	
Learning any memory-less discrete semantics dynamical systems represented by logic progr	
<u>Tony Ribeiro 🖂, Maxime Folschette, Morgan Magnin & Katsumi Inoue</u>	
Machine Learning 111, 3593-3670 (2022)	
1415 Accesses 2 Citations 1 Altmetric Metrics	
Abstract	

Learning from interpretation transition (LFIT) automatically constructs a model of the

Contributions

- Algorithm to learn a discrete model from its stage graph
- Independant of the semantics for a defined class of memoryless semantics
- Heuristic for noisy/incomplete data

Outline

General Definitions

- Discrete Networks
- Semantics
- Learning
- Logic Programs

2 Learning From Interpretation Transition (LFIT)

- Intuition
- GULA

3 A Heuristic on LFIT

Conclusion

General Definitions

Discrete Networks / Thomas Modeling [Kauffman, Journal of Theoretical Biology, 1969]

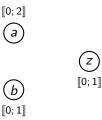
[Thomas, Journal of Theoretical Biology, 1973]

• A set of components $N = \{a, b, z\}$

Ζ

Discrete Networks / Thomas Modeling [Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

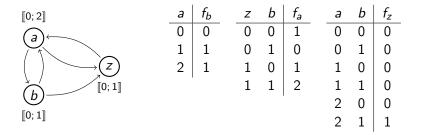
- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [0; 2]



6/32

Discrete Networks / Thomas Modeling [Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

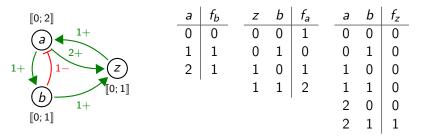
- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [0; 2]
- Discrete parameters / evolution functions $f_a: S \to dom(a)$



Discrete Networks / Thomas Modeling [Kauffman, Journal of Theoretical Biology, 1969]

[Thomas, Journal of Theoretical Biology, 1973]

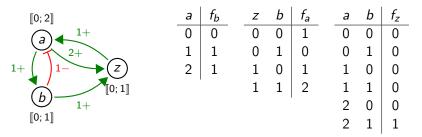
- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [[0; 2]]
- Discrete parameters / evolution functions $f_a: S \to dom(a)$
- Signs & thresholds on the edges (redundant) $a \xrightarrow{2+} z$



Discrete Networks / Thomas Modeling [Kauffman, Journal of Theoretical Biology, 1969]

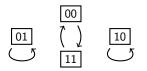
[Thomas, Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component dom(a) = [[0; 2]]
- Discrete parameters / evolution functions $f_a: S \to dom(a)$
- Signs & thresholds on the edges (redundant) $a \xrightarrow{2+} z$



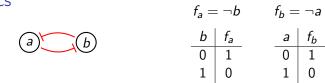
Semantics = From this information, what are the possible next states?

State transitions differ according to the update semantics used:

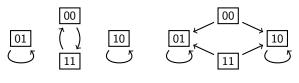


Synchronous

• Synchronous: all variables are updated



State transitions differ according to the update semantics used:

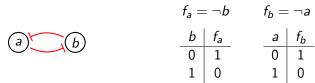


Synchronous

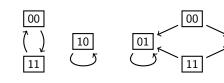
Asynchronous

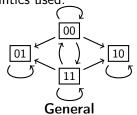
- Synchronous: all variables are updated
- Asynchronous: only one variable is updated

01



State transitions differ according to the update semantics used:





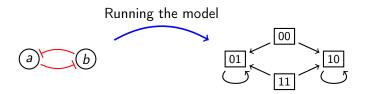
Synchronous

Asynchronous

10

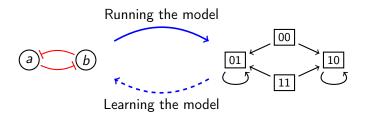
- Synchronous: all variables are updated
- Asynchronous: only one variable is updated
- General: any number of variables can be updated

