Modeling and Learning of Biological Regulatory Networks

Maxime Folschette

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

2023-10-18 Master Data Science Seminar

Joint work with: Tony Ribeiro (Independant researcher, France), Omar Ikne (Univ. Lille, France), Morgan Magnin (Centrale Nantes, France), Katsumi Inoue (NII, Tokyo, Japan)

Maxime Folschette (CRIStAL)

Modeling & Learning BRNs

Outline

- Biological regulatory networks
- LFIT: an approach to learn a discrete model from its stage graph
- Heuristic for noisy/incomplete data
- Application to phytoplankton monitoring

Maxime Folschette (CRIStAL)

Modeling & Learning BRNs

2023-10-18

wet lab Experiments in vivo / ex vivo Biological system

dry lab

Maxime Folschette (CRIStAL)

Modeling & Learning BRNs

Maxime Folschette (CRIStAL)

Modeling & Learning BRNs

Maxime Folschette (CRIStAL)

Modeling & Learning BRNs

Preliminary Abstraction

Preliminary Abstraction

Preliminary Abstraction

Biological Regulatory Networks

• A set of components $N = \{a, b, z\}$

Ζ

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component $dom(a) = \{0, 1, 2\}$

 $\begin{pmatrix} z \\ \{0,1\} \end{pmatrix}$

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component $dom(a) = \{0, 1, 2\}$
- Discrete parameters / evolution functions $f_a: S \rightarrow dom(a)$

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component $dom(a) = \{0, 1, 2\}$
- Discrete parameters / evolution functions $f_a: S \to dom(a)$
- Signs & thresholds on the edges (redundant) $a \xrightarrow{2+} z$

abz 000	010	001	011	
100	110	101	111	
200	210	201	211	$+ f_a, f_b, f_c$

abz 000	010	001	011	
100	→ 110	101	111	
200	210	201	211	$+ f_a, f_b, f_c$

The state graph depicts explicitly the whole dynamics

Ζ

The state graph depicts explicitly the whole dynamics

• Stable state = state with no successors

The state graph depicts explicitly the whole dynamics

• Stable state = state with no successors

• **Complex attractor** = minimal loop or composition of loops from which the dynamics cannot escape

- Stable state = state with no successors
- **Complex attractor** = minimal loop or composition of loops from which the dynamics cannot escape
- Reachability = from 201, can I reach 000?

- Stable state = state with no successors
- **Complex attractor** = minimal loop or composition of loops from which the dynamics cannot escape
- Reachability = from 201, can I reach 000?

Semantics $f_a = \neg b$ $f_b = \neg a$ ab f_a $\frac{a}{0}$ $\frac{f_b}{1}$ 10101

State transitions differ according to the update semantics used:

Synchronous

• Synchronous: all variables are updated

State transitions differ according to the update semantics used:

Synchronous

Asynchronous

- Synchronous: all variables are updated
- Asynchronous: only one variable is updated

10

01

State transitions differ according to the update semantics used:

Synchronous

- Synchronous: all variables are updated
- Asynchronous: only one variable is updated
- General: any number of variables can be updated

Learning from the State Graph

Learning

Learning from the State Graph

Learning

Learning from the State Graph

Other Approaches

CaspoTS

[M. Ostrowski, L. Paulevé, T. Schaub, A. Siegel, C. Guziolowski. Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming. Biosystems, Volume 149, 2016, 139–153, ISSN 0303-2647.]

BoNesis

[S. Chevalier, C. Froidevaux, L. Paulevé, A. Zinovyev. Synthesis of Boolean Networks from Biological Dynamical Constraints using Answer-Set Programming. IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, USA, 2019, 34–41, DOI 10.1109/ICTAI.2019.00014.]

miic

[L. Verny, N. Sella, S. Affeldt, P. P. Singh, H. Isambert. Learning causal networks with latent variables from multivariate information in genomic data. PLoS computational biology, 13(10), 2017, DOI 10.1371/journal.pcbi.1005662.] χ

Learning From Interpretation Transition (LFIT)

Logic Rules

A logic program is a set of logic rules. It is an alternative representation of biological networks.

 $a_1 \leftarrow a_0, b_0, c_2.$ If *a* and *b* are at level 0 and *c* is at level 2, then *a* can change its value to 1.

 $a_1 \leftarrow c_2$. Whenever *c* is at level 2, *a* can change its value to 1.

 $a_1 \leftarrow .$ *a* can change its value to 1 anytime.

Logic Rules

A logic program is a set of logic rules. It is an alternative representation of biological networks.

