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Preliminary Abstraction
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Biological Regulatory Networks Discrete Networks

Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

A set of components N = {a, b, z}

A discrete domain for each component dom(a) = {0, 1, 2}
Discrete parameters / evolution functions fa : S → dom(a)

Signs & thresholds on the edges (redundant) a
2+−−→ z

z

a

b

a fb
0 0
1 1
2 1

z b fa
0 0 1
0 1 0
1 0 1
1 1 2

a b fz
0 0 0
0 1 0
1 0 0
1 1 0
2 0 0
2 1 1
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Biological Regulatory Networks Discrete Networks

State Graph
The state graph depicts explicitly the whole dynamics
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Stable state = state with no successors
Complex attractor = minimal loop or composition of loops from
which the dynamics cannot escape
Reachability = from 201, can I reach 000?
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Biological Regulatory Networks Semantics

Semantics

a b

fa = ¬b fb = ¬a

b fa
0 1
1 0

a fb
0 1
1 0

State transitions differ according to the update semantics used:

00

11
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Synchronous

00

11
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Asynchronous

00
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General

Synchronous: all variables are updated

Asynchronous: only one variable is updated
General: any number of variables can be updated
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Biological Regulatory Networks Learning

Learning from the State Graph
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Other Approaches

CaspoTS
[M. Ostrowski, L. Paulevé, T. Schaub, A. Siegel, C. Guziolowski. Boolean network
identification from perturbation time series data combining dynamics abstraction and
logic programming. Biosystems, Volume 149, 2016, 139–153, ISSN 0303-2647.]
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Other Approaches

BoNesis
[S. Chevalier, C. Froidevaux, L. Paulevé, A. Zinovyev. Synthesis of Boolean Networks
from Biological Dynamical Constraints using Answer-Set Programming. IEEE 31st
International Conference on Tools with Artificial Intelligence (ICTAI), Portland, USA,
2019, 34–41, DOI 10.1109/ICTAI.2019.00014.]
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Other Approaches

miic
[L. Verny, N. Sella, S. Affeldt, P. P. Singh, H. Isambert. Learning causal networks with
latent variables from multivariate information in genomic data. PLoS computational
biology, 13(10), 2017, DOI 10.1371/journal.pcbi.1005662.]
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Learning From Interpretation Transition (LFIT)

Learning From Interpretation
Transition (LFIT)
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Learning From Interpretation Transition (LFIT) Logic Programs

Logic Rules

A logic program is a set of logic rules.
It is an alternative representation of biological networks.

a1 ← a0, b0, c2.
If a and b are at level 0 and c is at level 2, then a can change its value to 1.

a1 ← c2.
Whenever c is at level 2, a can change its value to 1.

a1 ← .
a can change its value to 1 anytime.

One can run a logic program. The same notion of semantics applies.

Maxime Folschette (CRIStAL) Modeling & Learning BRNs 2023-10-18 16 / 39



Learning From Interpretation Transition (LFIT) Logic Programs

Logic Rules

A logic program is a set of logic rules.
It is an alternative representation of biological networks.

a1 ← a0, b0, c2.
If a and b are at level 0 and c is at level 2, then a can change its value to 1.

a1 ← c2.
Whenever c is at level 2, a can change its value to 1.

a1 ← .
a can change its value to 1 anytime.

One can run a logic program. The same notion of semantics applies.

Maxime Folschette (CRIStAL) Modeling & Learning BRNs 2023-10-18 16 / 39



Learning From Interpretation Transition (LFIT) Logic Programs

Discrete Models as Logic Programs

Discrete model:

z

a

b

1+ 1−
2+

1+

1+

Logic program:

b1 ← a1.
b1 ← a2.

b0 ← a0.
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Learning From Interpretation Transition (LFIT) Intuition

Learning Algorithm Intuition: Classification Problem
Learn applicable rules: conditions so that a variable can take a certain
value in next state.

00 01

00 10

01 01

10 1000 11

Positive
example

Negative
example

a=0

00

11 01

11 10

11 00

01

10

11

Observations
Positive
example

Negative
example

a=1

00 01

10

11

Equivalent to a classification problem: What is a typical state where a
can take value 0 in the next state ? Here: when a0 or b1 is present.

