Conditions for cyclic attractors for a class of discrete n-dimensional repressilators

Maxime Folschette

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

2025-06-30 AUTOMATA 2025

Joint work with:

Honlgu Sun (formerly: Centrale Nantes, France)

Morgan Magnin (Centrale Nantes, France)

Elisa Tonello (formerly: Freie Universität Berlin, Germany)

Outline

Definitions:

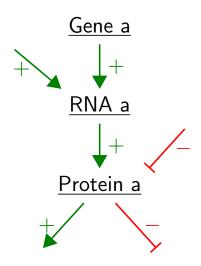
- Discrete networks
- Repressillators
- Static Analysis

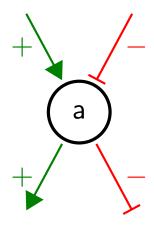
Results:

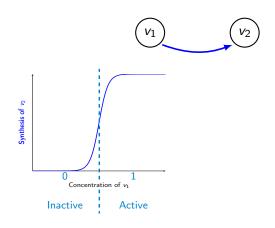
- Necessary and sufficent condition for the existence of a fixed point
- Sufficent conditions for the existence of a cyclic attractor
- Necessary condition in 4 dimensions

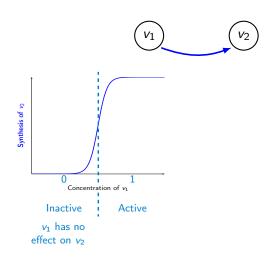


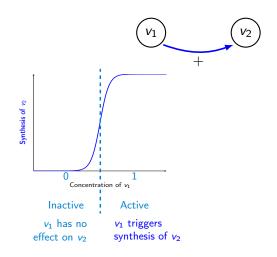
@ 2012 Pearson Education, Inc.

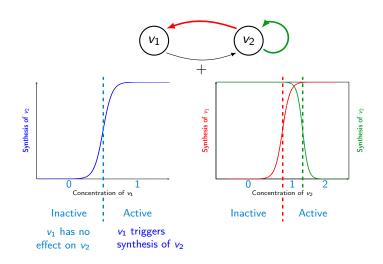


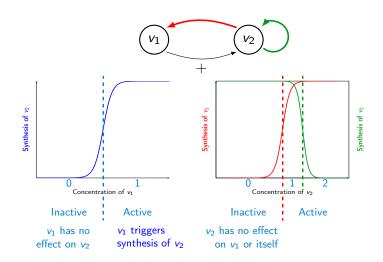


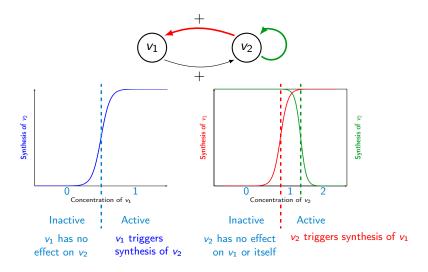


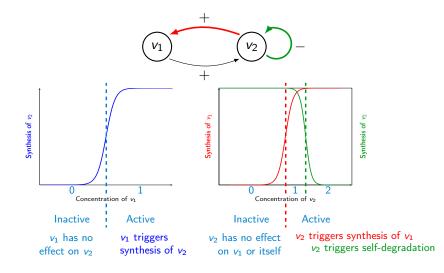


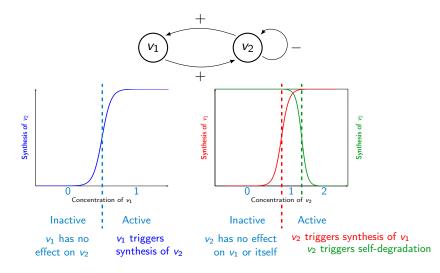


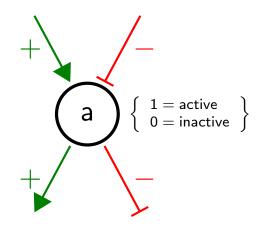


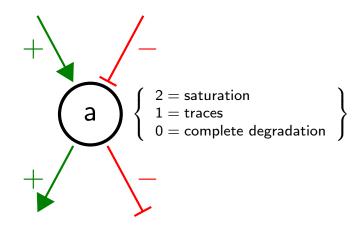


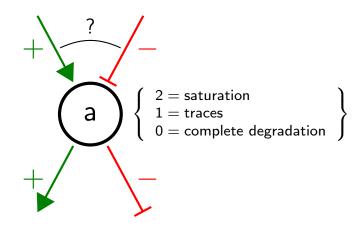












Biological Regulatory Networks

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

• A set of components $N = \{a, b, c\}$

(c)

