

Interaction Graphs of Phytoplankton Species Interactions using Logical Learning

CMSB 2025

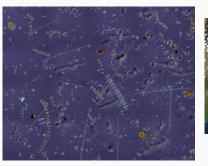
Madeleine Eyraud¹ Maxime Folschette¹ Katsumi Inoue²
Sébastien Lefebyre³ Cédric Lhoussaine¹

¹Univ. Lille, CNRS, Centrale Lille, CRIStAL UMR 9189

²National Institute of Informatics, Tokyo

³Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, LOG UMR 8187

Context: Phytoplankton and Ecosystem Dynamics



- Phytoplankton form the base of marine trophic networks
- Influence key processes e.g. nutrient cycling and water quality
- ⇒ There is a strong interest in understanding phytoplankton dynamics

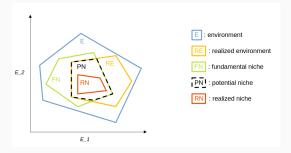
Context: Abiotic vs. Biotic Factors

 Abiotic factors (temperature, nutrients, ...) have well-known effects on phytoplankton growth

 $^{^1}$ Karasiewicz, S., Dolédec, S., Lefebvre, S.: Within outlying mean indexes: refining the omi analysis for the realized niche decomposition. PeerJ 5(e3364) (2017)

Context: Abiotic vs. Biotic Factors

- Abiotic factors (temperature, nutrients, ...) have well-known effects on phytoplankton growth
- Biotic interactions (between species) have only been suggested 1



⇒We want to understand biotic interactions

¹Karasiewicz, S., Dolédec, S., Lefebvre, S.: Within outlying mean indexes: refining the omi analysis for the realized niche decomposition. PeerJ 5(e3364) (2017)

Context: Modeling Approaches in Marine Ecosystems

- ODE
- Statistical models
- Machine learning

⁵Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively characterizing feasible logic models of a signaling network using answer set programming. Bioinformatics 30 (2013) ⁶Verny, L., Sella, N., Affeldt, S., Singh, P., Isambert, H.: Learning causal networks with latent variables from

Verny, L., Sella, N., Affeldt, S., Singh, P., Isambert, H.: Learning causal networks with latent variables from multivariate information in genomic data. PLOS Computational Biology 13, e1005662 (2017)

⁷ Chevalier, S., Froidevaux, C., Paulevé, L., Zinovyev, A.: Synthesis of boolean networks from biological dynamical constraints using answer-set programming. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). pp. 34–41 (2019)

Context: Modeling Approaches in Marine Ecosystems

- ODE
- Statistical models
- Machine learning

⇒We need explainable models

⁵ Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively characterizing feasible logic models of a signaling network using answer set programming. Bioinformatics 30 (2013) ⁶ Verny, L., Sella, N., Affeldt, S., Singh, P., Isambert, H.: Learning causal networks with latent variables from

^oVerny, L., Sella, N., Affeldt, S., Singh, P., Isambert, H.: Learning causal networks with latent variables from multivariate information in genomic data. PLOS Computational Biology 13, e1005662 (2017)

⁷Chevalier, S., Froidevaux, C., Paulevé, L., Zinovyev, A.: Synthesis of boolean networks from biological dynamical constraints using answer-set programming. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). pp. 34–41 (2019)

Context: Modeling Approaches in Marine Ecosystems

- ODE
- Statistical models
- Machine learning

⇒We need explainable models

Symbolic Network Inference

- CASPO⁵
- MIIC⁶
- Bonesis⁷

⁵ Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively characterizing feasible logic models of a signaling network using answer set programming. Bioinformatics 30 (2013) ⁶ Verny, L., Sella, N., Affeldt, S., Singh, P., Isambert, H.: Learning causal networks with latent variables from

OVerny, L., Sella, N., Affeldt, S., Singh, P., Isambert, H.: Learning causal networks with latent variables from multivariate information in genomic data. PLOS Computational Biology 13, e1005662 (2017)

⁷ Chevalier, S., Froidevaux, C., Paulevé, L., Zinovyev, A.: Synthesis of boolean networks from biological dynamical constraints using answer-set programming. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). pp. 34–41 (2019)

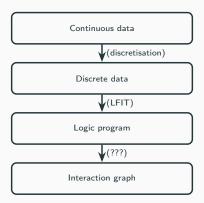
Problem & Contributions

Goal: Infer interpretable species interactions from long-term field data.