 $a_1 \leftarrow a_0, b_0, c_2.$ If *a* and *b* are at level 0 and *c* is at level 2, then *a* can change its value to 1.

 $a_1 \leftarrow c_2$. Whenever *c* is at level 2, *a* can change its value to 1.

 $a_1 \leftarrow .$ *a* can change its value to 1 anytime.

One can run a logic program. The same notion of semantics applies.

Discrete model:

Logic program:

Discrete model:

Logic program:

 $b_1 \leftarrow a_1.$ $b_1 \leftarrow a_2.$ $b_0 \leftarrow a_0.$

Discrete model:

Logic program:

- $b_1 \leftarrow a_1.$ $b_1 \leftarrow a_2.$ $b_0 \leftarrow a_0.$

17 / 39

Discrete model:

Logic program:

- $b_1 \leftarrow a_1.$ $b_1 \leftarrow a_2.$ $b_0 \leftarrow a_0.$

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable **can** take a certain value in next state.

Equivalent to a classification problem: What is a typical state where a can take value 0 in the next state ? Here: when a_0 or b_1 is present.

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable **can** take a certain value in next state.

Equivalent to a classification problem: What is a typical state where a can take value 0 in the next state ? Here: when a_0 or b_1 is present. That is: $a_0 \leftarrow a_0$. $a_0 \leftarrow b_1$.

Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions $(s_1 \rightarrow s_2)$

Output: a logic program that reproduces the input

Principle: minimal refinements of the rules

Compatible with the synchronous, asynchronous and general semantics (and any semantics without memory or "hard-coded" behaviors)

GULA: Initial Logic Program

Suppose:

 \bullet a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$

GULA starts with the most general program:

With this program, everything is always possible

Suppose:

- \bullet a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make **minimal refinements** in order to make this rule inapplicable:

21/39

Suppose:

- \bullet a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make **minimal refinements** in order to make this rule inapplicable:

$$a_1 \leftarrow a_0, c_2.$$

 $a_1 \leftarrow b_1, c_2.$
 $a_1 \leftarrow c_2, c_0.$
 $a_1 \leftarrow c_2, c_1.$

$$a_1 \leftarrow b_1.$$
(No change)

21/39

Suppose:

- \bullet a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make **minimal refinements** in order to make this rule inapplicable:

Suppose:

- \bullet a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make **minimal refinements** in order to make this rule inapplicable:

Suppose:

- \bullet a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make **minimal refinements** in order to make this rule inapplicable:

$$a_1 \leftarrow a_0, c_2.$$
 $a_1 \leftarrow b_1.$

21/39

GULA: Final Result

The output of GULA respects some good properties:

- Consistency: the program allows no negative examples
- Realization: the program covers all positive examples
- Completeness: the program covers all the state space
- Minimality of the rules (most general conditions)

Example: Synchronous Semantics

а

Synchronous

$$// f_a = \neg b$$
$$a_0 \leftarrow b_1$$
$$a_1 \leftarrow b_0$$

$$// f_b := \neg a$$

 $b_0 \leftarrow a_1$
 $b_1 \leftarrow a_0$

Example: Asynchronous Semantics

a b

$$\begin{array}{c|c} f_a = \neg b & f_b = \neg a \\ \hline b & f_a & \hline 0 & 1 & \hline 1 & 0 & 1 & 0 \end{array}$$

Asynchronous

$$\begin{array}{ll} // f_a = \neg b \\ a_0 \leftarrow b_1 & // \text{ Default rules} \\ a_1 \leftarrow b_0 & a_0 \leftarrow a_0 \\ & a_1 \leftarrow a_1 \\ // f_b = \neg a & b_0 \leftarrow b_0 \\ b_0 \leftarrow a_1 & b_1 \leftarrow b_1 \\ b_1 \leftarrow a_0 \end{array}$$

Results

GULA: an algorithm to learn a biological regulatory network

- From the state graph
- In order to recover the structure of the model
- Applicable to a widespread class of semantics

Limitations:

- Exponential complexity
 - PRIDE: a greedy polynomial version of GULA
- What if the data is incomplete or noisy?
 - Heuristic to avoid overfitting

Heuristic: Weighted Likeliness/Unlikeliness Rules

• Use the algorithm twice to learn two logic programs:

- likeliness rules: what is possible
- unlikeliness rules: what is impossible
- Weight each rule by the number of observations it matches

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$
:	:

Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow probability P
- Rules with highest weights \Rightarrow explanation *E*

predict : $(atom, state) \mapsto (P, E)$

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$

Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow **probability** *P*
- Rules with highest weights \Rightarrow explanation *E*

predict : $(atom, state) \mapsto (P, E)$

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$

 $\mathsf{predict}(a_1, \langle a_1, b_0, c_0 \rangle) = (0.75, ((15, a_1 \leftarrow b_0), (5, a_1 \leftarrow c_0))) \Rightarrow \mathsf{Likely}$

Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow probability P
- Rules with highest weights \Rightarrow explanation *E*

predict : $(atom, state) \mapsto (P, E)$

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$

 $\begin{aligned} \mathsf{predict}(a_1, \langle a_1, b_0, c_0 \rangle) &= (0.75, ((15, a_1 \leftarrow b_0), (5, a_1 \leftarrow c_0))) \Rightarrow \mathsf{Likely} \\ \mathsf{predict}(a_0, \langle a_1, b_1, c_1 \rangle) &= (0.09, ((3, a_0 \leftarrow b_1), (30, a_0 \leftarrow c_1))) \Rightarrow \mathsf{Unlikely} \end{aligned}$

Prediction power

Training data = X% of transitions Tested against unseen states (not in the training data)

Application: Dynamics of Marine Phytoplankton

Phytoplankton Blooms

SRN Dataset

https://www.seanoe.org/ data/00397/50832/

Sampling location	Sampling date	Taxon	Value	Sampling depth
001-P-015	1992-05-18	CHLOROA	6.0	Surface (0-1m)
006-P-001	2019-12-02	Chaetoceros	1000.0	Surface (0-1m)
002-P-007	1994-05-25	Pleurosigma	100.0	Surface (0-1m)
002-P-030	2005-10-19	SALI	34.83	Surface (0-1m)
006-P-007	2015-09-28	Guinardia delicatula	11400.0	Surface (0-1m)

Environmental variables (7)

Phytoplankton species (12)

Maxime Folschette (CRIStAL)

Applying LFIT

Expectations

- Find known abiotic influences (of environment on phytoplankton)
- Find new biotic influences (of phytoplankton species on others)

Input

- Pre-processing: data cleaning + discretization
- Train set: 253 transitions
- Test set: 53 transitions

Output

- Run time = 2.35s (PRIDE, greedy version of GULA)
- 1683 likeliness rules & 1981 unlikeliness rules
- Model accuracy: 0.670

Model Improvement

Consider rules with subsets of conditions and compute a Pareto frontier

- For likeliness rules : maximize correct and minimize wrong weights
- For unlikeliness rules : maximize wrong and minimize correct weights

Accuracy improvement: 0.670 \rightarrow 0.716 Likeliness rules: 1683 \rightarrow 1609

Unlikeliness rules: $1981 \rightarrow 1405$
Global Influences

Process: Search and count patterns in rules that characterize an activation/inhibition

Result: Score [-1; +1] between each pair of variables

Influences on phytoplankton species Led:

Global influence graph (biotic and abiotic interactions)

Biotic interactions (between phytoplankton only)

Very few biotic interactions...

Ongoing work: integrate knowledge + validate results

Conclusion

Conclusion

- Learn biological regulatory networks with LFIT
- Heuristics to tackle real data
 - Good results with 10% of the transitions
- Ongoing: Application to phytoplankton
- You can try **GULA** at home: https://github.com/Tony-sama/pylfit

Outlooks:

- PRIDE: polynomial algorithm that "misses" some explanations
- Improve the application (integrate existing knowledge)
- Improve the biological network inference

Thanks

Tony RIBEIRO

Omar IKNE

Morgan MAGNIN

Katsumi INOUE

Cédric LHOUSSAINE

Sébastien LEFEBVRE

Madeleine EYRAUD

Bibliography

- About GULA: Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Learning any memory-less discrete semantics for dynamical systems represented by logic programs. Machine Learning 111, Springer. November 2021. https://doi.org/10.1007/s10994-021-06105-4
- pyLFIT Python library: https://github.com/Tony-sama/pylfit
- About PRIDE: Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Polynomial Algorithm For Learning From Interpretation Transition. Poster at the 1st International Joint Conference on Learning & Reasoning. October 2021, Online. https://hal.science/hal-03347026v1
- Application to phytoplankton: Omar Iken, Maxime Folschette and Tony Ribeiro. Automatic Modeling of Dynamical Interactions Within Marine Ecosystems. Poster in the 1st International Joint Conference on Learning & Reasoning. October 2021, Online. https://hal.science/hal-03347033v1