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@ Biological regulatory networks
@ LFIT: an approach to learn a discrete model from its stage graph

@ Application to phytoplankton monitoring
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Origin of René Thomas Modeling

[Thomas, Journal of Theoretical Biology, 1973]
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Origin of René Thomas Modeling

[Thomas, Journal of Theoretical Biology, 1973]
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[Thomas, Journal of Theoretical Biology, 1973]
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[Thomas, Journal of Theoretical Biology, 1973]
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Origin of René Thomas Modeling

[Thomas, Journal of Theoretical Biology, 1973]
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Origin of René Thomas Modeling

[Thomas, Journal of Theoretical Biology, 1973]
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[Thomas, Journal of Theoretical Biology, 1973]
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Biological Regulatory Networks

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

@ A set of components N = {a, b,z}
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Biological Regulatory Networks

Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

@ A set of components N = {a, b,z}

o A discrete domain for each component dom(a) = {0, 1,2}
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Discrete Networks / Thomas Modeling

[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

@ A set of components N = {a, b,z}
o A discrete domain for each component dom(a) = {0,1,2}

@ Discrete parameters / evolution functions f, : § — dom(a)
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Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]

[Thomas, Journal of Theoretical Biology, 1973]
@ A set of components N = {a, b,z}
o A discrete domain for each component dom(a) = {0,1,2}
@ Discrete parameters / evolution functions f, : § — dom(a)
@ Signs & thresholds on the edges (redundant) a— z
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Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]

[Thomas, Journal of Theoretical Biology, 1973]
@ A set of components N = {a, b,z}
o A discrete domain for each component dom(a) = {0,1,2}
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Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]

[Thomas, Journal of Theoretical Biology, 1973]
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State Graph

The state graph depicts explicitly the dynamics
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The state graph depicts explicitly the dynamics
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Discrete Netwerks
State Graph @\

The state graph depicts explicitly the dynamics
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Discrete Netwerks
State Graph @\

The state graph depicts explicitly the dynamics
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o Stable state = state with no successors

@ Complex attractor = minimal loop or composition of loops from
which the dynamics cannot escape
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Discrete Netwerks
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The state graph depicts explicitly the dynamics
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o Stable state = state with no successors

@ Complex attractor = minimal loop or composition of loops from
which the dynamics cannot escape

@ Reachability = from 201, can | reach 0007
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Biological Regulatory Networks BEEHETTALLES

Semantics
fp=-b  fo=-a
\ b ‘ f; a ‘ b
10 10

State transitions differ according to the update semantics used:
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01 () 10
O\ O
Synchronous

@ Synchronous: all variables are updated
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Semantics
fp=-b  fo=-a
\ b ‘ f; a ‘ b
10 10

State transitions differ according to the update semantics used:

10
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Synchronous Asynchronous

00 00
8 0
1

@ Synchronous: all variables are updated

@ Asynchronous: only one variable is updated
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Biological Regulatory Networks BEEHETTALLES
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State transitions differ according to the update semantics used:
)
00 00 00
> AN
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Synchronous Asynchronous General

@ Synchronous: all variables are updated
@ Asynchronous: only one variable is updated

o General: any number of variables can be updated
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Learning from the State Graph

Running the model
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Learning from the State Graph
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Learning from the State Graph
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Biological Regulatory Networks BEETTIS
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Biological Regulatory Networks BEETTIS
Logic Rules

A logic program is a set of logic rules.
It is an alternative representation of biological networks.

a; <— Ao, bo, Co.

If a and b are at level 0 and c is at level 2, then a can change its value to 1.

a; < O.
Whenever c is at level 2, a can change its value to 1.

a < .

a can change its value to 1 anytime.
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Biological Regulatory Networks BEETTIS
Logic Rules

A logic program is a set of logic rules.
It is an alternative representation of biological networks.

a; <— Ao, bo, Co.

If a and b are at level 0 and c is at level 2, then a can change its value to 1.

a; < O.

