Modeling and Learning Dynamic Biological Systems with Discrete Networks

Maxime Folschette

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

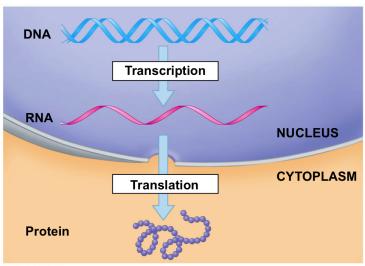
2024-03-14 Bonsai Seminar

loint work with:

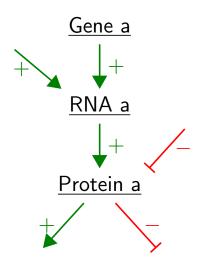
Tony Ribeiro (Univ. Nantes & independant researcher) Morgan Magnin (Centrale Nantes) Katsumi Inoue (National Institute of Informatics, Japan) Omar Ikne (Univ. Lille)

Outline

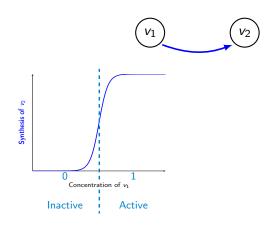
- Biological regulatory networks
- LFIT: an approach to learn a discrete model from its stage graph
- Application to phytoplankton monitoring

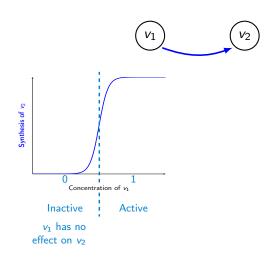


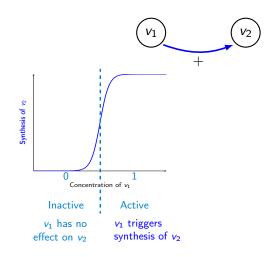
@ 2012 Pearson Education, Inc.

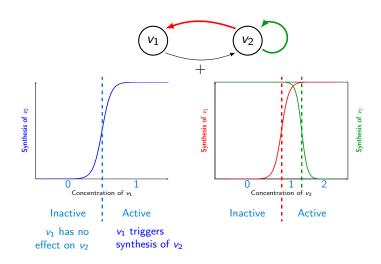




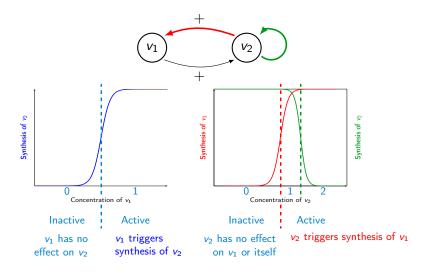


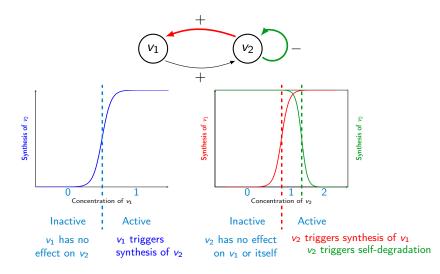


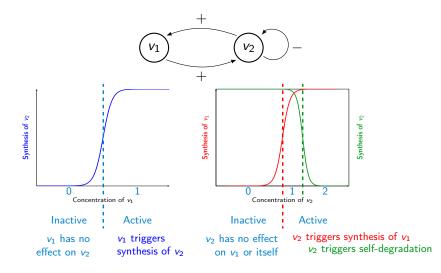


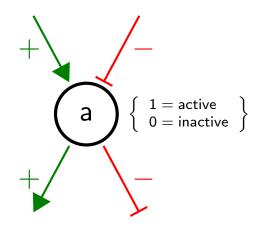


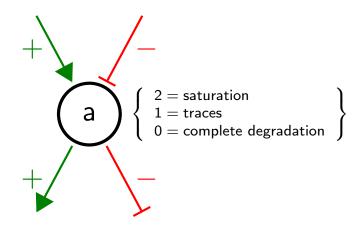


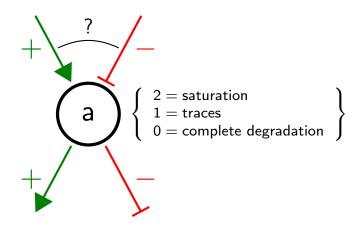












Biological Regulatory Networks

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

• A set of components $N = \{a, b, z\}$

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component $dom(a) = \{0, 1, 2\}$

```
\{0,1,2\}
(a)
(b)
\{0,1\}
```