That is: a0 ← a0. a0 ← b1.
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Learning From Interpretation Transition (LFIT) GULA

Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions (s1 → s2)

Output: a logic program that reproduces the input

Principle: minimal refinements of the rules

Compatible with the synchronous, asynchronous and general semantics
(and any semantics without memory or “hard-coded” behaviors)
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Learning From Interpretation Transition (LFIT) GULA

GULA: Initial Logic Program
Suppose:
• a and b have two levels {0, 1} and c has three levels {0, 1, 2}

GULA starts with the most general program:
a0 ← .
a1 ← .

b0 ← .
b1 ← .

c0 ← .
c1 ← .
c2 ← .

With this program, everything is always possible
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Learning From Interpretation Transition (LFIT) GULA

GULA: One Step of Minimal Refinements
Suppose:
• a and b have two levels {0, 1} and c has three levels {0, 1, 2}
• the current program contains the following rules regarding a1:

a1 ← c2. a1 ← b1.
• from state ⟨a1, b0, c2⟩, a1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make minimal
refinements in order to make this rule inapplicable:
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• from state ⟨a1, b0, c2⟩, a1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make minimal
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a1 ← b1, c2.
a1 ← c2, c0.
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a1 ← b1.
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Learning From Interpretation Transition (LFIT) GULA

GULA: Final Result

The output of GULA respects some good properties:
Consistency: the program allows no negative examples
Realization: the program covers all positive examples
Completeness: the program covers all the state space
Minimality of the rules (most general conditions)
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Learning From Interpretation Transition (LFIT) GULA

Example: Synchronous Semantics

a b

fa = ¬b fb = ¬a

b fa
0 1
1 0

a fb
0 1
1 0

00

11

01 10

Synchronous

// fa = ¬b
a0 ← b1
a1 ← b0

// fb := ¬a
b0 ← a1
b1 ← a0
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Learning From Interpretation Transition (LFIT) GULA

Example: Asynchronous Semantics

a b

fa = ¬b fb = ¬a

b fa
0 1
1 0

a fb
0 1
1 0

00

11

01 10

Asynchronous

// fa = ¬b
a0 ← b1
a1 ← b0

// fb = ¬a
b0 ← a1
b1 ← a0

// Default rules
a0 ← a0
a1 ← a1
b0 ← b0
b1 ← b1

Maxime Folschette (CRIStAL) Modeling & Learning BRNs 2023-10-18 24 / 39



Learning From Interpretation Transition (LFIT) GULA

Results

GULA: an algorithm to learn a biological regulatory network
From the state graph
In order to recover the structure of the model
Applicable to a widespread class of semantics

Limitations:
Exponential complexity

▶ PRIDE: a greedy polynomial version of GULA
What if the data is incomplete or noisy?

▶ Heuristic to avoid overfitting
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Learning From Interpretation Transition (LFIT) Adding a Heuristic on GULA

Heuristic: Weighted Likeliness/Unlikeliness Rules

Use the algorithm twice to learn two logic programs:
▶ likeliness rules: what is possible
▶ unlikeliness rules: what is impossible

Weight each rule by the number of observations it matches

Likeliness rules
(3, a0 ← b1)
(15, a1 ← b0)

...

Unlikeliness rules
(30, a0 ← c1)
(5, a1 ← c0)

...
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Learning From Interpretation Transition (LFIT) Adding a Heuristic on GULA

Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
Compare weights of applicable likeliness/unlikeliness rules
Ratio of highest weights ⇒ probability P

Rules with highest weights ⇒ explanation E

predict : (atom, state) 7→ (P,E )

Likeliness rules
(3, a0 ← b1)
(15, a1 ← b0)

Unlikeliness rules
(30, a0 ← c1)
(5, a1 ← c0)
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Learning From Interpretation Transition (LFIT) Adding a Heuristic on GULA

Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
Compare weights of applicable likeliness/unlikeliness rules
Ratio of highest weights ⇒ probability P

Rules with highest weights ⇒ explanation E

predict : (atom, state) 7→ (P,E )

Likeliness rules
(3, a0 ← b1)
(15, a1 ← b0)

