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Biological regulatory networks
LFIT: an approach to learn a discrete model from its stage graph

Heuristic for noisy/incomplete data

Application to phytoplankton monitoring
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Biological Regulatory Networks

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

@ A set of components N = {a, b,z}
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Biological Regulatory Networks

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

@ A set of components N = {a, b,z}

o A discrete domain for each component dom(a) = {0, 1,2}
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Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

@ A set of components N = {a, b,z}
o A discrete domain for each component dom(a) = {0,1,2}

@ Discrete parameters / evolution functions f, : § — dom(a)
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I CTE M CET BV AN ST Discrete Networks

Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]

[Thomas, Journal of Theoretical Biology, 1973]
@ A set of components N = {a, b,z}
o A discrete domain for each component dom(a) = {0,1,2}
@ Discrete parameters / evolution functions f, : § — dom(a)
, 2
o Signs & thresholds on the edges (redundant) a == z

{0,1,2} a ‘ fp z b ‘ f, a b|f
O 0/0 0 0|1 0 00
NN 1/1 0 1|0 0 1|0

1+ ﬁ 51\>@ 21 1 0/1 1 0]0
@) P X! 1 1/2 1 10
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0.1} 2 11

Maxime Folschette (CRIStAL) Modeling & Learning BRNs 2023-10-18 6/39



2B B N =S
State Graph
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Biological Regulatory Networks BEEHETTALLES

Semantics
fp=-b  fo=-a
\ b ‘ f; a ‘ b
10 10

State transitions differ according to the update semantics used:

] () [

N N
Synchronous

@ Synchronous: all variables are updated
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Semantics
fa =-b fb = a
N b|f alf
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State transitions differ according to the update semantics used:
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Synchronous Asynchronous

@ Synchronous: all variables are updated
@ Asynchronous: only one variable is updated
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Biological Regulatory Networks BEEHETTALLES

Semantics
fa =-b fb = a
N b|f alf
110 1|0

State transitions differ according to the update semantics used:

o0 () [@ -\ [ -\H

O m YU O - O L_J
U
Synchronous Asynchronous General

@ Synchronous: all variables are updated
@ Asynchronous: only one variable is updated
o General: any number of variables can be updated
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Other Approaches
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[M. Ostrowski, L. Paulevé, T. Schaub, A. Siegel, C. Guziolowski. Boolean network
identification from perturbation time series data combining dynamics abstraction and
logic programming. Biosystems, Volume 149, 2016, 139-153, ISSN 0303-2647.]
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Other Approaches

BoNesis

[S. Chevalier, C. Froidevaux, L. Paulevé, A. Zinovyev. Synthesis of Boolean Networks
from Biological Dynamical Constraints using Answer-Set Programming. |IEEE 31st
International Conference on Tools with Artificial Intelligence (ICTAI), Portland, USA,
2019, 34-41, DOI 10.1109/ICTAI.2019.00014.]
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Other Approaches

[L. Verny, N. Sella, S. Affeldt, P. P. Singh, H. Isambert. Learning causal networks with
latent variables from multivariate information in genomic data. PLoS computational
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Learning From Interpretation Transition (LFIT)

Learning From Interpretation

Transition (LFIT)
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Learning From Interpretation Transition (LFIT) BRIl dlT-re1E
Logic Rules

A logic program is a set of logic rules.
It is an alternative representation of biological networks.

a; <— Ao, bo, Co.

If a and b are at level 0 and c is at level 2, then a can change its value to 1.

a; < O.
Whenever c is at level 2, a can change its value to 1.

a < .

a can change its value to 1 anytime.
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Logic Rules

A logic program is a set of logic rules.
It is an alternative representation of biological networks.

a; <— Ao, bo, Cr.

If a and b are at level 0 and c is at level 2, then a can change its value to 1.

a; < O.

Whenever c is at level 2, a can change its value to 1.

a < .

a can change its value to 1 anytime.