(b)

Interaction Graph (IG)

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, c\}$
- A maximum level for each component m(a) = 2

Interaction Graph (IG)

[Kauffman, *Journal of Theoretical Biology*, 1969] [Thomas, *Journal of Theoretical Biology*, 1973]

- A set of components $N = \{a, b, c\}$
- A maximum level for each component m(a) = 2
- Discrete parameters / evolution functions $f_a: \mathcal{S} \to \mathsf{dom}(a)$

Interaction Graph (IG)

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, c\}$
- A maximum level for each component m(a) = 2
- Discrete parameters / evolution functions $f_a: \mathcal{S} \to \mathsf{dom}(a)$
- Signs & thresholds on the edges (redundant) $a \longrightarrow c$

$$\{0, 1, 2\}$$
 (a)
 (b)
 $\{0, 1\}$

a	f_b	С	b	f_a		b
0	0	0	0	1	0	0
0 1 2	1	0	0 1 0 1	0	0	1
2	1	1	0	1	1	0
	•	1	1	2	1	1
				'	2	0

Interaction Graph (IG)

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, c\}$
- A maximum level for each component m(a) = 2
- Discrete parameters / evolution functions $f_a: \mathcal{S} \to \mathsf{dom}(a)$
- Signs & thresholds on the edges (redundant) $a \xrightarrow{+} c$

$$\{0,1,2\}$$
 $+$
 $+$
 $\{0,1\}$
 $\{0,1\}$

а	f_b	C	b	f_a	а	Ь	f_c
0	0	0	0	1	0	0	0
1	1	0	1	0	0 0 1 1	0 1 0 1 0	0
2	1	1	0	1	1	0	0
		1	1	2	1	1	0
				,	2	0	0
					_		

Interaction Graph (IG)

[Kauffman, Journal of Theoretical Biology, 1969] [Thomas, Journal of Theoretical Biology, 1973]

- A set of components $N = \{a, b, c\}$
- A maximum level for each component m(a) = 2
- Discrete parameters / evolution functions $f_a: \mathcal{S} \to \mathsf{dom}(a)$
- Signs & thresholds on the edges (redundant) $a \xrightarrow{2+} c$

а	f_b	С	b	f_a	а	b	f_c
0	0	0	0	1	0	0	0
1	1	0 0 1 1	1	0	0	1	0 0 0 0
2	1	1	0	1	1	0	0
		1	1	2	1	1	0
					2	0	0
					_		

Interaction Graph (IG)

$$f_a = \neg b \qquad f_b = \neg a$$

$$\begin{array}{c|c} b & f_a \\ \hline 0 & 1 \\ \hline \end{array} \qquad \begin{array}{c|c} a & f_b \\ \hline 0 & 1 \\ \hline \end{array}$$

State transitions differ according to the update semantics used:

$$\begin{array}{ccc}
00 \\
11
\end{array}$$

Synchronous

• Synchronous: all variables are updated

$$f_a = \neg b \qquad f_b = \neg a$$

$$\frac{b \mid f_a}{0 \mid 1} \qquad \frac{a \mid f_b}{0 \mid 1}$$

State transitions differ according to the update semantics used:

$$01 \qquad \begin{pmatrix} 00 \\ 1 \end{pmatrix} \qquad 10 \qquad 01 \qquad 01 \qquad 10$$

Synchronous

Asynchronous

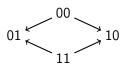
- Synchronous: all variables are updated
- Asynchronous: only one variable is updated