Unlikeliness rules
(30, a0 ← c1)
(5, a1 ← c0)

predict(a1, ⟨a1, b0, c0⟩) = (0.75, ((15, a1 ← b0), (5, a1 ← c0))) ⇒ Likely
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Learning From Interpretation Transition (LFIT) Adding a Heuristic on GULA

Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
Compare weights of applicable likeliness/unlikeliness rules
Ratio of highest weights ⇒ probability P

Rules with highest weights ⇒ explanation E

predict : (atom, state) 7→ (P,E )

Likeliness rules
(3, a0 ← b1)
(15, a1 ← b0)

Unlikeliness rules
(30, a0 ← c1)
(5, a1 ← c0)

predict(a1, ⟨a1, b0, c0⟩) = (0.75, ((15, a1 ← b0), (5, a1 ← c0))) ⇒ Likely
predict(a0, ⟨a1, b1, c1⟩) = (0.09, ((3, a0 ← b1), (30, a0 ← c1))) ⇒ Unlikely
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Learning From Interpretation Transition (LFIT) Adding a Heuristic on GULA

Prediction power
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3 variables 9 variables

Training data = X% of transitions
Tested against unseen states (not in the training data)
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Application: Dynamics of Marine Phytoplankton

Application: Dynamics of
Marine Phytoplankton
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Application: Dynamics of Marine Phytoplankton

Phytoplankton Blooms
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Application: Dynamics of Marine Phytoplankton

SRN Dataset

https://www.seanoe.org/
data/00397/50832/

Sampling location Sampling date Taxon Value Sampling depth
001-P-015 1992-05-18 CHLOROA 6.0 Surface (0-1m)
006-P-001 2019-12-02 Chaetoceros 1000.0 Surface (0-1m)
002-P-007 1994-05-25 Pleurosigma 100.0 Surface (0-1m)
002-P-030 2005-10-19 SALI 34.83 Surface (0-1m)
006-P-007 2015-09-28 Guinardia delicatula 11400.0 Surface (0-1m)

Environmental variables (7) Phytoplankton species (12)
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Application: Dynamics of Marine Phytoplankton

Applying LFIT

Expectations
Find known abiotic influences (of environment on phytoplankton)
Find new biotic influences (of phytoplankton species on others)

Input
Pre-processing: data cleaning + discretization
Train set: 253 transitions
Test set: 53 transitions

Output
Run time = 2.35s (PRIDE, greedy version of GULA)
1683 likeliness rules & 1981 unlikeliness rules
Model accuracy: 0.670
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Application: Dynamics of Marine Phytoplankton

Model Improvement

Consider rules with subsets of conditions and compute a Pareto frontier
For likeliness rules : maximize correct and minimize wrong weights
For unlikeliness rules : maximize wrong and minimize correct weights

Accuracy improvement: 0.670 → 0.716
Likeliness rules: 1683 → 1609 Unlikeliness rules: 1981 → 1405
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Application: Dynamics of Marine Phytoplankton

Global Influences

Process: Search and count patterns in rules that characterize an
activation/inhibition
Result: Score [−1; +1] between each pair of variables

Influences on phytoplankton species Led:

Variable Positive Negative Global
PO4 +0 −58 −0.36
SALI +71 −4 +0.42
CHLOROA +84 −22 +0.39
SIOH +3 −161 −0.98
NH4 +25 −5 +0.12
TEMP +106 −5 +0.63
TURB +10 −87 −0.48

global_influence(PO4 → Led) =
+0 + (−58)

161
= −0.36
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Application: Dynamics of Marine Phytoplankton

Results

Global influence graph (biotic and abiotic interactions)

Biotic interactions (between phytoplankton only)

Very few biotic interactions...
Ongoing work: integrate knowledge + validate results

Maxime Folschette (CRIStAL) Modeling & Learning BRNs 2023-10-18 35 / 39



Conclusion

Conclusion
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Conclusion

Conclusion

Learn biological regulatory networks with LFIT
Heuristics to tackle real data

▶ Good results with 10% of the transitions

Ongoing: Application to phytoplankton
You can try GULA at home:
https://github.com/Tony-sama/pylfit

Outlooks:
PRIDE: polynomial algorithm that “misses” some explanations
Improve the application (integrate existing knowledge)
Improve the biological network inference
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