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component $dom(a) = \{0, 1, 2\}$
- Discrete parameters / evolution functions $f_a: \mathcal{S} \to \mathsf{dom}(a)$

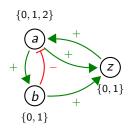
$\{0, 1, 2\}$		а	f_b	Z	b	fa	a	b	f_z
(a)		0	0	0	0	1	0	0	0
		1	1	0	1	0	0	1	0
	(z)	2	1	1	0	1	1	0	0
	{0,1}		'	1	1	2	1	1	0
(b)						ı	2	0	0
$\{0, 1\}$							2	1	1

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component $dom(a) = \{0, 1, 2\}$
- Discrete parameters / evolution functions $f_a: S \to dom(a)$
- Signs & thresholds on the edges (redundant) $a \longrightarrow z$

$\{0, 1, 2\}$	
(a)←	
	(z)
	$\{0,1\}$
(b)	(0, 1)
$\{0,1\}$	

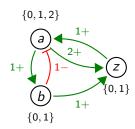
2	f.	-	h	ı f	_	Ь	f
а	f_b		D	fa	а	D	1 _Z
0	0	0	0	1	0	0	0
1	1	0	1	0	0	1	0
2	0 1 1	1	0	1	1	0	0
		1	0 1 0 1	2	1	0 1 0 1 0	0
				'	2	0	0
					2	1	1

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component $dom(a) = \{0, 1, 2\}$
- Discrete parameters / evolution functions $f_a: S \to \text{dom}(a)$
- Signs & thresholds on the edges (redundant) $a \xrightarrow{+} z$



a	f_b	Z	b	fa	а	b	f_z
0	0 1 1	0	0 1 0 1	1	0	0 1 0 1 0	0
1	1	0	1	0	0	1	0
2	1	1	0	1	1	0	0
		1	1	2	1	1	0
				•	2	0	0
					2	1	1

- A set of components $N = \{a, b, z\}$
- A discrete domain for each component $dom(a) = \{0, 1, 2\}$
- Discrete parameters / evolution functions $f_a: \mathcal{S} \to \mathsf{dom}(a)$
- Signs & thresholds on the edges (redundant) $a \xrightarrow{2+} z$



а	$ f_b $	Z	b	f _a 1 0 1 2	a	b	f_z
0	0 1 1	0	0	1	0	0 1 0 1 0 1	0
1	1	0	1	0	0	1	0
2	1	1	0	1	1	0	0
		1	1	2	1	1	0
				•	2	0	0
					2	1	1

The state graph depicts explicitly the dynamics

ab	Z
----	---

010

001

011

110

101

111

210

201

211

	b	fa	a	b	f_z
0	0	1	0	0	0
0	1	0	0	1	0
0 0 1 1	0	1 2	1	0	0 0 0 0 0
1	1	2	1 1 2 2	1	0
			2	0	0
			2	1	1

$$\begin{array}{c|cc}
 a & f_b \\
\hline
 0 & 0 \\
 1 & 1 \\
 2 & 1
\end{array}$$

The state graph depicts explicitly the dynamics

010

001

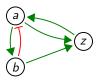
011

101

111

201

211



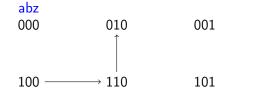
Z	b		а	b	
0	0	1 0	0	0	0
0	1	0	0	1	0
0 0 1	0 1 0 1	1 2	1 1 2 2	0 1 0 1	0 0 0 0
1	1	2	1	1	0
			2	0	0
			2	1	1

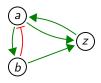
$$\begin{array}{c|cc}
 a & f_b \\
\hline
 0 & 0 \\
 1 & 1 \\
 2 & 1 \\
\end{array}$$

011

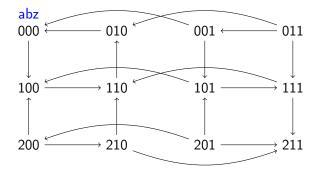
111

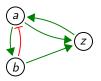
State Graph





z			a	b	fz
0	0	1	0	0	0
0	1	0	0	1	0
1	0 1 0 1	1	1	0 1 0 1 0 1	0
1	1	2	1	1	0
			2	0	0
			2	1	1