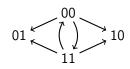
$$f_a = \neg b \qquad f_b = \neg$$

$$\begin{array}{c|c} b & f_a \\ \hline 0 & 1 \end{array} \qquad \begin{array}{c|c} a & f \\ \hline 0 & 1 \end{array}$$

State transitions differ according to the update semantics used:

 $01 \qquad \begin{pmatrix} 00 \\ 11 \end{pmatrix} \qquad 10$





Synchronous

Asynchronous

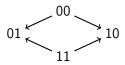
General

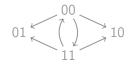
- Synchronous: all variables are updated
- Asynchronous: only one variable is updated
- General: any number of variables can be updated

$$f_a = \neg b$$

State transitions differ according to the update semantics used:

$$\begin{array}{ccc}
00 \\
11
\end{array}$$





Synchronous

Asynchronous

General

- Synchronous: all variables are updated
- Asynchronous: only one variable is updated
- General: any number of variables can be updated

211

State Graph

200

The state graph depicts explicitly the dynamics

abz 000	010	001	013
100	110	101	11

210

С	b	fa	a	b	f_c
0	0	1	0	0	
0	1	0	0	1	0
1	0	1	1	0	0
1	1	2	1	1	0
			2	0	0
			2	1	1

$$\begin{array}{c|cc}
 a & f_b \\
\hline
 0 & 0 \\
 1 & 1 \\
 2 & 1
\end{array}$$

201

The state graph depicts explicitly the dynamics

010

001

011

$$100 \longrightarrow 110$$

101

111

211

210

201

Cyclic attractors in repressilators

с	b	fa	а		f _c
0	0	1	0	0	0
0	0 1 0 1	0	0	1 0	0 0 0 0
1	0	1 2	1 1 2	0	0
1	1	2	1	1	0
		'	2	0	0
			2	1	1

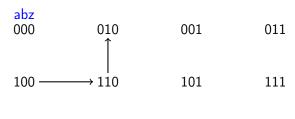
$$\begin{array}{c|cc}
 a & f_b \\
 \hline
 0 & 0 \\
 1 & 1 \\
 2 & 1
\end{array}$$

211

State Graph

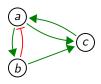
200

The state graph depicts explicitly the dynamics



201

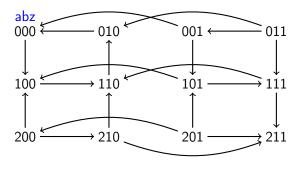
210

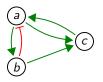


	Ь		а	Ь	$ f_c $
0	0 1 0 1	1	0	0	0
0	1	0	0	1	0
1	0	1	1	0	0
1	1	2	1	1	0
			2	0	0
			2	0 1 0 1 0 1	1

$$\begin{array}{c|cc}
 a & f_b \\
\hline
 0 & 0 \\
 1 & 1 \\
 2 & 1
\end{array}$$

The state graph depicts explicitly the dynamics

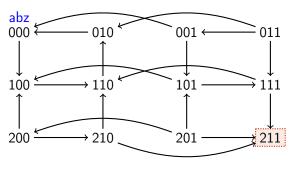




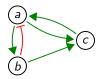
С	Ь	fa	а	Ь	f_c
0	0	1	0	0	0
0	1	0	0	1	0
1	0	1	1	0	0
1	1	1 2	1	1	0
			2	0	0
			2	1	1
	a	f_b			
_	-				

<i>†</i> _b
0
1
1

The state graph depicts explicitly the dynamics

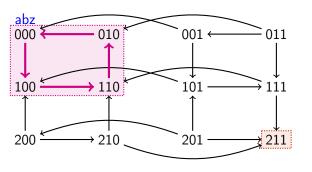


• Fixed point = state with no successors



С	b	fa	а	Ь	f_c
0	0	1	0	0	0
0	1	0	0	1	0
1	0	1	1	0	0
1	0 1 0 1	2	1	0 1 0 1 0 1	0
			2	0	0
			2	1	1
	a	fh			

The state graph depicts explicitly the dynamics



(<i>b</i>)					
с	Ь	f _a		a	Ь	f_c
0	0	1	-	0	0	0
0	1	0		0	1	0
1 1	0	1		1	0	0
1	1	1 2		1	1 0	0
				1 2 2	0	0
				2	1	1
	a	f_b				
	0	0				
	0 1 2	1				
	2	1				