One can run a logic program. The same notion of semantics applies.
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Learning From Interpretation Transition (LFIT)

Discrete Models as Logic Programs

Discrete model: Logic program:

@
®
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Learning From Interpretation Transition (LFIT) Logic Programs

Discrete Models as Logic Programs

Discrete model: Logic program:

bl < ai.

@ b1<—a2.
1_|_L @ bo(—ao.
®
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Learning From Interpretation Transition (LFIT) Logic Programs

Discrete Models as Logic Programs

Discrete model: Logic program:
@ bl < ai.
o bl < an.

@ bo < 4ap.

and

@ Z1 <— ao, bl.
1+

Zy <— dp-
Zy <— ai.
Zy <— bo.
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Learning From Interpretation Transition (LFIT) Logic Programs

Discrete Models as Logic Programs

Discrete model: Logic program:
l)l < ai.
[)1 < an.

(::) bb < 4ap.

or

(::) Z] < an.
1+

Z] < bl.
Zy <— ai, by.
Zy < ao,fky
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Learning From Interpretation Transition (LFIT) BINEHElh]

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain

value in next state.

Observations

Positive Negative Positive Negative
example example example example

Equivalent to a classification problem: What is a typical state where a
can take value 0 in the next state ? Here: when ag or by is present.
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Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain

value in next state.

Observations

Positive Negative Positive Negative
example example example example

Equivalent to a classification problem: What is a typical state where a
can take value 0 in the next state ? Here: when ag or by is present.

That is: ap < ap.
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GULA
Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions (s; — )

Output: a logic program that reproduces the input
Principle: minimal refinements of the rules

Compatible with the synchronous, asynchronous and general semantics
(and any semantics without memory or “hard-coded” behaviors)
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Learning From Interpretation Transition (LFIT) eVIN:§

GULA: Initial Logic Program
Suppose:
e a and b have two levels {0,1} and c has three levels {0, 1,2}

GULA starts with the most general program:

ap < . bo(—. Ch < .
ap < . by < . cL .
Cy < .

With this program, everything is always possible

Maxime Folschette (CRIStAL) Modeling & Learning BRNs
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Learning From Interpretation Transition (LFIT) eVIN:§

GULA: One Step of Minimal Refinements

Suppose:

e a and b have two levels {0,1} and c has three levels {0, 1,2}
e the current program contains the following rules regarding a;:

ap < Oo. a; < b;.
e from state (a1, by, c2), a1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make minimal
refinements in order to make this rule inapplicable:
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T
GULA: One Step of Minimal Refinements

Suppose:
e a and b have two levels {0,1} and c has three levels {0, 1,2}
e the current program contains the following rules regarding a;:

ap < Oo. a; < b;.
e from state (a1, by, c2), a1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make minimal
refinements in order to make this rule inapplicable:

a; < ap, ¢. ap + b;.
a; bl; . (No change)
a; < G, (.
a; < O, (1.
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Suppose:
e a and b have two levels {0,1} and c has three levels {0, 1,2}
e the current program contains the following rules regarding a;:

ap < Oo. a; < b;.
e from state (a1, by, c2), a1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make minimal
refinements in order to make this rule inapplicable:

a; < ap, G- ap < by.
a; < bl, .
a; < O, Q.
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GULA: One Step of Minimal Refinements

Suppose:

e a and b have two levels {0,1} and c has three levels {0, 1,2}
e the current program contains the following rules regarding a;:

ap < Oo. a; < b;.
e from state (a1, by, c2), a1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make minimal
refinements in order to make this rule inapplicable:

a; < ap, C&. aip + b.
a; b17 . (More general)
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GULA: One Step of Minimal Refinements

Suppose:

e a and b have two levels {0,1} and c has three levels {0, 1,2}
e the current program contains the following rules regarding a;:

ap < Oo. a; < b;.
e from state (a1, by, c2), a1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make minimal
refinements in order to make this rule inapplicable:

a; < ap, C&. ap + b;.
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GULA
GULA: Final Result