Whenever c is at level 2, a can change its value to 1.

a < .

a can change its value to 1 anytime.

The same notion of semantics applies.
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Biological Regulatory Networks

Discrete Models as Logic Programs

Discrete model: Logic program:
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Discrete Models as Logic Programs

Discrete model: Logic program:

b1 — ai.

@ b1 < a».
bo < 4ao.
1+ @
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Biological Regulatory Networks BEETTIS

Discrete Models as Logic Programs

Discrete model: Logic program:
b1 — ai.
@ b1 < a».
2+ by + ag.

and 71 <+ a» N by.
@ Zg <— ao.
14 Zp <— ai.

Zy < bo.
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Biological Regulatory Networks BEETTIS

Discrete Models as Logic Programs

Discrete model: Logic program:
b1 — ai.
@ b1 < a».
24 by < ap.
or @ Z] < ap.
@ Z1 < b1.
1+ zg < a1 A bp.

Zo < aog N bg.
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Biological Regulatory Networks BEETTIS

Discrete Models as Logic Programs

Discrete model: Logic program:

b1 — ai.

@ b1 < a».
bo < 4ao.

: Z] < ap.

@ Expressivity 21 ¢ by
zg < a1 A bp.

Zo < aog N bg.
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Biological Regulatory Networks BEETTIS

AANs as Logic Programs

Asynchronous automata network: Logic program:

aoby (] e by < a;1.
dipN
O @] M0 D
bicy 'hil doco (@ EI. bO A aO'
a b c Z1 < az.
Z1 < b1.
Picture: [Soh et al., CMSB'2023] Z0 < a1 A by.

Zo < aog N bo.
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Biological Regulatory Networks BEETTIS

AANs as Logic Programs

Asynchronous automata network: Logic program:
apby (1 e by < a;1.
dipN
O @) YO D
bicy 'ail doco (@ EI. bO A aO'
a b c Z1 < az.
.. Z1 < b1.
. : Expressivity
Picture: [Soh et al., CMSB'2023] Z0 < a1 A by.

Zo < aog N bo.
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Learning From Interpretation Transition (LFIT)

Learning From Interpretation

Transition (LFIT)

Maxime Folschette (CRIStAL) Dynamic Biological Systems



Learning From Interpretation Transition (LFIT) BINEHElh]

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain

value in next state.

Observations

Positive Negative Positive Negative
example example example example

Equivalent to a classification problem: What is a typical state where a
can take value 0 in the next state ? Here: when ag or by is present.
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Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain

value in next state.

Observations

Positive Negative Positive Negative
example example example example

Equivalent to a classification problem: What is a typical state where a
can take value 0 in the next state ? Here: when ag or by is present.

That is: ap < ap.

Maxime Folschette (CRIStAL) Dynamic Biological Systems
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GULA
Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions (s; — )

Output: a logic program that reproduces the input
Principle: minimal refinements of the rules

Compatible with the synchronous, asynchronous and general semantics
(and any semantics without memory or “hard-coded” behaviors)
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Learning From Interpretation Transition (LFIT) eVIN:§

GULA: Initial Logic Program
Suppose:
e a and b have two levels {0,1} and c has three levels {0, 1,2}

GULA starts with the most general program:

ap < . bo(—. Ch < .
ap < . by < . cL .
Cy < .

With this program, everything is always possible

Maxime Folschette (CRIStAL) Dynamic Biological Systems
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Learning From Interpretation Transition (LFIT) eVIN:§

GULA: One Step of Minimal Refinements

Suppose:

e a and b have two levels {0,1} and c has three levels {0, 1,2}
e the current program contains the following rules regarding a;:

ap < Oo. a; < b;.
e from state (a1, by, c2), a1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make minimal
refinements in order to make this rule inapplicable:
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GULA: One Step of Minimal Refinements

Suppose:
e a and b have two levels {0,1} and c has three levels {0, 1,2}
e the current program contains the following rules regarding a;:

ap < Oo. a; < b;.
e from state (a1, by, c2), a1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make minimal
refinements in order to make this rule inapplicable:

a; < ap, ¢. ap + b;.
a; bl; . (No change)
a; < G, (.
a; < O, (1.
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GULA: One Step of Minimal Refinements