Key ideas:

- Species-specific, ecology-informed discretization
- Apply Learning From Interpretation Transition (LFIT)
- Mapping rules ⇒ signed, weighted interaction graph

Overview:



Dataset (SRN, Eastern English Channel)²

location	date	phaeocystis	ditylum	temperature	nitrate
001-P-015	1992-05-18	0.0	20.0	13	33
006-P-001	1992-06-12	6.0	100.0	14	30

• 1992-2020; sampling every 15-30 days

• 12 species; 11 abiotic factors

• 10 stations on the french coast of the English Channel

 $^{^2}$ SRN dataset - Regional Observation and Monitoring Program for Phytoplankton and Hydrology in the eastern English Channel (2025)

Method: Species-specific discretization

Goal: translate continuous ecology into **discrete states** usable by LFIT—without losing species traits.

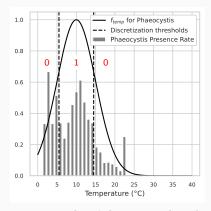
Method: Species-specific discretization

Goal: translate continuous ecology into **discrete states** usable by LFIT—without losing species traits.

Growth rate per species depending on temperature T:

$$f_{\text{temp}}(T) = \exp\left(-\frac{(T - T_{\text{opt}})^2}{2\sigma^2}\right)$$

- Favorable band: $T_{\text{opt}} \pm \sigma \Rightarrow \text{state} = 1$
- Outside band \Rightarrow state = 0



Temperature: theoretical response vs. observed presence.

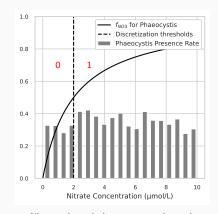
Method: Species-specific discretization

Goal: translate continuous ecology into **discrete states** usable by LFIT—without losing species traits.

Growth rate per species depending on nutrient X:

$$f_X([X]) = \frac{[X]}{[X] + K_X}$$

- Above ⇒ 1 (sufficient)
- Below ⇒ 0 (limiting)



Nitrate: theoretical response vs. observed presence.

⇒ Species "see" the environment through their own physiological lenses.

Method: Apply LFIT³

INPUT: set of state transitions

$$\begin{pmatrix} \mathsf{phae} = 0 \\ \mathsf{dit} = 1 \\ \mathsf{temp} = 0 \\ \mathsf{nit} = 0 \end{pmatrix} \rightarrow \begin{pmatrix} \mathsf{phae} = 1 \\ \mathsf{dit} = 1 \\ \mathsf{temp} = 1 \\ \mathsf{nit} = 0 \end{pmatrix}$$

$$(\vdots) \rightarrow (\vdots)$$

$$(\vdots) \rightarrow (\vdots) \rightarrow (\vdots)$$

time: $t \rightarrow t+1$

³Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine Learning 94 (2014)

Method: Apply LFIT³

INPUT: set of state transitions

$$\begin{pmatrix} \mathsf{phae} = 0 \\ \mathsf{dit} = 1 \\ \mathsf{temp} = 0 \\ \mathsf{nit} = 0 \end{pmatrix} \rightarrow \begin{pmatrix} \mathsf{phae} = 1 \\ \mathsf{dit} = 1 \\ \mathsf{temp} = 1 \\ \mathsf{nit} = 0 \end{pmatrix}$$

$$(i) \rightarrow (i)$$

$$(i) \rightarrow (i)$$

LFIT

OUTPUT: logic program

$$\begin{aligned} \mathsf{phae} &= 1 \leftarrow \ \mathsf{phae} = 0 \ \land \ \mathsf{nit} = 0 \\ \mathsf{dit} &= 1 \leftarrow \ \mathsf{phae} = 0 \ \land \ \mathsf{dit} = 1 \ \land \ \mathsf{temp} = 0 \\ &\vdots \end{aligned}$$

time:

time: t

³Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine Learning 94 (2014)

Method: Apply LFIT

LFIT algorithms

- GULA¹⁰: complete but has exponential complexity not scalable to our dataset.
- PRIDE¹¹: polynomial-time but incomplete prioritizes variables early in the input order.

¹⁰ Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Learning any memory-less discrete semantics for dynamical systems represented by logic programs. Machine Learning 111, 1–78 (2021)

¹ Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Polynomial algorithm for learning from interpretation transition. 1st International Joint Conference on Learning & Reasoning (2021).

Method: Apply LFIT

LFIT algorithms

- GULA¹⁰: complete but has exponential complexity not scalable to our dataset.
- PRIDE¹¹: polynomial-time but incomplete prioritizes variables early in the input order.

Multiple runs & aggregation

- 5 runs with different variable orders (abiotic first to reduce spurious biotic links).
- Aggregate = union of minimal rules ⇒ improve coverage.
- Aggregated model accuracy: 0.86, higher than any single run (0.67–0.68).