The output of GULA respects some good properties:
e Consistency: the program allows no negative examples
@ Realization: the program covers all positive examples
@ Completeness: the program covers all the state space

e Minimality of the rules (most general conditions)
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Learning From Interpretation Transition (LFIT) eVIN:§

Example: Synchronous Semantics

O, bl f alfy
01 0|1
1|0 1]0

—
—

/] fo=b

O O a0 ¢ by
a1<—bo
Synchronous
//fb::ﬂa
bo(—al
by + ag
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Learning From Interpretation Transition (LFIT) eVIN:§

Example: Asynchronous Semantics
fa =-b fb = "a

® blfi 2l
0|1 0|1
110 110
4/\
/] fa=-b
U\/U ap + b // Default rules
a1 < by dpg < 4ao
Asynchronous ai < ai
// fb = —a bo — bo
by + a1 by < by

b1<—ao
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Learning From Interpretation Transition (LFIT) eVIN:§

Results

GULA: an algorithm to learn a biological regulatory network
@ From the state graph
@ In order to recover the structure of the model

@ Applicable to a widespread class of semantics

Limitations:
@ Exponential complexity
» PRIDE: a greedy polynomial version of GULA
o What if the data is incomplete or noisy?
» Heuristic to avoid overfitting
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(ETGIL S SN DTSSR SR EELEICL (RS DI Adding a Heuristic on GULA

Heuristic: Weighted Likeliness/Unlikeliness Rules

@ Use the algorithm twice to learn two logic programs:

> likeliness rules: what is possible
» unlikeliness rules: what is impossible

@ Weight each rule by the number of observations it matches

Likeliness rules Unlikeliness rules
(3, ap < b1) (30, apg < C1)
(15, ay < bo) (5, ay <« Co)

Maxime Folschette (CRIStAL) Modeling & Learning BRNs 2023-10-18 26 /39



ezl el URS
Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
o Compare weights of applicable likeliness/unlikeliness rules
@ Ratio of highest weights = probability P
@ Rules with highest weights = explanation E
predict : (atom, state) — (P, E)

Likeliness rules Unlikeliness rules
(3, ap < bl) (30, ap < C1)
(15, a < bo) (5, a < C())
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Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
o Compare weights of applicable likeliness/unlikeliness rules
@ Ratio of highest weights = probability P
@ Rules with highest weights = explanation E
predict : (atom, state) — (P, E)

Likeliness rules Unlikeliness rules
(3, ap < bl) (30, ap < C1)
(15, a < bo) (5, al < C())

predict(ai, (a1, bo, co)) = (0.75, ((15, a1 < bo), (5,a1 < p))) = Likely
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Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
o Compare weights of applicable likeliness/unlikeliness rules
@ Ratio of highest weights = probability P
@ Rules with highest weights = explanation E
predict : (atom, state) — (P, E)

Likeliness rules Unlikeliness rules
(3,80 < b1) (30,80 « 1)
(15, a < bo) (5, a < C())

predict(ai, (a1, bo, co)) = (0.75, ((15, a1 < bo), (5,31 + p))) = Likely
predict(ao, (a1, b1, c1)) = (0.09, ((3, a0 <— b1),(30,a0 < c1))) = Unlikely
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Learning From Interpretation Transition (LFIT)

Prediction power

synchronous 3 variables synchronous 9 variables

— e —— e —
e

08 08 ==
®
§os g 06
7 ] Pt —— — ——
Soa Zoa
02 02
Method Method
= g = qua
B baseline_random B baseline_random
B baseline_always_0.0 B baseline_aiways 0.0
00 - B baseline_always_0.5 00 B baseline_always 0.5
= baseline_always 1.0 = baseline_aiways 1.0
1% 2% 4% 8% 16%  20% 3%  40%  4B%  56%  64%  72%  80% 1% 2% 4% 8%  16%  24% 3%  40%  48%  S6%  64%  72%  80%
Percent of training data Percent of training data