Suppose:
e a and b have two levels {0,1} and c has three levels {0, 1,2}
e the current program contains the following rules regarding a;:

ap < Oo. a; < b;.
e from state (a1, by, c2), a1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make minimal
refinements in order to make this rule inapplicable:

a; < ap, G- ap < by.
a; < bl, .
a; < O, Q.
a; < O, (.
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Learning From Interpretation Transition (LFIT) eVIN:§

GULA: One Step of Minimal Refinements

Suppose:

e a and b have two levels {0,1} and c has three levels {0, 1,2}
e the current program contains the following rules regarding a;:

ap < Oo. a; < b;.
e from state (a1, by, c2), a1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make minimal
refinements in order to make this rule inapplicable:

a; < ap, C&. aip + b.
a; b17 . (More general)
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GULA: One Step of Minimal Refinements

Suppose:

e a and b have two levels {0,1} and c has three levels {0, 1,2}
e the current program contains the following rules regarding a;:

ap < Oo. a; < b;.
e from state (a1, by, c2), a1 is never observed in the next states.

However, the first rule allows this; it is then necessary to make minimal
refinements in order to make this rule inapplicable:

a; < ap, C&. ap + b;.
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GULA
GULA: Final Result

The output of GULA respects some good properties:
e Consistency: the program allows no negative examples
@ Realization: the program covers all positive examples
@ Completeness: the program covers all the state space
°

Minimality of the rules (most general conditions)
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Learning From Interpretation Transition (LFIT)

Example: Synchronous Semantics

S ® b|f 2| i
01 0|1
1 ‘ 0 1 ‘ 0
00
01 () 10 /] £, = b
U 11 U ap < b1
a1 < bo
Synchronous
// fb = Ta
bo <— a1
b1 + ao
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Learning From Interpretation Transition (LFIT) GULA

Example: Asynchronous Semantics

fa:—\b fb:—|a

C@ blf alf
0|1 01
110 110
00
a i /] fy = b
U\ 11 /U ag < by // Default rules
al <« bo ap < ao
Asynchronous ai < ai
// fb = a bo — bo
bo — a1 b1 — b1
by ao
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Learning From Interpretation Transition (LFIT) eVIN:§

Results

GULA: an algorithm to learn a biological regulatory network
@ From the state graph
@ In order to recover the structure of the model

@ Applicable to a widespread class of semantics

Limitations:
@ Exponential complexity
» PRIDE: a greedy polynomial version of GULA
o What if the data is incomplete or noisy?
» Heuristic to avoid overfitting
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(ETGIL S SN DTSSR SR EELEICL (RS DI Adding a Heuristic on GULA

Heuristic: Weighted Likeliness/Unlikeliness Rules

@ Use the algorithm twice to learn two logic programs:

> likeliness rules: what is possible
» unlikeliness rules: what is impossible

@ Weight each rule by the number of observations it matches

Likeliness rules Unlikeliness rules
(3, ap < b1) (30, apg < C1)
(15, ay < bo) (5, ay <« Co)

Maxime Folschette (CRIStAL) Dynamic Biological Systems 2024-03-14 24 /37
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Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
o Compare weights of applicable likeliness/unlikeliness rules
@ Ratio of highest weights = probability P
@ Rules with highest weights = explanation E
predict : (atom, state) — (P, E)

Likeliness rules Unlikeliness rules
(3, ap < bl) (30, ap < C1)
(15, a < bo) (5, a < C())
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Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
o Compare weights of applicable likeliness/unlikeliness rules
@ Ratio of highest weights = probability P
@ Rules with highest weights = explanation E
predict : (atom, state) — (P, E)