^{10/}Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Learning any memory-less discrete semantics for dynamical systems represented by logic programs. Machine Learning 111, 1–78 (2021)

¹¹Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Polynomial algorithm for learning from interpretation transition. 1st International Joint Conference on Learning & Reasoning (2021).

Motivation:

- The logic program is explainable but can contain thousands of rules.
- We propose to extract a directed, weighted interaction graph that summerize the rules.
- This graph provides a compact, readable view of the system's dynamics.

Motivation:

- The logic program is explainable but can contain thousands of rules.
- We propose to extract a directed, weighted interaction graph that summerize the rules.
- This graph provides a compact, readable view of the system's dynamics.

For each rule r:

- coverage(r) = # transitions with body true;
 support(r) = # transitions with body at t and head at t+1.
- Confidence *P*(head|body) = support/coverage.
- Rule weight: $w(r) = \operatorname{support}(r) \cdot \frac{P(\operatorname{head}|\operatorname{body})}{P(\operatorname{head})}$.

$$\underbrace{\mathsf{phae} = 1}_{\mathsf{head}} \ \leftarrow \ \underbrace{\mathsf{phae} = 0 \ \land \ \mathsf{nit} = 0}_{\mathsf{body}}$$

 $R_{i
ightarrow j}$ is the set of all rules where ${f Dit}$ appears in the ${f body}$ and ${f Phae}$ in the ${f head}$:

$$\mathsf{Phae}^1 \leftarrow \, \mathsf{Dit}^1 \, \wedge \, ...$$

 $R_{i
ightarrow j}$ is the set of all rules where ${f Dit}$ appears in the ${f body}$ and ${f Phae}$ in the ${f head}$:

$$\mathsf{Phae}^1 \leftarrow \, \mathsf{Dit}^1 \, \wedge \, \dots$$

Edge Thickness:

$$\sum_{r \in R_{i \to j}} w(r).$$

 $R_{i \rightarrow j}$ is the set of all rules where **Dit** appears in the **body** and **Phae** in the **head**:

$$\mathsf{Phae}^1 \leftarrow \, \mathsf{Dit}^1 \, \wedge \, \dots$$

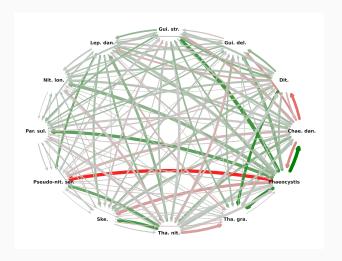
Edge Thickness:

$$\sum_{r \in R_{i \to j}} w(r)$$
.

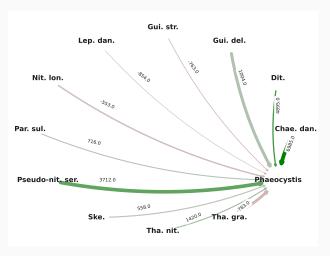
Edge Color:

$$\delta_{i \to j}(r) \in \{\pm 1\}$$
 (alignment vs contrast) and $\sum_r \delta_{i \to j}(r) \, w(r)$ maps to color.

Results: Phytoplankton Influence Graph

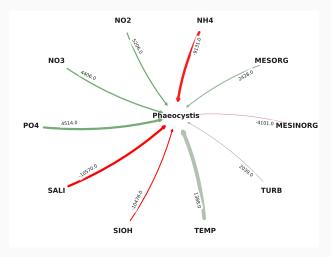


Results: Phaeocystis



Edges normalized locally

Results: Abiotic influences on Phaeocystis



NO₂ & PO₄ positive; Si(OH)₄ negative; salinity & NH₄ negative — consistent with bloom phenology.

Discussion

Contributions

- · Pipeline for applying LFIT on ecological time series
- Influence graphs summarizing thousands of rules into readable interactions

Limits

- Graphs show *influence* patterns; they're not direct interaction types (competition, allelopathy, etc.)
- Memoryless learning; not causal; requires ecological interpretation

Resources

• Code (notebooks): https://zenodo.org/records/15389109

Ongoing work: Combining abiotic factors into a single response

- Build a theoretical growth response R_s for each species s by combining eco-physiological functions of abiotic drivers, then use it as a single feature
- $R_s = f_T^{(s)} \cdot \min(f_{\text{lum}}^{(s)}, f_{n_1}^{(s)}, f_{n_2}^{(s)}, \dots)$
- ⇒ Replace many abiotics with a single, species-specific theoritical response capturing the eco-theory.
- ⇒ Reduce the number of variables, potentially the number of rules.

