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Origin of René Thomas Modeling
[Thomas, Journal of Theoretical Biology, 1973]
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Biological Regulatory Networks

Biological Regulatory
Networks
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Biological Regulatory Networks Discrete Networks

Discrete Networks / Thomas Modeling
[Kauffman, Journal of Theoretical Biology, 1969]
[Thomas, Journal of Theoretical Biology, 1973]

A set of components N = {a, b, c}

A maximum level for each component m(a) = 2
Discrete parameters / evolution functions fa : S → dom(a)

Signs & thresholds on the edges (redundant) a −−→ c

c

a

b

Interaction Graph (IG)

a fb
0 0
1 1
2 1

c b fa
0 0 1
0 1 0
1 0 1
1 1 2

a b fc
0 0 0
0 1 0
1 0 0
1 1 0
2 0 0
2 1 1

Parameterization
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Biological Regulatory Networks Semantics

Semantics

a b

fa = ¬b fb = ¬a

b fa
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a fb
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State transitions differ according to the update semantics used:
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General

Synchronous: all variables are updated

Asynchronous: only one variable is updated
General: any number of variables can be updated
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Biological Regulatory Networks Dynamics

State Graph
The state graph depicts explicitly the dynamics
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0 0
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Fixed point = state with no successors
Cyclic attractor = minimal set of states from which the dynamics
cannot escape (always a loop or composition of loops)
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Biological Regulatory Networks Interpretation of Edges

Meaning of Edges in the IG

Logic point of view:
Consider a state
If increasing only variable a makes variable b change its value in the
next state, then a has an influence on b (a −→ b)
If the change of b is an increase then the influence is positive,
otherwise negative

Biological point of view:
Species a has been observed to have an increasing/decreasing effect
on b

An edge in the interaction graph ackowledges this information
(a −→ b)
The parameters should reflect this information
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Repressilators

Repressilators
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Repressilators Definition

Repressilators
Only negative disjunctive influences

An interaction graph (IG) G = (N,E )

A maximum level for each component m(a) = 2
A threshold assignment for the edges t(a, b) = 1

c

a

b

− −
−
−

−

(Only one possible set of
parameters)

Maxime Folschette (CRIStAL) Cyclic attractors in repressilators 2025-06-30 13 / 33



Repressilators Definition

Repressilators
Only negative disjunctive influences

An interaction graph (IG) G = (N,E )

A maximum level for each component m(a) = 2

A threshold assignment for the edges t(a, b) = 1

c

a

b

− −
−
−

−

{0, 1, 2}

{0, 1}

{0, 1}

(Only one possible set of
parameters)

Maxime Folschette (CRIStAL) Cyclic attractors in repressilators 2025-06-30 13 / 33



Repressilators Definition

Repressilators
Only negative disjunctive influences

An interaction graph (IG) G = (N,E )

A maximum level for each component m(a) = 2
A threshold assignment for the edges t(a, b) = 1

c

a

b

1 1
2

1

1

{0, 1, 2}

{0, 1}

{0, 1}

(Only one possible set of
parameters)

Maxime Folschette (CRIStAL) Cyclic attractors in repressilators 2025-06-30 13 / 33



Repressilators Dynamics

Repressilator State Graph

When all predecessors are below the threshold: increase
When at least one predecessor is above the threshold: decrease
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Repressilators Interest

Use of Repressilators in Biology
Deliver a drug at regular time intervals

Repressilators ensure sustained oscillations...

a

b

c1

1

1

...Hopefully

c

a
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1 1
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1

1

a
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d

1

1

1

1
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Repressilators Static Analysis

Brute-force enumeration

How to search for repressilators of size n with a cyclic attractor?

Brute-force search:
Enumerate all possible IG (all combinations of edges)
Enumerate all maximum level assignments and threshold assignments
Compute the state graph for each model (exponential complexity)

Not tractable for high values of n
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Repressilators Static Analysis

Static Analysis

Enumerate all possible IG (all combinations of edges)
Enumerate all maximum level assignments and threshold assignments
Compute the state graph for each model (exponential complexity)

[Paulevé and Richard, Electronic Notes in Theoretical Computer Science,
2012] gives, based on the IG only, results on:

the link between cycles in the IG and fixed points/attractors
bounds on the number of fixed point
topological fixed points (common to all sets of parameters)

[Gadouleau, Natural Computing, 2020] gives bounds on:
the rank (number of non-source states)
the number of states belonging to a cyclic attractor
the number of fixed points
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Repressilators Stable Dominating Sets

Stable Dominating Set

A is independent ∆⇐⇒ ∀a, b ∈ A, (a, b) /∈ E

A is dominating ∆⇐⇒ ∀b ∈ V \ A,∃a ∈ A, (a, b) ∈ E

A is a stable dominating set ∆⇐⇒ A is independent ∧ A is dominating

a

b

cd

Independent Dominating
{a, b, c , d} x

{d , b} x
{b} x

{c , d} x x
{a} x x
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Results Theorem 1 (Fixed Points)

Theorem 1 (Fixed Points)