Learning from the State Graph

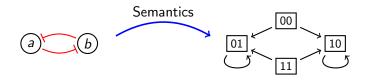


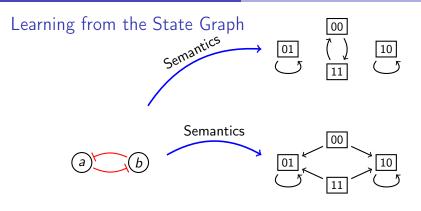
Learning

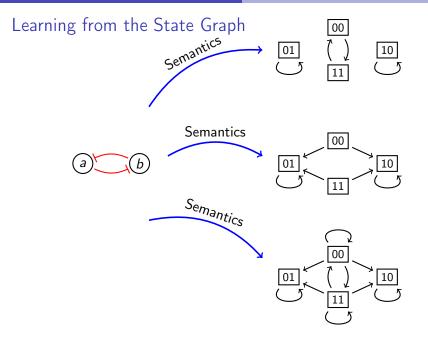
Learning from the State Graph

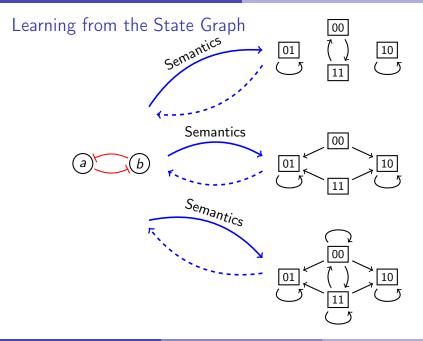


Learning from the State Graph









Logic Rules

LFIT learns a logic program, which is a set of logic rules. It is an alternative representation of biological networks.

 $a_1 \leftarrow a_0, b_0, c_2$. If *a* and *b* are at level 0 and *c* is at level 2, then *a* can change its value to 1.

 $a_1 \leftarrow c_2$. Whenever *c* is at level 2, *a* can change its value to 1.

 $a_1 \leftarrow .$ *a* can change its value to 1 anytime.

10/32

Logic Rules

LFIT learns a logic program, which is a set of logic rules. It is an alternative representation of biological networks.

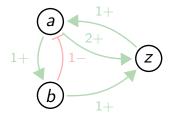
 $a_1 \leftarrow a_0, b_0, c_2$. If *a* and *b* are at level 0 and *c* is at level 2, then *a* can change its value to 1.

 $a_1 \leftarrow c_2$. Whenever *c* is at level 2, *a* can change its value to 1.

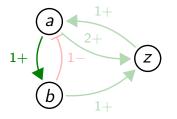
 $a_1 \leftarrow .$ *a* can change its value to 1 anytime.

Semantics = From this information, what are the possible next states?

Discrete model:



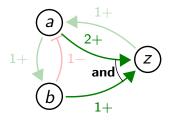
Discrete model:



$$b_1 \leftarrow a_1.$$

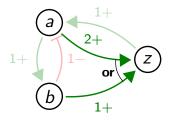
 $b_1 \leftarrow a_2.$
 $b_0 \leftarrow a_0.$

Discrete model:



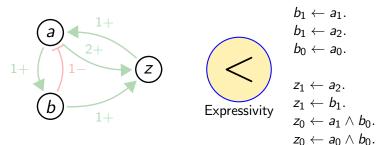
- $b_1 \leftarrow a_1.$ $b_1 \leftarrow a_2.$ $b_0 \leftarrow a_0.$
- $z_1 \leftarrow a_2 \wedge b_1.$ $z_0 \leftarrow a_0.$ $z_0 \leftarrow a_1.$ $z_0 \leftarrow b_0.$

Discrete model:



- $b_1 \leftarrow a_1.$ $b_1 \leftarrow a_2.$ $b_0 \leftarrow a_0.$

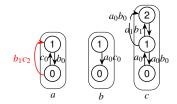
Discrete model:



Logic Programs

AANs as Logic Programs

Asynchronous automata network:



Picture: [Soh et al., CMSB'2023]

Logic program:

$$b_1 \leftarrow a_1.$$

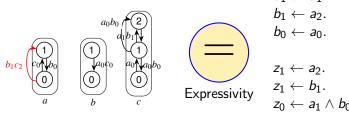
 $b_1 \leftarrow a_2.$
 $b_0 \leftarrow a_0.$

12/32

Logic Programs

AANs as Logic Programs

Asynchronous automata network:



Picture: [Soh et al., CMSB'2023]

 $b_1 \leftarrow a_1$.

