Learning Biological Regulatory Networks from Time Series with LFIT: Theory and Practice

Tony RIBEIRO^{1,2,3}, Maxime Folschette⁴, Morgan $MAGNIN^{2,3}$, Katsumi INOUE³

¹Independent researcher

²Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France
 ³National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
 ⁴Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

2024-01-18 MICS Seminar

Joint work with: Omar IKNE (Univ. Lille, France)

Maxime FOLSCHETTE (CRIStAL)

Learning BRNs with LFIT

1/34

Outline

- Biological regulatory networks
- LFIT: an approach to learn a discrete model from its stage graph
- Heuristic for noisy/incomplete data
- Application to phytoplankton monitoring

Preliminary Abstraction

Preliminary Abstraction

Preliminary Abstraction

Biological Regulatory Networks

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

• A set of components $N = \{a, b, z\}$

Ζ

Discrete Networks / Thomas Modeling

[Kauffman, *Journal of Theoretical Biology*, 1969] [Thomas, *Journal of Theoretical Biology*, 1973]

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component $dom(a) = \{0, 1, 2\}$

 $\begin{pmatrix} z \\ \{0,1\} \end{pmatrix}$

Discrete Networks

Discrete Networks / Thomas Modeling

[Kauffman, *Journal of Theoretical Biology*, 1969] [Thomas, *Journal of Theoretical Biology*, 1973]

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component $dom(a) = \{0, 1, 2\}$
- Discrete parameters / evolution functions $f_a: S \to dom(a)$

Discrete Networks / Thomas Modeling

[Kauffman, *Journal of Theoretical Biology*, 1969] [Thomas, *Journal of Theoretical Biology*, 1973]

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component $dom(a) = \{0, 1, 2\}$
- Discrete parameters / evolution functions $f_a: S \to dom(a)$
- Signs & thresholds on the edges (redundant) $a \xrightarrow{2+} z$

abz 000	010	001	011	
100	110	101	111	
200	210	201	211	$+ f_a, f_b, f_c$

abz 000	010	001	011	
100 ——	→ 110	101	111	
200	210	201	211	$+ f_a, f_b, f_c$

 $+ f_a, f_b, f_c$

The state graph depicts explicitly the whole dynamics

• **Stable state** = state with no successors

The state graph depicts explicitly the whole dynamics

• **Stable state** = state with no successors

• **Complex attractor** = minimal loop or composition of loops from which the dynamics cannot escape

The state graph depicts explicitly the whole dynamics

• Stable state = state with no successors

- **Complex attractor** = minimal loop or composition of loops from which the dynamics cannot escape
- Reachability = from 201, can I reach 000?

Learning BRNs with LFIT

The state graph depicts explicitly the whole dynamics

- Stable state = state with no successors
- **Complex attractor** = minimal loop or composition of loops from which the dynamics cannot escape
- Reachability = from 201, can I reach 000?

Learning BRNs with LFIT

State transitions differ according to the update semantics used:

Synchronous

• Synchronous: all variables are updated

Semantics

State transitions differ according to the update semantics used:

Synchronous

Asynchronous

- Synchronous: all variables are updated
- Asynchronous: only one variable is updated

10

Synchronous

11

01

Asynchronous

11

• Synchronous: all variables are updated

10

- Asynchronous: only one variable is updated
- General: any number of variables can be updated

01

Learning from the State Graph

Learning from the State Graph

Learning from the State Graph

Logic Rules

A logic program is a set of logic rules.

It is an alternative representation of biological networks.

 $a_1 \leftarrow a_0, b_0, c_2$. If a and b are at level 0 and c is at level 2, then a can change its value to 1.

 $a_1 \leftarrow c_2$. Whenever *c* is at level 2, *a* can change its value to 1.

$$a_1 \leftarrow .$$

a can change its value to 1 anytime.

Logic Rules

A logic program is a set of logic rules.

It is an alternative representation of biological networks.

 $a_1 \leftarrow a_0, b_0, c_2$. If a and b are at level 0 and c is at level 2, then a can change its value to 1.

 $a_1 \leftarrow c_2$. Whenever *c* is at level 2, *a* can change its value to 1.

 $a_1 \leftarrow .$

a can change its value to 1 anytime.

The same notion of semantics applies.