Theorem 1: A is a stable dominating set ⇐⇒ ϕ(A) is a fixed point

where ϕ(A) = (1A(x) ·mx)x∈V , with 1A the indicator function of A

Already found by [Richard & Ruet, Discrete Applied Mathematics, 2013]
for Boolean networks

a

b

cd

{0, 1, 2, 3}

{0, 1, 2}

{0, 1}{0, 1}

Independent Dominating Associated fixed point
{c , d} x x (0, 0, 1, 1)
{a} x x (3, 0, 0, 0)
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Results Theorem 1 (Fixed Points)

Corollary: Sufficient Condition for a Cyclic Attractor

Theorem 1: A is a stable dominating set ⇐⇒ ϕ(A) is a fixed point

Corollary: No stable dominating set ⇐⇒ There exists no fixed point
=⇒ There exists a cyclic attractor

a

b

c

d

Here, there exists a cyclic attractor!

Maxime Folschette (CRIStAL) Cyclic attractors in repressilators 2025-06-30 22 / 33



Results Theorem 2 (Cyclic Attractors)

Cyclic Attractor With a Stable Dominating Set

What about the coexistence of a fixed point and a cyclic attractor?

Theorem 2: Suppose that there exists a stable dominating set A such that
the subgraph G [V \ A] admits no stable dominating set. Take B ̸= ∅ any
minimal subset of V \ A such that G [B] does not admit a stable
dominating set. If all vertices in B inhibit all vertices in V \ B , then there
exist a maximum level assignment and a threshold assignment such that
the dynamics admits a cyclic attractor.

With G [A] the restriction of the IG G to the set of nodes A.
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Results Theorem 2 (Cyclic Attractors)

Theorem 2: Suppose that there exists a stable dominating set A such that
the subgraph G [V \ A] admits no stable dominating set. Take B ̸= ∅ any
minimal subset of V \ A such that G [B] does not admit a stable
dominating set. If all vertices in B inhibit all vertices in V \ B , then there
exist a maximum level assignment and a threshold assignment such that
the dynamics admits a cyclic attractor.

a

b

c

d e

A = {e}
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a

b

c

d e

G

a

b

c

d

G [V \ A]

A = {e}
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Results Theorem 2 (Cyclic Attractors)

Theorem 2: Suppose that there exists a stable dominating set A such that
the subgraph G [V \ A] admits no stable dominating set. Take B ̸= ∅ any
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a

b

c

d e

G

a

b

c

d

G [V \ A]

a

b

c

G [B]

A = {e} B = {a, b, c}
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b
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a

b

c
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Results Theorem 2 (Cyclic Attractors)

Theorem 2: Suppose that there exists a stable dominating set A such that
the subgraph G [V \ A] admits no stable dominating set. Take B ̸= ∅ any
minimal subset of V \ A such that G [B] does not admit a stable
dominating set. If all vertices in B inhibit all vertices in V \ B , then there
exist a maximum level assignment and a threshold assignment such that
the dynamics admits a cyclic attractor.

a

b

c

d e

3
2

1

3

2

1

3

2 1

1
1

2

3

4

{0, ..., 3}

{0, ..., 3}

{0, ..., 3}

{0, 1}
{0, ..., 4}

{00300, 01300, 02300, 03000, 03100,
03200, 03300, 10300, 11300, 12300,
13000, 13100, 13200, 13300, 20300,
21300, 22300, 23000, 23100, 23200,
23300, 30000, 30100, 30200, 30300,
31000, 31100, 31200, 31300, 32000,
32100, 32200, 32300, 33000, 33100,
33200}
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Results Theorem 3 (n = 4)

Case n = 4

Theorem 3: In the case n = 4, the sufficient condition is also a necessary
condition. Moreover, when Theorem 2 applies, there is exacly one fixed
point and one cyclic attractor, and the stable dominating set is of size 1.

This allows to characterize exactly the repressillators in dimension 4 that
admit both a cyclic attractor and a fixed point

This is compatible with [Sun, Folschette, Magnin, CMSB’2023] where we
(almost) found a necessary and sufficient condition for a cyclic attractor in
n = 4
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Results Theorem 3 (n = 4)

Case n = 4

Theorem 3: In the case n = 4, the sufficient condition is also a necessary
condition. Moreover, when Theorem 2 applies, there is exacly one fixed
point and one cyclic attractor, and the stable dominating set is of size 1.

a

b

cd

A = {a}

Maxime Folschette (CRIStAL) Cyclic attractors in repressilators 2025-06-30 30 / 33



Conclusion

Conclusion
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Conclusion

Conclusion

Summary:
Based on the notion of stable dominating set
Necessary and sufficient condition for the existence of a fixed point

▶ and a characterization of this fixed point
Sufficient conditions for the existence of a cyclic attractor

▶ Necessary condition when n = 4

Outlooks:
If possible, relax the sufficient condition
Consider also positive interactions
Explore the links with AND-nets
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Conclusion

Thanks

Honglu
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Elisa
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And thanks to the reviewers for their useful comments
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