- Fixed point = state with no successors
- Cyclic attractor = minimal set of states from which the dynamics cannot escape (always a loop or composition of loops)

Meaning of Edges in the IG

Logic point of view:

- Consider a state
- If increasing only variable a makes variable b change its value in the next state, then a has an influence on b $(a \longrightarrow b)$
- If the change of *b* is an increase then the influence is positive, otherwise negative

Biological point of view:

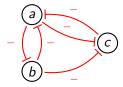
- Species a has been observed to have an increasing/decreasing effect on b
- An edge in the interaction graph ackowledges this information $(a \longrightarrow b)$
- The parameters should reflect this information

Repressilators

Repressilators

Only negative disjunctive influences

• An interaction graph (IG) G = (N, E)

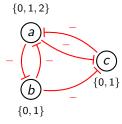


(Only one possible set of parameters)

Repressilators

Only negative disjunctive influences

- An interaction graph (IG) G = (N, E)
- A maximum level for each component m(a) = 2

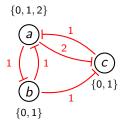


(Only one possible set of parameters)

Repressilators

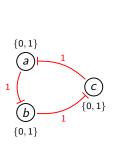
Only negative disjunctive influences

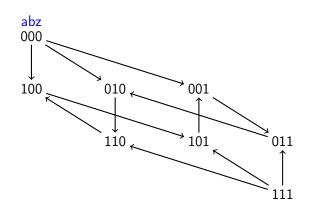
- An interaction graph (IG) G = (N, E)
- A maximum level for each component m(a) = 2
- A threshold assignment for the edges t(a, b) = 1



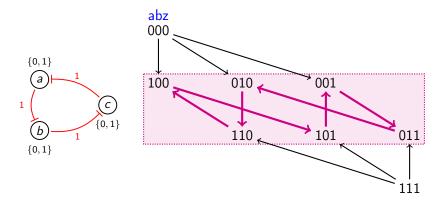
(Only one possible set of parameters)

- When all predecessors are below the threshold: increase
- When at least one predecessor is above the threshold: decrease

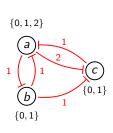


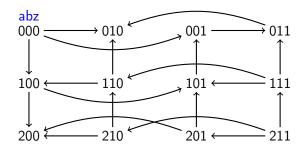


- When all predecessors are below the threshold: increase
- When at least one predecessor is above the threshold: decrease

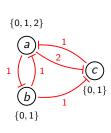


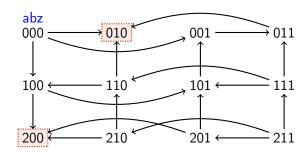
- When all predecessors are below the threshold: increase
- When at least one predecessor is above the threshold: decrease





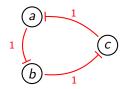
- When all predecessors are below the threshold: increase
- When at least one predecessor is above the threshold: decrease





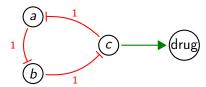
Deliver a drug at regular time intervals

Repressilators ensure sustained oscillations...



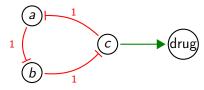
Deliver a drug at regular time intervals

Repressilators ensure sustained oscillations...

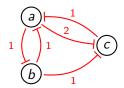


Deliver a drug at regular time intervals

Repressilators ensure sustained oscillations...

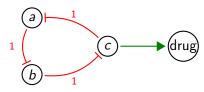


...Hopefully

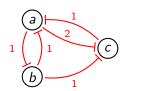


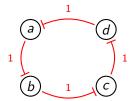
Deliver a drug at regular time intervals

Repressilators ensure sustained oscillations...



...Hopefully





Brute-force enumeration

How to search for repressilators of size n with a cyclic attractor?