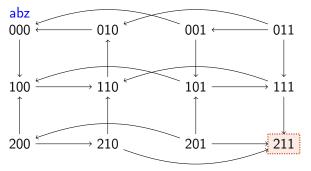




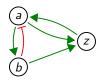
z	0 1 0 1	fa	а	b	f_z
0	0	1	0	0	0
0	1	0	0	1	0
1	0	1	1	0 1 0 1 0	0
1	1	2	1	1	0
			2	0	0
			2	1	1

а	f_b
0	0
1	1
2	1

The state graph depicts explicitly the dynamics

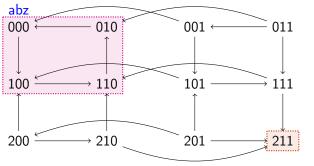


• Stable state = state with no successors



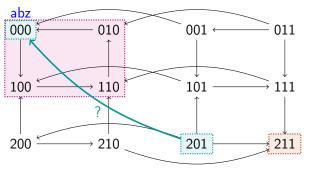
z	b	fa	а	Ь
0	0 1 0 1	1	0	0
0	1	0	0	1
1	0	1	1	0
1	1	2	1	1
			2	0
			2	1

а	f_b
0	0
1	1
2	1



(b	/	•			
z	Ь	f _a		а	Ь	f_z
0	0	1 0		0	0	0 0 0 0 0 0
0	1 0	0		0	1	0
0 0 1 1	0	1		1	0	0
1	1	1 2		1	1	0
				1 2 2	0	0
				2	1	1
	a	f_b				
	0	0				

- Stable state = state with no successors
- Complex attractor = minimal loop or composition of loops from which the dynamics cannot escape



(b				
z	Ь	fa	а	b	f_z
0	0	1	0	0	0 0
0	1	0	0	1	
1	0 1 0 1	1	1	0	0 0 0
1 1	1	1 2	1 1 2 2	1 0	0
			2	0	
			2	1	1
	a	f_b			
	0	0			
	1	1			

- Stable state = state with no successors
- Complex attractor = minimal loop or composition of loops from which the dynamics cannot escape
- Reachability = from 201, can I reach 000?

000 010	001 ← 011
100 110	$ \begin{array}{c} \downarrow \\ 101 \longrightarrow 111\\ \uparrow \end{array} $
200 \longrightarrow 210	201 211

(b		•		
z	Ь	f _a	а	b	f_z
0	0	1 0	0	0	f _z 0 0
0	1 0	0	0	1	0
1	0	1 2	1	0	0
1 1	1	2	1 1 2 2	1	0 0 0
			2	1 0	0
			2	1	1
	a	f_b			
	0	0			
	- 1	-			

- Stable state = state with no successors.
- Complex attractor = minimal loop or composition of loops from which the dynamics cannot escape
- Reachability = from 201, can I reach 000?

Semantics

$$f_a = \neg b \qquad f_b = \neg a$$

$$\begin{array}{c|c} b & f_a \\ \hline 0 & 1 \\ \hline \end{array} \qquad \begin{array}{c|c} a & f_b \\ \hline 0 & 1 \\ \hline \end{array}$$

State transitions differ according to the update semantics used:

$$01 \qquad \begin{pmatrix} 00 \\ 11 \end{pmatrix} \qquad 10$$

Synchronous

• Synchronous: all variables are updated

Semantics

$$f_a = \neg b$$
 $f_b = \neg a$

$$\begin{array}{c|c}
a & f_b \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

State transitions differ according to the update semantics used:

Synchronous

Asynchronous

- Synchronous: all variables are updated
- Asynchronous: only one variable is updated

Semantics

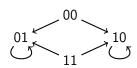
$$f_a = \neg b$$

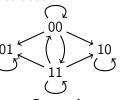
$$f_b = \neg a$$
 $a \mid f_b$

$$\begin{array}{c|c}
b & f_a \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

0 1 1 0

State transitions differ according to the update semantics used:





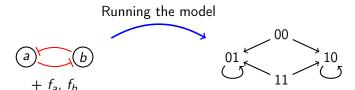
Synchronous

Asynchronous

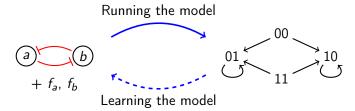
General

- Synchronous: all variables are updated
- Asynchronous: only one variable is updated
- General: any number of variables can be updated

