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Contributions

Algorithm to learn a discrete model from its stage graph
Independant of the semantics for a defined class of memoryless
semantics
Heuristic for noisy/incomplete data
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General Definitions Discrete Networks

Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

A set of components N = {a, b, z}

A discrete domain for each component dom(a) = J0; 2K
Discrete parameters / evolution functions fa : S → dom(a)

Signs & thresholds on the edges (redundant) a
2+−−→ z

z

a

b

a fb
0 0
1 1
2 1

z b fa
0 0 1
0 1 0
1 0 1
1 1 2

a b fz
0 0 0
0 1 0
1 0 0
1 1 0
2 0 0
2 1 1

Semantics = From this information, what are the possible next states?
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General Definitions Semantics

Semantics

a b

fa = ¬b fb = ¬a
b fa
0 1
1 0

a fb
0 1
1 0

State transitions differ according to the update semantics used:

00

11

01 10

Synchronous

00

11

01 10

Asynchronous

00

11

01 10

General

Synchronous: all variables are updated

Asynchronous: only one variable is updated
General: any number of variables can be updated
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General Definitions Learning

Learning from the State Graph

a b

Running the model

00

11

01 10
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General Definitions Learning

Learning from the State Graph

a b
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General Definitions Logic Programs

Logic Rules

LFIT learns a logic program, which is a set of logic rules.
It is an alternative representation of biological networks.

a1 ← a0, b0, c2.
If a and b are at level 0 and c is at level 2, then a can change its value to 1.

a1 ← c2.
Whenever c is at level 2, a can change its value to 1.

a1 ← .
a can change its value to 1 anytime.

Semantics = From this information, what are the possible next states?
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General Definitions Logic Programs

Discrete Models as Logic Programs

Discrete model:

z

a

b

1+ 1−
2+

1+

1+

Logic program:

b1 ← a1.
b1 ← a2.
b0 ← a0.
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General Definitions Logic Programs
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General Definitions Logic Programs

AANs as Logic Programs

Asynchronous automata network:Automata Network
[Folschette+, 2015, Paulevé, 2016]

0

1

2

0

1

0

1

a b c

c0 b0b1c2 a0c0 a0 a0b0

a1b1

a0b0

This AN contains three automata a, b and c whose possible state
values are a, b ∈ {0, 1}, c ∈ {0, 1, 2}.
The arcs and their labels denote transitions that change the state
value of an automaton with its labeled condition.
The red colored transition will change the state value of the
automaton a from 0 to 1 with the condition b = 1 and c = 2.

2 / 17

Picture: [Soh et al., CMSB’2023]

Logic program:

b1 ← a1.
b1 ← a2.
b0 ← a0.

z1 ← a2.
z1 ← b1.
z0 ← a1 ∧ b0.
z0 ← a0 ∧ b0.
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Learning From Interpretation Transition (LFIT)

Learning From Interpretation
Transition (LFIT)
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Learning From Interpretation Transition (LFIT) Intuition

Learning Algorithm Intuition: Classification Problem
Learn applicable rules: conditions so that a variable can take a certain
value in next state.

00 01

00 10

01 01

10 1000 11

Positive
example

Negative
example

a=0

00

11 01

11 10

11 00

01

10

11

Observations
Positive
example

Negative
example

a=1

00 01

10

11

Equivalent to a classification problem: What is a typical state where a
can take value 0 in the next state ? Here: when a0 or b1 is present.

That is: a0 ← a0. a0 ← b1.
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Learning From Interpretation Transition (LFIT) GULA

Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions (s1 → s2)

Output: a logic program that respects:
Consistency: the program allows no negative examples
Realization: the program covers all positive examples
Completeness: the program covers all the state space
Minimality of the rules (most general conditions)

Compatible with semantics that use the specifications of the model
This includes the synchronous, asynchronous and general semantics

Method: start from most general rules and specialize iteratively
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Learning From Interpretation Transition (LFIT) GULA

Specialization by Minimal Refinements
Suppose:
• a and b have two levels {0, 1} and c has three levels {0, 1, 2}
• the current program contains the following rules regarding a1:

a1 ← c2. a1 ← b1.
• from state ⟨a1, b0, c2⟩, a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:
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Learning From Interpretation Transition (LFIT) GULA

Example: Synchronous Semantics

a b

fa = ¬b fb = ¬a
b fa
0 1
1 0

a fb
0 1
1 0

00

11

01 10

Synchronous

// fa = ¬b
a0 ← b1
a1 ← b0

// fb := ¬a
b0 ← a1
b1 ← a0
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Learning From Interpretation Transition (LFIT) GULA

Example: Asynchronous Semantics

a b

fa = ¬b fb = ¬a
b fa
0 1
1 0

a fb
0 1
1 0

00

11

01 10

Asynchronous

// fa = ¬b
a0 ← b1
a1 ← b0

// fb = ¬a
b0 ← a1
b1 ← a0

// Default rules
a0 ← a0
a1 ← a1
b0 ← b0
b1 ← b1
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Learning From Interpretation Transition (LFIT) GULA

Learning the semantics with constraints

00

11

01 10

“Slow degradation”

// fa = ¬b
at0 ← bt−1

1 .
at1 ← bt−1

0 .