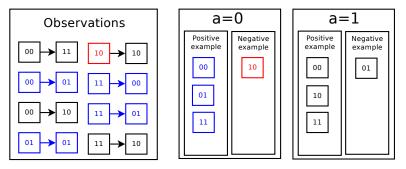
$$z_1 \leftarrow a_2.$$

 $z_1 \leftarrow b_1.$
 $z_0 \leftarrow a_1 \land b_0.$
 $z_0 \leftarrow a_0 \land b_0.$

Learning From Interpretation Transition (LFIT)

Learning Algorithm Intuition: Classification Problem

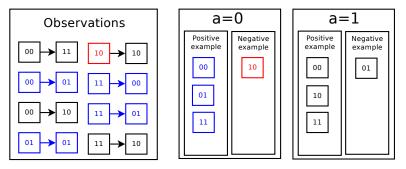
Learn applicable rules: conditions so that a variable **can** take a certain value in next state.



Equivalent to a classification problem: What is a typical state where a can take value 0 in the next state ? Here: when a_0 or b_1 is present.

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable **can** take a certain value in next state.



Equivalent to a classification problem: What is a typical state where a can take value 0 in the next state ? Here: when a_0 or b_1 is present. That is: $a_0 \leftarrow a_0$. $a_0 \leftarrow b_1$.

Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions $(s_1 \rightarrow s_2)$

Output: a logic program that respects:

- Consistency: the program allows no negative examples
- Realization: the program covers all positive examples
- Completeness: the program covers all the state space
- Minimality of the rules (most general conditions)

Compatible with semantics that use the specifications of the model This includes the synchronous, asynchronous and general semantics

Method: start from most general rules and specialize iteratively

Suppose:

- a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

Suppose:

- \bullet a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 : $a_1 \leftarrow c_2$. $a_1 \leftarrow b_1$.
- from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states. Minimal refinement to make the rules inapplicable in this state:

$$a_1 \leftarrow a_0, c_2.$$

 $a_1 \leftarrow b_1, c_2.$
 $a_1 \leftarrow c_2, c_0.$
 $a_1 \leftarrow c_2, c_1.$

$$a_1 \leftarrow b_1.$$
 (No change)

Suppose:

- a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 : $a_1 \leftarrow c_2$. $a_1 \leftarrow b_1$.
- from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states. Minimal refinement to make the rules inapplicable in this state:

$$a_1 \leftarrow a_0, c_2.$$

 $a_1 \leftarrow b_1, c_2.$
 $a_1 \leftarrow c_2, c_0.$
 $a_1 \leftarrow c_2, c_1.$

$$a_1 \leftarrow b_1$$
.

Suppose:

- a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 : $a_1 \leftarrow c_2$. $a_1 \leftarrow b_1$.
- from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states. Minimal refinement to make the rules inapplicable in this state:
 - $a_1 \leftarrow a_0, c_2.$ $a_1 \leftarrow b_1.$ $a_1 \leftarrow b_1, c_2.$ (More general)

Specialization by Minimal Refinements

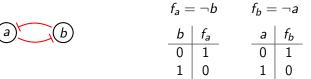
Suppose:

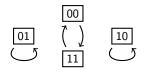
- \bullet a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 : $a_1 \leftarrow c_2$. $a_1 \leftarrow b_1$.
- \bullet from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

$$a_1 \leftarrow a_0, c_2.$$
 $a_1 \leftarrow b_1.$

Example: Synchronous Semantics





Synchronous

$$// f_a = \neg b$$
$$a_0 \leftarrow b_1$$
$$a_1 \leftarrow b_0$$

$$// f_b := \neg a$$

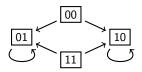
 $b_0 \leftarrow a_1$
 $b_1 \leftarrow a_0$

Maxime Folschette (CRIStAL) Learning systems as logic programs

Example: Asynchronous Semantics

a b

$$\begin{array}{c|c} f_a = \neg b & f_b = \neg a \\ \hline b & f_a & \\ \hline 0 & 1 & \\ 1 & 0 & 1 \\ \end{array} \begin{array}{c|c} a & f_b \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