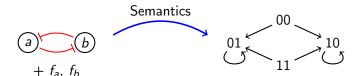
Learning from the State Graph

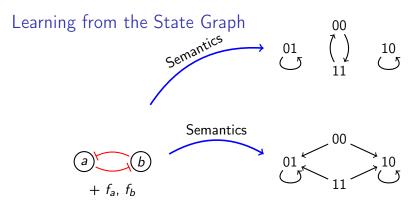


Learning from the State Graph

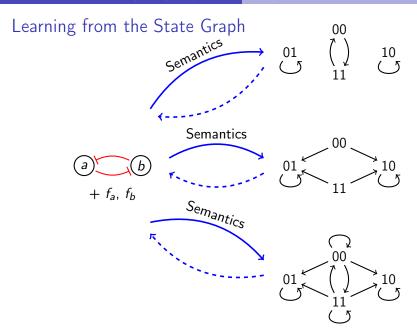


Learning from the State Graph





Learning from the State Graph 00 Semantics 01 10 **Semantics** 00 01 10 $+ f_a, f_b$ $S_{em_{antics}}$ 00 10 01



Logic Rules

A logic program is a set of logic rules.

It is an alternative representation of biological networks.

$$a_1 \leftarrow a_0, b_0, c_2.$$

If a and b are at level 0 and c is at level 2, then a can change its value to 1.

$$a_1 \leftarrow c_2$$
.

Whenever c is at level 2, a can change its value to 1.

$$a_1 \leftarrow .$$

a can change its value to 1 anytime.

Logic Rules

A logic program is a set of logic rules.

It is an alternative representation of biological networks.

$$a_1 \leftarrow a_0, b_0, c_2.$$

If a and b are at level 0 and c is at level 2, then a can change its value to 1.

$$a_1 \leftarrow c_2$$
.

Whenever c is at level 2, a can change its value to 1.

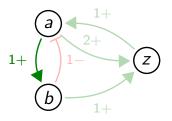
$$a_1 \leftarrow$$
 .

a can change its value to 1 anytime.

The same notion of semantics applies.

Discrete model:

Discrete model:

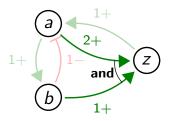


$$b_1 \leftarrow a_1$$
.

$$b_1 \leftarrow a_2$$
.

$$b_0 \leftarrow a_0$$
.

Discrete model:



$$b_1 \leftarrow a_1$$
.

$$b_1 \leftarrow a_2$$
.

$$b_0 \leftarrow a_0$$
.

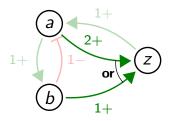
$$z_1 \leftarrow a_2 \wedge b_1$$
.

$$z_0 \leftarrow a_0$$
.

$$z_0 \leftarrow a_1$$
.

$$z_0 \leftarrow b_0$$
.

Discrete model:



$$b_1 \leftarrow a_1$$
. $b_1 \leftarrow a_2$.

$$b_1 \leftarrow a_2$$
. $b_0 \leftarrow a_0$.

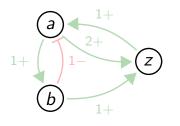
$$z_1 \leftarrow a_2$$
.

$$z_1 \leftarrow b_1$$
.

$$z_0 \leftarrow a_1 \wedge b_0$$
.

$$z_0 \leftarrow a_0 \wedge b_0$$
.

Discrete model:



$$b_1 \leftarrow a_1.$$

$$b_1 \leftarrow a_2.$$

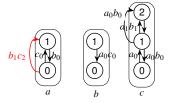
$$b_0 \leftarrow a_0.$$

$$z_1 \leftarrow a_2.$$

 $z_1 \leftarrow b_1.$
 $z_0 \leftarrow a_1 \wedge b_0.$
 $z_0 \leftarrow a_0 \wedge b_0.$

AANs as Logic Programs

Asynchronous automata network:



Picture: [Soh et al., CMSB'2023]

$$b_1 \leftarrow a_1$$
.

$$b_1 \leftarrow a_2$$
.

$$b_0 \leftarrow a_0$$
.

$$z_1 \leftarrow a_2$$
.