Brute-force search:

- Enumerate all possible IG (all combinations of edges)
- Enumerate all maximum level assignments and threshold assignments
- Compute the state graph for each model (exponential complexity)

Not tractable for high values of n

Static Analysis

- Enumerate all possible IG (all combinations of edges)
- Enumerate all maximum level assignments and threshold assignments
- Compute the state graph for each model (exponential complexity)

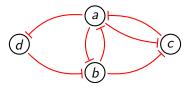
[Paulevé and Richard, Electronic Notes in Theoretical Computer Science, 2012] gives, based on the IG only, results on:

- the link between cycles in the IG and fixed points/attractors
- bounds on the number of fixed point
- topological fixed points (common to all sets of parameters)

[Gadouleau, Natural Computing, 2020] gives bounds on:

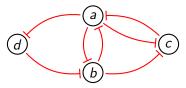
- the rank (number of non-source states)
- the number of states belonging to a cyclic attractor
- the number of fixed points

 $A \text{ is independent} & \stackrel{\Delta}{\Longleftrightarrow} \forall a,b \in A, (a,b) \notin E$ $A \text{ is dominating} & \stackrel{\Delta}{\Longleftrightarrow} \forall b \in V \setminus A, \exists a \in A, (a,b) \in E$ $A \text{ is a stable dominating set} & \stackrel{\Delta}{\Longleftrightarrow} A \text{ is independent} \land A \text{ is dominating}$



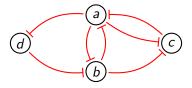
	Independent	Dominating
$\{a,b,c,d\}$		X

 $A \text{ is independent} & \stackrel{\Delta}{\Longleftrightarrow} \forall a,b \in A, (a,b) \notin E$ $A \text{ is dominating} & \stackrel{\Delta}{\Longleftrightarrow} \forall b \in V \setminus A, \exists a \in A, (a,b) \in E$ $A \text{ is a stable dominating set} & \stackrel{\Delta}{\Longleftrightarrow} A \text{ is independent} \land A \text{ is dominating}$



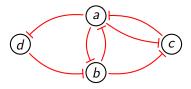
	Independent	Dominating
$\{a,b,c,d\}$		×
$\{d,b\}$		X

 $A \text{ is independent} & \stackrel{\Delta}{\Longleftrightarrow} \forall a,b \in A, (a,b) \notin E \\ A \text{ is dominating} & \stackrel{\Delta}{\Longleftrightarrow} \forall b \in V \setminus A, \exists a \in A, (a,b) \in E \\ A \text{ is a stable dominating set} & \stackrel{\Delta}{\Longleftrightarrow} A \text{ is independent} \land A \text{ is dominating}$



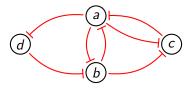
	Independent	Dominating
$\{a,b,c,d\}$		×
$\{d,b\}$		×
{ <i>b</i> }	×	

 $A \text{ is independent} & \stackrel{\Delta}{\Longleftrightarrow} \forall a,b \in A, (a,b) \notin E \\ A \text{ is dominating} & \stackrel{\Delta}{\Longleftrightarrow} \forall b \in V \setminus A, \exists a \in A, (a,b) \in E \\ A \text{ is a stable dominating set} & \stackrel{\Delta}{\Longleftrightarrow} A \text{ is independent} \land A \text{ is dominating}$



	Independent	Dominating
$\{a,b,c,d\}$		X
$\{d,b\}$		X
$\{b\}$	X	
$\{c,d\}$	X	Х

 $A \text{ is independent} & \stackrel{\Delta}{\Longleftrightarrow} \forall a,b \in A, (a,b) \notin E \\ A \text{ is dominating} & \stackrel{\Delta}{\Longleftrightarrow} \forall b \in V \setminus A, \exists a \in A, (a,b) \in E \\ A \text{ is a stable dominating set} & \stackrel{\Delta}{\Longleftrightarrow} A \text{ is independent} \land A \text{ is dominating}$



	Independent	Dominating
$\{a,b,c,d\}$		X
$\{d,b\}$		X
$\{b\}$	x	
$\{c,d\}$	×	X
{ a }	X	X

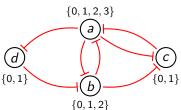
Results

Theorem 1 (Fixed Points)