Likeliness rules Unlikeliness rules
(3, ap < bl) (30, ap < C1)
(15, a < bo) (5, al < C())

predict(ai, (a1, bo, co)) = (0.75, ((15, a1 < bo), (5,a1 < p))) = Likely
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Heuristic: Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
o Compare weights of applicable likeliness/unlikeliness rules
@ Ratio of highest weights = probability P
@ Rules with highest weights = explanation E
predict : (atom, state) — (P, E)

Likeliness rules Unlikeliness rules
(3,80 < b1) (30,80 « 1)
(15, a < bo) (5, a < C())

predict(ai, (a1, bo, co)) = (0.75, ((15, a1 < bo), (5,31 + p))) = Likely
predict(ao, (a1, b1, c1)) = (0.09, ((3, a0 <— b1),(30,a0 < c1))) = Unlikely
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Learning From Interpretation Transition (LFIT)

Prediction power

synchronous 3 variables

Accuracy score

Percent of training data

3 variables

m baseline_random
B baseline_always_0.0
B baseline_always 0.5
= baseline_always 1.0

Training data = X% of transitions
Tested against unseen states (not in the training data)
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Application: Dynamics of

Marine Phytoplankton
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e Phytoplankton

Phytoplankton Blooms
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App Dynamics of Marine Phytoplankton

Phytoplankton Blooms
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Application: Dynamics of Marine Phytoplankton

SRN Dataset

English Channel

Boulogne
-
___Liané

https://www.seanoe.org/

data/00397/50832/

Sampling location ‘ Sampling date ‘ Taxon ‘ Value ‘ Sampling depth
001-P-015 1992-05-18 CHLOROA 6.0 Surface (0-1m)
006-P-001 2019-12-02 Chaetoceros 1000.0 | Surface (0-1m)
002-P-007 1994-05-25 Pleurosigma 100.0 Surface (0-1m)
002-P-030 2005-10-19 SALI 34.83 Surface (0-1m)
006-P-007 2015-09-28 Guinardia delicatula | 11400.0 | Surface (0-1m)

Environmental variables

(7) Phytoplankton species (12)
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Applying LFIT

Expectations
e Find known abiotic influences (of environment on phytoplankton)

e Find new biotic influences (of phytoplankton species on others)

Input

@ Pre-processing: data cleaning + discretization
@ Train set: 253 transitions
@ Test set: 53 transitions

Output

@ Run time = 2.35s (PRIDE, greedy version of GULA)
@ 1683 likeliness rules & 1981 unlikeliness rules
@ Model accuracy: 0.670
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Application: Dynamics of Marine Phytoplankton

Global Influences

Process: Search and count patterns in rules that characterize an
activation/inhibition
Result: Score [—1;+1] between each pair of variables

Influences on phytoplankton species Led:

Variable | Positive | Negative | Global
P04 10 —58 | —0.36 @tHI
+EYP

SALI +71 —4 +0.42

CHLOROA +-84 —22 +0.39

SIOH +3 —161 —0.98

NH4 +25 -5 +0.12 \

TEMP +106 -5 +0.63

TURB +10 —87 | —0.48 @ @
global _influence(P04 — Led) = —m%(l_%) = —0.36
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Application: Dynamics of Marine Phytoplankton

Global influence graph (biotic and abiotic interactions)
@ e © o
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Biotic interactions (between phytoplankton only)

Very few biotic interactions...
Ongoing work: integrate knowledge + validate results
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Conclusion
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Conclusion

Conclusion

@ Learn biological regulatory networks with LFIT

@ Heuristics to tackle real data
» Good results with 10% of the transitions

@ Ongoing: Application to phytoplankton

@ You can try GULA at home:
https://github.com/Tony-sama/pylfit

Outlooks:
@ PRIDE: polynomial algorithm that “misses” some explanations
@ Improve the application (integrate existing knowledge)

@ Improve the biological network inference
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https://github.com/Tony-sama/pylfit

Thanks

Tony Omar Morgan
RIBEIRO IKNE MAGNIN

Cédric Sébastien Madeleine
LHOUSSAINE LEFEBVRE EYRAUD
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