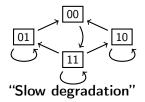


Asynchronous

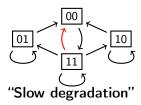
$$\begin{array}{ll} // f_a = \neg b \\ a_0 \leftarrow b_1 & // \text{ Default rules} \\ a_1 \leftarrow b_0 & a_0 \leftarrow a_0 \\ & a_1 \leftarrow a_1 \\ // f_b = \neg a & b_0 \leftarrow b_0 \\ b_0 \leftarrow a_1 & b_1 \leftarrow b_1 \end{array}$$

 $b_1 \leftarrow a_0$

Learning the semantics with constraints



Learning the semantics with constraints



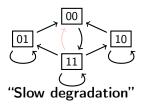
$$\begin{array}{l} // f_a = \neg b \\ a_0^t \leftarrow b_1^{t-1}. \\ a_1^t \leftarrow b_0^{t-1}. \end{array}$$

$$\begin{array}{l} // f_b = \neg a \\ b_0^t \leftarrow a_1^{t-1} \\ b_1^t \leftarrow a_0^{t-1} \end{array}$$

// Conservation rules $a_1^t \leftarrow a_1^{t-1}$. $b_1^t \leftarrow b_1^{t-1}$.

// Degradation
$$a_0^t \leftarrow a_1^{t-1}$$
.
 $b_0^t \leftarrow b_1^{t-1}$.

Learning the semantics with constraints



 $//f_a = \neg b$ $\begin{array}{ll} a_{0}^{t} \leftarrow b_{1}^{t-1}, & a_{1}^{t} \leftarrow a_{1}^{t-1}, \\ a_{1}^{t} \leftarrow b_{0}^{t-1}, & b_{1}^{t} \leftarrow b_{1}^{t-1}. \end{array}$

// Conservation rules

// Degradation
$$a_0^t \leftarrow a_1^{t-1}$$
.
 $b_0^t \leftarrow b_1^{t-1}$.

// Constraints $\bot \leftarrow a_0^t, b_0^t, a_1^{t-1}, b_1^{t-1}.$

Results

• Algorithm that allows to learn the network

- Structure of the model
- Under the form of a logic program
- Directly works for a class of memoryless semantics
 - Characterization of applicable semantics
- Usable to learn from other semantics as well
 - By using constraints to learn the semantics along with the model

Limitations:

- Exponential complexity
- What if the data is incomplete or noisy?

A Heuristic on LFIT

Weighted Likeliness/Unlikeliness Rules

• Use the algorithm twice to learn two logic programs:

- likeliness rules: what is possible
- unlikeliness rules: what is impossible
- Weight each rule by the number of observations it matches

Statistical overlay \Rightarrow usable on **noisy datasets**

Likeliness rules	Unlikeliness rules	h
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$	l
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$	l
÷	:	l

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow probability P
- Rules with highest weights \Rightarrow explanation *E* predict : (*atom. state*) \mapsto (*P*, *E*)

Likeliness rules (3, $a_0 \leftarrow b_1$) (15, $a_1 \leftarrow b_0$) Unlikeliness rules (30, $a_0 \leftarrow c_1$) (5, $a_1 \leftarrow c_0$)

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow probability P
- Rules with highest weights \Rightarrow explanation *E* predict : (*atom. state*) \mapsto (*P*, *E*)

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$

 $\mathsf{predict}(a_1, \langle a_1, b_0, c_0 \rangle) = (0.75, ((15, a_1 \leftarrow b_0), (5, a_1 \leftarrow c_0))) \Rightarrow \mathsf{Likely}$

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

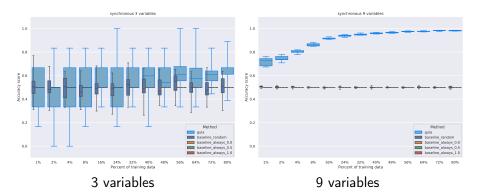
- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow probability P
- Rules with highest weights \Rightarrow **explanation** *E*

predict : $(atom, state) \mapsto (P, E)$

Likeliness rulesUnlikeliness rules $(3, a_0 \leftarrow b_1)$ $(30, a_0 \leftarrow c_1)$ $(15, a_1 \leftarrow b_0)$ $(5, a_1 \leftarrow c_0)$ predict $(a_1, \langle a_1, b_0, c_0 \rangle) = (0.75, ((15, a_1 \leftarrow b_0), (5, a_1 \leftarrow c_0))) \Rightarrow$ Likely