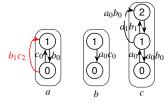
$$z_1 \leftarrow b_1$$
.

$$z_0 \leftarrow a_1 \wedge b_0$$
.

$$z_0 \leftarrow a_0 \wedge b_0$$
.

AANs as Logic Programs

Asynchronous automata network:



Picture: [Soh et al., CMSB'2023]

Expressivity

Logic program:

$$b_1 \leftarrow a_1$$
.
 $b_1 \leftarrow a_2$.
 $b_0 \leftarrow a_0$.

$$z_1 \leftarrow a_2.$$

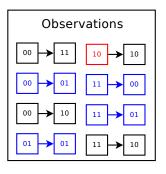
 $z_1 \leftarrow b_1.$
 $z_0 \leftarrow a_1 \wedge b_0.$

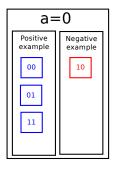
 $z_0 \leftarrow a_0 \wedge b_0$.

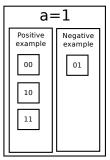
Learning From Interpretation Transition (LFIT)

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable **can** take a certain value in next state.



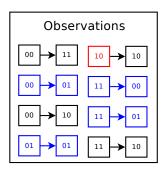


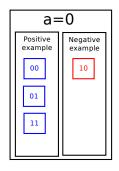


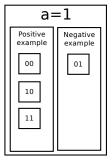
Equivalent to a **classification problem**: What is a typical state where a can take value 0 in the next state? Here: when a_0 or b_1 is present.

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain value in next state.







Equivalent to a classification problem: What is a typical state where a can take value 0 in the next state? Here: when a_0 or b_1 is present.

That is:

$$a_0 \leftarrow a_0$$
.

$$a_0 \leftarrow a_0$$
. $a_0 \leftarrow b_1$.

Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions $(s_1 \rightarrow s_2)$

Output: a logic program that reproduces the input

Principle: minimal refinements of the rules

Compatible with the synchronous, asynchronous and general semantics (and any semantics without memory or "hard-coded" behaviors)

GULA: Initial Logic Program

Suppose:

• a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$

GULA starts with the most general program:

$$a_0 \leftarrow .$$
 $b_0 \leftarrow .$ $c_0 \leftarrow .$ $a_1 \leftarrow .$ $c_1 \leftarrow .$ $c_2 \leftarrow .$

With this program, everything is always possible

Suppose:

- a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- ullet the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

Suppose:

- a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- ullet the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
.

$$a_1 \leftarrow b_1$$
.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

$$a_1 \leftarrow a_0, c_2.$$

 $a_1 \leftarrow b_1, c_2.$
 $a_1 \leftarrow c_2, c_0.$
 $a_1 \leftarrow c_2, c_1.$

$$a_1 \leftarrow b_1$$
. (No change)

Suppose:

- ullet a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- ullet the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
.

$$a_1 \leftarrow b_1$$
.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

$$a_1 \leftarrow a_0, c_2.$$

 $a_1 \leftarrow b_1, c_2.$
 $a_1 \leftarrow c_2, c_0.$
 $a_1 \leftarrow c_2, c_1.$

$$a_1 \leftarrow b_1$$
.

Suppose:

- ullet a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- ullet the current program contains the following rules regarding a_1 :

$$a_1 \leftarrow c_2$$
. $a_1 \leftarrow b_1$.

ullet from state $\langle a_1,b_0,c_2 \rangle$, a_1 is never observed in the next states.

$$a_1 \leftarrow a_0, c_2.$$
 $a_1 \leftarrow b_1.$ (More general)

Suppose:

- a and b have two levels $\{0,1\}$ and c has three levels $\{0,1,2\}$
- the current program contains the following rules regarding a₁:

$$a_1 \leftarrow c_2$$
.

$$a_1 \leftarrow b_1$$
.

• from state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

$$a_1 \leftarrow a_0, c_2$$
.

$$a_1 \leftarrow b_1$$
.