// fb = ¬a
bt0 ← at−1

1 .
bt1 ← at−1

0 .

// Conservation rules
at1 ← at−1

1 .
bt1 ← bt−1

1 .

// Degradation
at0 ← at−1

1 .
bt0 ← bt−1

1 .

// Constraints
⊥ ← at0, b

t
0, a

t−1
1 , bt−1

1 .
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Learning From Interpretation Transition (LFIT) GULA

Results

Algorithm that allows to learn the network
▶ Structure of the model
▶ Under the form of a logic program

Directly works for a class of memoryless semantics
▶ Characterization of applicable semantics

Usable to learn from other semantics as well
▶ By using constraints to learn the semantics along with the model

Limitations:
Exponential complexity
What if the data is incomplete or noisy?
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A Heuristic on LFIT
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A Heuristic on LFIT

Weighted Likeliness/Unlikeliness Rules

Use the algorithm twice to learn two logic programs:
▶ likeliness rules: what is possible
▶ unlikeliness rules: what is impossible

Weight each rule by the number of observations it matches

Statistical overlay ⇒ usable on noisy datasets

Likeliness rules
(3, a0 ← b1)
(15, a1 ← b0)

...

Unlikeliness rules
(30, a0 ← c1)
(5, a1 ← c0)

...
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A Heuristic on LFIT

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
Compare weights of applicable likeliness/unlikeliness rules
Ratio of highest weights ⇒ probability P

Rules with highest weights ⇒ explanation E

predict : (atom, state) 7→ (P,E )

Likeliness rules
(3, a0 ← b1)
(15, a1 ← b0)

Unlikeliness rules
(30, a0 ← c1)
(5, a1 ← c0)
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A Heuristic on LFIT

Prediction power
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Training data = X% of transitions
Tested against unseen states (not in the training data)
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Conclusion

Conclusion

Learn the network with LFIT (theory)
▶ When not “learnable”, learn the semantics with constraints

Heuristics to tackle real data (practice)
▶ Good results with 10% of the transitions

Outlooks:
PRIDE: polynomial algorithm that “misses” some explanations
Learn from the Most Permissive semantics
Application to real data (marine phytoplankton)
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Conclusion

Pseudo-idempotent semantics

GULA can model observations from any pseudo-idempotent semantics.

010 {a1, b1, ch0, ch2}+ 012

{a0, a1, b0, b1, ch2}010

002 102

+

State Set of atoms Set of target states

s D
DS

s D ′

DSUnion

Semantics

−→ DS(s,D) = DS
(
s,

⋃
s′∈DS(s,D)

s ′
)

where DS is the dynamical semantics, and D is set of heads of rules of a
multi-valued logic program that match the sate s.
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Phytoplankton Blooms
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Conclusion

SRN Dataset

https://www.seanoe.org/
data/00397/50832/

Sampling location Sampling date Taxon Value Sampling depth
001-P-015 1992-05-18 CHLOROA 6.0 Surface (0-1m)
006-P-001 2019-12-02 Chaetoceros 1000.0 Surface (0-1m)
002-P-007 1994-05-25 Pleurosigma 100.0 Surface (0-1m)
002-P-030 2005-10-19 SALI 34.83 Surface (0-1m)
006-P-007 2015-09-28 Guinardia delicatula 11400.0 Surface (0-1m)

Environmental variables (7) Phytoplankton species (12)
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Conclusion

Global Influences
Process: Search and count patterns in rules that characterize an
activation/inhibition
Hypotheses: Monotonous influences & same threshold for all variables
Result: Score [−1; +1] between each pair of variables (no threshold)

Influences on phytoplankton specie Led:

Variable Positive Negative Global
PO4 +0 −58 −0.36
SALI +71 −4 +0.42
CHLOROA +84 −22 +0.39
SIOH +3 −161 −0.98
NH4 +25 −5 +0.12
TEMP +106 −5 +0.63
TURB +10 −87 −0.48

global_influence(PO4 → Led) =
+0 + (−58)

161
= −0.36
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