Discrete model:

Logic program:

Discrete model:

Logic program:

$$b_1 \leftarrow a_1.$$

 $b_1 \leftarrow a_2.$
 $b_0 \leftarrow a_0.$

Discrete model:

Logic program:

- $b_1 \leftarrow a_1.$ $b_1 \leftarrow a_2.$ $b_0 \leftarrow a_0.$
- $z_1 \leftarrow a_2 \wedge b_1.$ $z_0 \leftarrow a_0.$ $z_0 \leftarrow a_1.$ $z_0 \leftarrow b_0.$

11/34

Discrete model:

Logic program:

- $b_1 \leftarrow a_1.$ $b_1 \leftarrow a_2.$ $b_0 \leftarrow a_0.$
- $z_1 \leftarrow a_2.$ $z_1 \leftarrow b_1.$ $z_0 \leftarrow a_1 \land b_0.$ $z_0 \leftarrow a_0 \land b_0.$

Logic program:

Discrete Models as Logic Programs

Discrete model:

AANs as Logic Programs

Asynchronous automata network:

Picture: [Soh et al., CMSB'2023]

Logic program:

$$b_1 \leftarrow a_1.$$

 $b_1 \leftarrow a_2.$
 $b_0 \leftarrow a_0.$

AANs as Logic Programs

Asynchronous automata network:Logic program: a_0b_0 2 $b_1 \leftarrow a_1$. b_1c_2 a_0b_0 a_0b_0 $b_1 \leftarrow a_2$. $b_1 \leftarrow a_2$. $b_0 \leftarrow a_0$. $b_0 \leftarrow a_0$.Picture: [Soh et al., CMSB'2023]Expressivity $z_1 \leftarrow b_1$.

 $z_0 \leftarrow a_0 \wedge b_0$.

Learning From Interpretation Transition (LFIT)

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable **can** take a certain value in next state.

Equivalent to a **classification problem**: What is a typical state where *a* can take value 0 in the next state ? Here: when a_0 or b_1 is present.

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable **can** take a certain value in next state.

Equivalent to a **classification problem**: What is a typical state where *a* can take value 0 in the next state ? Here: when a_0 or b_1 is present. That is: $a_0 \leftarrow a_0$. $a_0 \leftarrow b_1$.

Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions $(s_1 \rightarrow s_2)$

Output: a logic program that reproduces the input

Principle: minimal refinements of the rules

Compatible with the synchronous, asynchronous and general semantics (and any semantics without memory or hard-coded behaviors)

GULA: Initial Logic Program

Suppose:

• a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$

GULA starts with the most general program:

With this program, everything is always possible

16/34

Suppose:

- a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

Suppose:

- a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make **minimal refinements** in order to make this rule inapplicable:

$$a_1 \leftarrow a_0, c_2.$$

 $a_1 \leftarrow b_1, c_2.$
 $a_1 \leftarrow c_2, c_0.$
 $a_1 \leftarrow c_2, c_1.$

$$a_1 \leftarrow b_1.$$
 (No change)

17/34

Suppose:

- a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

$$a_1 \leftarrow a_0, c_2.$$
 $a_1 \leftarrow b_1.$
 $a_1 \leftarrow b_1, c_2.$
 $a_1 \leftarrow c_2, c_0.$
 $a_1 \leftarrow c_2, c_1.$

Suppose:

- a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

Suppose:

- a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

$$a_1 \leftarrow a_0, c_2.$$
 $a_1 \leftarrow b_1.$

GULA: Final Result

The output of GULA respects some good properties:

- Consistency: the program allows no negative examples
- Realization: the program covers all positive examples
- Completeness: the program covers all the state space
- **Minimality** of the rules (most general conditions)

b

Example: Synchronous Semantics

а

Synchronous

$$// f_a = \neg b$$
$$a_0 \leftarrow b_1$$
$$a_1 \leftarrow b_0$$

$$// f_b := \neg a$$

 $b_0 \leftarrow a_1$
 $b_1 \leftarrow a_0$

19/34

Example: Asynchronous Semantics

$$\begin{array}{c|c} f_a = \neg b & f_b = \neg a \\ \hline b & f_a & \hline 0 & 1 & \hline 1 & 0 & 1 & 0 \end{array}$$

Asynchronous

$$// f_a = \neg b$$

 $a_0 \leftarrow b_1$
 $a_1 \leftarrow b_0$

$$// f_b = \neg a$$

 $b_0 \leftarrow a_1$
 $b_1 \leftarrow a_0$

// Default rules

$$a_0 \leftarrow a_0$$
$$a_1 \leftarrow a_1$$
$$b_0 \leftarrow b_0$$
$$b_1 \leftarrow b_1$$

Results

GULA: an algorithm to learn a biological regulatory network

- From the state graph
- In order to recover the structure of the model
- Applicable to a widespread class of semantics

Limitations:

- Exponential complexity
 - PRIDE: a greedy polynomial version of GULA
- What if the data is incomplete or noisy?
 - Heuristic to avoid overfitting

21/34

Heuristic: Weighted Likeliness/Unlikeliness Rules

• Use the algorithm twice to learn two logic programs:

- likeliness rules: what is possible
- unlikeliness rules: what is impossible
- · Weight each rule by the number of observations it matches

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$
:	:

Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow **probability** *P*
- Rules with highest weights \Rightarrow explanation *E*

predict : $(atom, state) \mapsto (P, E)$

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$

23 / 34

Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights \Rightarrow **probability** P
- Rules with highest weights \Rightarrow explanation *E*

predict : $(atom, state) \mapsto (P, E)$

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$

 $\mathsf{predict}(a_1, \langle a_1, b_0, c_0 \rangle) = (0.75, ((15, a_1 \leftarrow b_0), (5, a_1 \leftarrow c_0))) \Rightarrow \mathsf{Likely}$

Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights ⇒ probability P
- Rules with highest weights \Rightarrow explanation *E*

predict : $(atom, state) \mapsto (P, E)$

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5, a_1 \leftarrow c_0)$

 $predict(a_1, \langle a_1, b_0, c_0 \rangle) = (0.75, ((15, a_1 \leftarrow b_0), (5, a_1 \leftarrow c_0))) \Rightarrow Likely$ $predict(a_0, \langle a_1, b_1, c_1 \rangle) = (0.09, ((3, a_0 \leftarrow b_1), (30, a_0 \leftarrow c_1))) \Rightarrow Unlikely$

Prediction power

Training data = X% of transitions Tested against unseen states (not in the training data)

Application: Dynamics of Marine Phytoplankton

Phytoplankton Blooms

SRN Dataset

https://www.seanoe.org/ data/00397/50832/

Sampling location	Sampling date	Taxon	Value	Sampling depth
001-P-015	1992-05-18	CHLOROA	6.0	Surface (0-1m)
006-P-001	2019-12-02	Chaetoceros	1000.0	Surface (0-1m)
002-P-007	1994-05-25	Pleurosigma	100.0	Surface (0-1m)
002-P-030	2005-10-19	SALI	34.83	Surface (0-1m)
006-P-007	2015-09-28	Guinardia delicatula	11400.0	Surface (0-1m)

Environmental variables (7)

Phytoplankton species (12)

Applying LFIT

Expectations

- Find known abiotic influences (of environment on phytoplankton)
- Find new biotic influences (of phytoplankton species on others)

Input

- Pre-processing: data cleaning + discretization
- Train set: 253 transitions
- Test set: 53 transitions

Output

- Run time = 2.35s (PRIDE, greedy version of GULA)
- 1683 likeliness rules & 1981 unlikeliness rules
- Model accuracy: 0.670

Global Influences

Process: Search and count patterns in rules that characterize an activation/inhibition

Result: Score [-1; +1] between each pair of variables

Influences on phytoplankton species Led:

29 / 34

Global influence graph (biotic and abiotic interactions)

Biotic interactions (between phytoplankton only)

Very few biotic interactions...

Ongoing work: integrate knowledge + validate results

Learning BRNs with LFIT

Conclusion

Conclusion

- Learn biological regulatory networks with LFIT
- Heuristics to tackle real data
 - Good results with 10% of the transitions
- Ongoing: Application to phytoplankton
- You can try GULA at home: https://github.com/Tony-sama/pylfit

Outlooks:

- **PRIDE**: polynomial algorithm that misses some explanations
- Improve the application (integrate existing knowledge)
- Improve the biological network inference

Thanks

Tony RIBEIRO

Omar IKNE

Morgan MAGNIN

Katsumi INOUE

Cédric LHOUSSAINE

Sébastien LEFEBVRE

Madeleine EYRAUD

Bibliography

- About GULA: Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Learning any memory-less discrete semantics for dynamical systems represented by logic programs. Machine Learning 111, Springer. November 2021. https://doi.org/10.1007/s10994-021-06105-4
- pyLFIT Python library: https://github.com/Tony-sama/pylfit
- About PRIDE: Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Polynomial Algorithm For Learning From Interpretation Transition. Poster at the 1st International Joint Conference on Learning & Reasoning. October 2021, Online. https://hal.science/hal-03347026v1
- Application to phytoplankton: Omar Iken, Maxime Folschette and Tony Ribeiro. Automatic Modeling of Dynamical Interactions Within Marine Ecosystems. Poster in the 1st International Joint Conference on Learning & Reasoning. October 2021, Online. https://hal.science/hal-03347033v1

34 / 34