GULA: Final Result

The output of GULA respects some good properties:

- Consistency: the program allows no negative examples
- Realization: the program covers all positive examples
- Completeness: the program covers all the state space
- Minimality of the rules (most general conditions)

Example: Synchronous Semantics

$$f_{a} = \neg b$$
 $f_{b} = \neg a$

$$\begin{array}{c|cccc}
b & f_{a} & & a & f_{b} \\
\hline
0 & 1 & & 0 & 1 \\
1 & 0 & & 1 & 0
\end{array}$$

$$01 \quad \begin{pmatrix} 00 \\ 11 \end{pmatrix} \quad 10$$

Synchronous

$$// f_a = \neg b$$

$$a_0 \leftarrow b_1$$

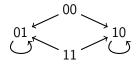
$$a_1 \leftarrow b_0$$

$$// f_b := \neg a$$

 $b_0 \leftarrow a_1$
 $b_1 \leftarrow a_0$

Example: Asynchronous Semantics

$$f_a = \neg b$$
 $f_b = \neg a$
 $\begin{array}{c|ccc} b & f_a \\ \hline 0 & 1 \\ 1 & 0 \end{array}$ $\begin{array}{c|ccc} a & f_b \\ \hline 0 & 1 \\ 1 & 0 \end{array}$



Asynchronous

$$// f_a = \neg b$$
 $a_0 \leftarrow b_1$ // Default rules
 $a_1 \leftarrow b_0$ $a_0 \leftarrow a_0$
 $a_1 \leftarrow a_1$
 $b_0 \leftarrow a_1$ $b_1 \leftarrow a_0$

Results

GULA: an algorithm to learn a biological regulatory network

- From the state graph
- In order to recover the structure of the model
- Applicable to a widespread class of semantics

Limitations:

- Exponential complexity
 - ▶ PRIDE: a greedy polynomial version of GULA
- What if the data is incomplete or noisy?
 - Heuristic to avoid overfitting

Heuristic: Weighted Likeliness/Unlikeliness Rules

- Use the algorithm twice to learn two logic programs:
 - ▶ likeliness rules: what is possible
 - unlikeliness rules: what is impossible
- Weight each rule by the number of observations it matches

Likeliness rules $(3, a_0 \leftarrow b_1)$ $(15, a_1 \leftarrow b_0)$

Unlikeliness rules

$$(30, a_0 \leftarrow c_1)$$

$$(5, a_1 \leftarrow c_0)$$

:

Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights ⇒ probability P
- Rules with highest weights ⇒ explanation E

predict :
$$(atom, state) \mapsto (P, E)$$

Likeliness rules

$$(3, a_0 \leftarrow b_1)$$

$$(15, a_1 \leftarrow b_0)$$

Unlikeliness rules

$$(30, a_0 \leftarrow c_1)$$

$$(5, a_1 \leftarrow c_0)$$

Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights ⇒ probability P
- Rules with highest weights ⇒ explanation E

predict :
$$(atom, state) \mapsto (P, E)$$

Likeliness rules

$$(3, a_0 \leftarrow b_1)$$

 $(15, a_1 \leftarrow b_0)$

Unlikeliness rules

$$(30, a_0 \leftarrow c_1)$$

 $(5, a_1 \leftarrow c_0)$

$$predict(a_1, \langle a_1, b_0, c_0 \rangle) = (0.75, ((15, a_1 \leftarrow b_0), (5, a_1 \leftarrow c_0))) \Rightarrow Likely$$

Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights ⇒ probability P
- Rules with highest weights ⇒ explanation E

predict :
$$(atom, state) \mapsto (P, E)$$

Likeliness rules

$(3, a_0 \leftarrow b_1)$ $(15, a_1 \leftarrow b_0)$

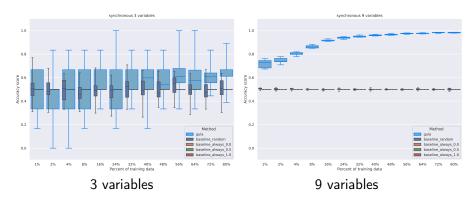
Unlikeliness rules

$$(30, a_0 \leftarrow c_1)$$
$$(5, a_1 \leftarrow c_0)$$

predict
$$(a_1, \langle a_1, b_0, c_0 \rangle) = (0.75, ((15, a_1 \leftarrow b_0), (5, a_1 \leftarrow c_0))) \Rightarrow \text{Likely}$$

predict $(a_0, \langle a_1, b_1, c_1 \rangle) = (0.09, ((3, a_0 \leftarrow b_1), (30, a_0 \leftarrow c_1))) \Rightarrow \text{Unlikely}$