3 variables 9 variables

Training data = X% of transitions
Tested against unseen states (not in the training data)

Maxime Folschette (CRIStAL) Modeling & Learning BRNs



Application: Dynamics of

Marine Phytoplankton
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Application: Dynamics of Marine Phytoplankton

SRN Dataset

English Channel

Boulogne
-
___Liané

https://www.seanoe.org/

data/00397/50832/

Sampling location ‘ Sampling date ‘ Taxon ‘ Value ‘ Sampling depth
001-P-015 1992-05-18 CHLOROA 6.0 Surface (0-1m)
006-P-001 2019-12-02 Chaetoceros 1000.0 | Surface (0-1m)
002-P-007 1994-05-25 Pleurosigma 100.0 Surface (0-1m)
002-P-030 2005-10-19 SALI 34.83 Surface (0-1m)
006-P-007 2015-09-28 Guinardia delicatula | 11400.0 | Surface (0-1m)

Environmental variables

(7) Phytoplankton species (12)
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Applying LFIT

Expectations
e Find known abiotic influences (of environment on phytoplankton)

e Find new biotic influences (of phytoplankton species on others)

Input

@ Pre-processing: data cleaning + discretization
@ Train set: 253 transitions
@ Test set: 53 transitions

Output

@ Run time = 2.35s (PRIDE, greedy version of GULA)
@ 1683 likeliness rules & 1981 unlikeliness rules
@ Model accuracy: 0.670

Maxime Folschette (CRIStAL) Modeling & Learning BRNs 2023-10-18 32/39



Application: Dynamics of Marine Phytoplankton

Model Improvement

Consider rules with subsets of conditions and compute a Pareto frontier
@ For likeliness rules : maximize correct and minimize wrong weights

@ For unlikeliness rules : maximize wrong and minimize correct weights

Cha(1) :- PO4(0), SALI(1), TEMP(1), Cha(1), Gus(0), Nit(0) Ske(2) :- PO4(0), SALI(1), SIOH(0), Cha(1), Led(1)
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Accuracy improvement: 0.670 — 0.716
Likeliness rules: 1683 — 1609 Unlikeliness rules: 1981 — 1405
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Application: Dynamics of Marine Phytoplankton

Global Influences

Process: Search and count patterns in rules that characterize an
activation/inhibition
Result: Score [—1;+1] between each pair of variables

Influences on phytoplankton species Led:

Variable | Positive | Negative | Global
P04 10 —58 | —0.36 @tHI
+EYP

SALI +71 —4 +0.42

CHLOROA +-84 —22 +0.39

SIOH +3 —161 —0.98

NH4 +25 -5 +0.12 \

TEMP +106 -5 +0.63

TURB +10 —87 | —0.48 @ @
global _influence(P04 — Led) = —m%(l_%) = —0.36
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Application: Dynamics of Marine Phytoplankton

Global influence graph (biotic and abiotic interactions)
@ e © o

+@ . @ : + *
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Biotic interactions (between phytoplankton only)

Very few biotic interactions...
Ongoing work: integrate knowledge + validate results
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Conclusion

Conclusion

@ Learn biological regulatory networks with LFIT

@ Heuristics to tackle real data
» Good results with 10% of the transitions

@ Ongoing: Application to phytoplankton

@ You can try GULA at home:
https://github.com/Tony-sama/pylfit

Outlooks:
@ PRIDE: polynomial algorithm that “misses” some explanations
@ Improve the application (integrate existing knowledge)

@ Improve the biological network inference
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https://github.com/Tony-sama/pylfit

Thanks

Tony Omar Morgan
RIBEIRO IKNE MAGNIN

Cédric Sébastien Madeleine
LHOUSSAINE LEFEBVRE EYRAUD
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