 $predict(a_{1}, \langle a_{1}, b_{0}, c_{0} \rangle) = (0.75, ((15, a_{1} \leftarrow b_{0}), (5, a_{1} \leftarrow c_{0}))) \Rightarrow Likely$ $predict(a_{0}, \langle a_{1}, b_{1}, c_{1} \rangle) = (0.09, ((3, a_{0} \leftarrow b_{1}), (30, a_{0} \leftarrow c_{1}))) \Rightarrow Unlikely$

Prediction power



Training data = X% of transitions Tested against unseen states (not in the training data)

Conclusion

Conclusion

- Learn the network with LFIT (theory)
 - When not "learnable", learn the semantics with constraints
- Heuristics to tackle real data (practice)
 - ▶ Good results with 10% of the transitions

Outlooks:

- PRIDE: polynomial algorithm that "misses" some explanations
- Learn from the Most Permissive semantics
- Application to real data (marine phytoplankton)

Thanks

Tony RIBEIRO

Conclusion

Morgan MAGNIN

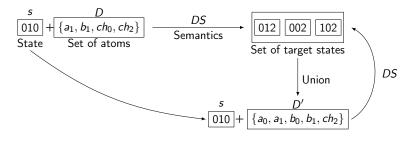
Katsumi INOUE

Bibliography

- About GULA: Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Learning any memory-less discrete semantics for dynamical systems represented by logic programs. Machine Learning 111, Springer. November 2021. https://doi.org/10.1007/s10994-021-06105-4
- pyLFIT Python library: https://github.com/Tony-sama/pylfit
- About PRIDE: Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Polynomial Algorithm For Learning From Interpretation Transition. Poster at the 1st International Joint Conference on Learning & Reasoning. October 2021, Online. https://hal.science/hal-03347026v1
- Application to phytoplankton: Omar Iken, Maxime Folschette and Tony Ribeiro. Automatic Modeling of Dynamical Interactions Within Marine Ecosystems. Poster in the 1st International Joint Conference on Learning & Reasoning. October 2021, Online. https://hal.science/hal-03347033v1

Pseudo-idempotent semantics

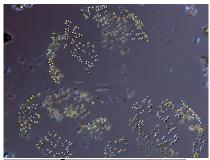
GULA can model observations from any pseudo-idempotent semantics.

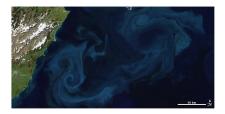


$$\longrightarrow DS(s,D) = DS(s,\bigcup_{s'\in DS(s,D)}s')$$

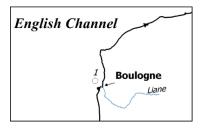
where DS is the dynamical semantics, and D is set of heads of rules of a multi-valued logic program that match the sate s.

Phytoplankton Blooms





SRN Dataset



https://www.seanoe.org/ data/00397/50832/

Sampling location	Sampling date	Taxon	Value	Sampling depth
001-P-015	1992-05-18	CHLOROA	6.0	Surface (0-1m)
006-P-001	2019-12-02	Chaetoceros	1000.0	Surface (0-1m)
002-P-007	1994-05-25	Pleurosigma	100.0	Surface (0-1m)
002-P-030	2005-10-19	SALI	34.83	Surface (0-1m)
006-P-007	2015-09-28	Guinardia delicatula	11400.0	Surface (0-1m)

Environmental variables (7)

Phytoplankton species (12)

Global Influences

Process: Search and count patterns in rules that characterize an activation/inhibition

Hypotheses: Monotonous influences & same threshold for all variables **Result:** Score [-1; +1] between each pair of variables (no threshold)

Influences on phytoplankton specie Led: SIOH Variable Positive Negative Global P04 +0-58-0.36CHLOROA SALI +71-4 +0.42CHLOROA +84-22+0.39-161 -0.98STOH +3NH4 +25-5+0.12-5+106+0.63TEMP ÞΟ TURB +10-87-0.48 $\mathsf{global_influence(P04 \rightarrow Led)} = \frac{+0 + (-58)}{161} = -0.36$