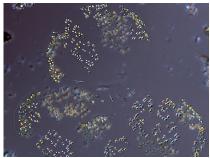
Prediction power

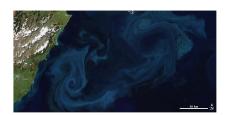


Training data = X% of transitions Tested against unseen states (not in the training data)

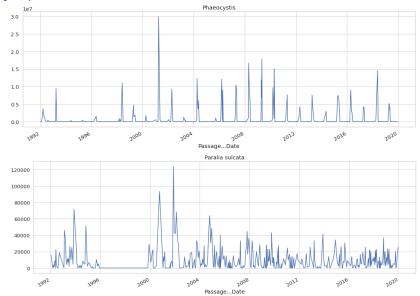
Application: Dynamics of Marine Phytoplankton

Phytoplankton Blooms

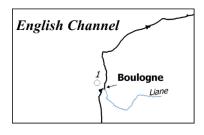




Phytoplankton Blooms



SRN Dataset



https://www.seanoe.org/ data/00397/50832/

Sampling location	Sampling date	Taxon	Value	Sampling depth
001-P-015	1992-05-18	CHLOROA	6.0	Surface (0-1m)
006-P-001	2019-12-02	Chaetoceros	1000.0	Surface (0-1m)
002-P-007	1994-05-25	Pleurosigma	100.0	Surface (0-1m)
002-P-030	2005-10-19	SALI	34.83	Surface (0-1m)
006-P-007	2015-09-28	Guinardia delicatula	11400.0	Surface (0-1m)

Environmental variables (7)

Phytoplankton species (12)

Applying LFIT

Expectations

- Find known abiotic influences (of environment on phytoplankton)
- Find new biotic influences (of phytoplankton species on others)

Input

- Pre-processing: data cleaning + discretization
- Train set: 253 transitions
- Test set: 53 transitions

Output

- Run time = 2.35s (PRIDE, greedy version of GULA)
- 1683 likeliness rules & 1981 unlikeliness rules
- Model accuracy: 0.670

Global Influences

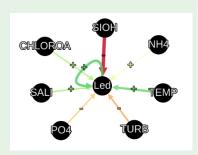
Process: Search and count patterns in rules that characterize an

activation/inhibition

Result: Score [-1; +1] between each pair of variables

Influences on phytoplankton species Led:

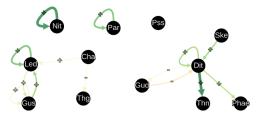
		•	
Variable	Positive	Negative	Global
P04	+0	-58	-0.36
SALI	+71	-4	+0.42
CHLOROA	+84	-22	+0.39
SIOH	+3	-161	-0.98
NH4	+25	-5	+0.12
TEMP	+106	-5	+0.63
TURB	+10	-87	-0.48



$${\sf global_influence(P04 \rightarrow Led)} = \frac{+0 + (-58)}{161} = -0.36$$

Results

Global influence graph (biotic and abiotic interactions)



Biotic interactions (between phytoplankton only)

Very few biotic interactions...

Ongoing work: integrate knowledge + validate results

Conclusion

Conclusion

- Learn biological regulatory networks with LFIT
- Heuristics to tackle real data
 - ► Good results with 10% of the transitions
- Ongoing: Application to phytoplankton
- You can try GULA at home: https://github.com/Tony-sama/pylfit

- PRIDE: polynomial algorithm that "misses" some explanations
- Improve the application (integrate existing knowledge)
- Improve the biological network inference

Thanks

Tony RIBEIRO

Omar IKNE

Morgan MAGNIN

Katsumi INOUE

Cédric LHOUSSAINE

Sébastien LEFEBVRE

Madeleine EYRAUD

Bibliography

- About GULA: Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Learning any memory-less discrete semantics for dynamical systems represented by logic programs. Machine Learning 111, Springer. November 2021. https://doi.org/10.1007/s10994-021-06105-4
- pyLFIT Python library: https://github.com/Tony-sama/pylfit
- About PRIDE: Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Polynomial Algorithm For Learning From Interpretation Transition. Poster at the 1st International Joint Conference on Learning & Reasoning. October 2021, Online. https://hal.science/hal-03347026v1
- Application to phytoplankton: Omar Iken, Maxime Folschette and Tony Ribeiro. Automatic Modeling of Dynamical Interactions Within Marine Ecosystems. Poster in the 1st International Joint Conference on Learning & Reasoning. October 2021, Online. https://hal.science/hal-03347033v1