Theorem 1: A is a stable dominating set $\iff \phi(A)$ is a fixed point

where $\phi(A) = (1_A(x) \cdot m_x)_{x \in V}$, with 1_A the indicator function of A

Already found by [Richard & Ruet, Discrete Applied Mathematics, 2013] for Boolean networks

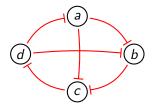


	Independent	Dominating	Associated fixed point
$\{c,d\}$	Х	Х	(0,0,1,1)
{a}	×	×	(3,0,0,0)

Corollary: Sufficient Condition for a Cyclic Attractor

Theorem 1: A is a stable dominating set $\iff \phi(A)$ is a fixed point

Corollary: No stable dominating set \iff There exists no fixed point \implies There exists a cyclic attractor



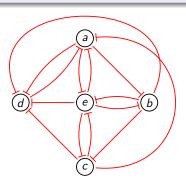
Here, there exists a cyclic attractor!

Cyclic Attractor With a Stable Dominating Set

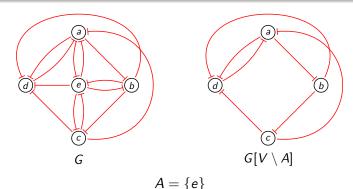
What about the coexistence of a fixed point and a cyclic attractor?

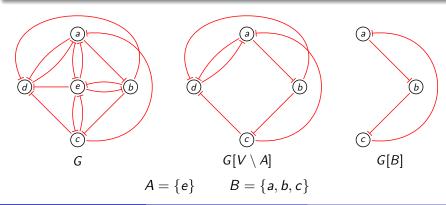
Theorem 2: Suppose that there exists a stable dominating set A such that the subgraph $G[V \setminus A]$ admits no stable dominating set. Take $B \neq \emptyset$ any minimal subset of $V \setminus A$ such that G[B] does not admit a stable dominating set. If all vertices in B inhibit all vertices in $V \setminus B$, then there exist a maximum level assignment and a threshold assignment such that the dynamics admits a cyclic attractor.

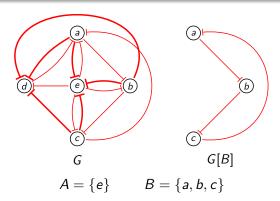
With G[A] the restriction of the IG G to the set of nodes A.

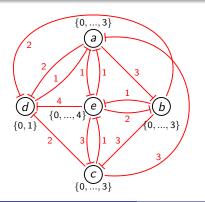


$$A = \{e\}$$









{00300, 01300, 02300, 03000, 03100, 03200, 03300, 10300, 11300, 12300, 13000, 13100, 13200, 13300, 20300, 21300, 22300, 23000, 23100, 23200, 23300, 30000, 30100, 30200, 30300, 31000, 31100, 31200, 31300, 32000, 32100, 32200, 32300, 33000, 33100. 33200}

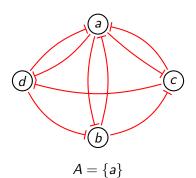
Theorem 3: In the case n = 4, the sufficient condition is also a necessary condition. Moreover, when Theorem 2 applies, there is exactly one fixed point and one cyclic attractor, and the stable dominating set is of size 1.

This allows to characterize exactly the repressillators in dimension 4 that admit both a cyclic attractor and a fixed point

This is compatible with [Sun, Folschette, Magnin, CMSB'2023] where we (almost) found a necessary and sufficient condition for a cyclic attractor in n=4

Case n=4

Theorem 3: In the case n = 4, the sufficient condition is also a necessary condition. Moreover, when Theorem 2 applies, there is exacly one fixed point and one cyclic attractor, and the stable dominating set is of size 1.



Conclusion

Conclusion

Summary:

- Based on the notion of stable dominating set
- Necessary and sufficient condition for the existence of a fixed point
 - and a characterization of this fixed point
- Sufficient conditions for the existence of a cyclic attractor
 - ▶ Necessary condition when n = 4

Outlooks:

- If possible, relax the sufficient condition
- Consider also positive interactions
- Explore the links with AND-nets

Thanks

Honglu SUN

Elisa TONELLO

Morgan MAGNIN

And thanks to the reviewers for their useful comments