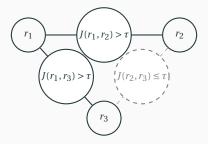
Restrict to rules with same head atom: phae=1 $\,\leftarrow\,$ phae=0 \wedge nit=0

```
Restrict to rules with same head atom: phae=1 \ \leftarrow \ phae=0 \ \land \ nit=0
```

```
Calculate similarity index (Jaccard) between rules: J(r_i, r_j) = \frac{|\text{body}(r_i) \cap \text{body}(r_j)|}{|\text{body}(r_i) \cup \text{body}(r_j)|}
```

Restrict to rules with same head atom: phae=1 $\,\leftarrow\,$ phae=0 $\,\wedge\,$ nit=0

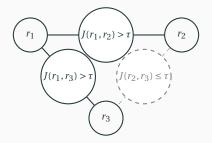
Calculate similarity index (Jaccard) between rules: $J(r_i, r_j) = \frac{|\text{body}(r_i) \cap \text{body}(r_j)|}{|\text{body}(r_i) \cup \text{body}(r_j)|}$



G = (V, E) with an edge $(i, j) \in E$ iff $J(r_i, r_j) > \tau$

Restrict to rules with same head atom: phae=1 \leftarrow phae=0 \land nit=0

Calculate similarity index (Jaccard) between rules: $J(r_i, r_j) = \frac{|\text{body}(r_i) \cap \text{body}(r_j)|}{|\text{body}(r_i) \cup \text{body}(r_j)|}$



G = (V, E) with an edge $(i, j) \in E$ iff $J(r_i, r_j) > \tau$

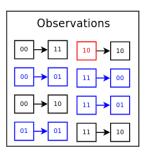
- Detect communities in G
- In each community, extract the most common body patterns
 - ⇒ Clearer "typical contexts" per head species, and stable summaries

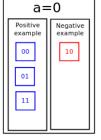
Thank you!

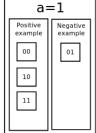
Learning From Interpretation Transition (LFIT)

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain value in next state.



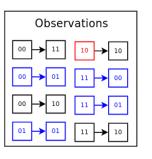


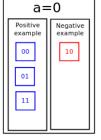


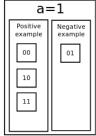
Equivalent to a **classification problem**: What is a typical state where a can take value 0 in the next state? Here: when a_0 or b_1 is present.

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain value in next state.







Equivalent to a classification problem: What is a typical state where a can take value 0 in the next state? Here: when a_0 or b_1 is present.

$$a_0 \leftarrow a_0$$
. $a_0 \leftarrow b_1$.

$$a_0 \leftarrow b_1$$

Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions $(s_1 \rightarrow s_2)$

Output: a logic program that respects:

- Consistency: the program allows no negative examples
- Realization: the program covers all positive examples
- Completeness: the program covers all the state space
- Minimality of the rules (most general conditions)

Method: start from most general rules and specialize iteratively.

Suppose: $dom(a) = dom(b) = \{0, 1\}$ and $dom(c) = \{0, 1, 2\}$ and the current program contains the following rules regarding a_1 : $a_1 \leftarrow c_2.$ $a_1 \leftarrow b_1.$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

Suppose: $dom(a) = dom(b) = \{0, 1\}$ and $dom(c) = \{0, 1, 2\}$ and the current program contains the following rules regarding a_1 : $a_1 \leftarrow c_2.$ $a_1 \leftarrow b_1.$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

$$a_1 \leftarrow a_0, c_2.$$
 $a_1 \leftarrow b_1.$ (No change) $a_1 \leftarrow c_2, c_0.$ $a_1 \leftarrow c_2, c_1.$

Suppose: $dom(a) = dom(b) = \{0, 1\}$ and $dom(c) = \{0, 1, 2\}$ and the current program contains the following rules regarding a_1 : $a_1 \leftarrow c_2.$ $a_1 \leftarrow b_1.$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

$$a_1 \leftarrow a_0, c_2.$$
 $a_1 \leftarrow b_1.$ $a_1 \leftarrow b_1, c_2.$ $a_1 \leftarrow c_2, c_0.$ $a_1 \leftarrow c_2, c_1.$

Suppose: $dom(a) = dom(b) = \{0, 1\}$ and $dom(c) = \{0, 1, 2\}$ and the current program contains the following rules regarding a_1 : $a_1 \leftarrow c_2.$ $a_1 \leftarrow b_1.$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

$$a_1 \leftarrow a_0, c_2.$$
 $a_1 \leftarrow b_1.$ (More general)

Suppose: $dom(a) = dom(b) = \{0,1\}$ and $dom(c) = \{0,1,2\}$ and the current program contains the following rules regarding a_1 : $a_1 \leftarrow c_2.$ $a_1 \leftarrow b_1.$

From state $\langle a_1, b_0, c_2 \rangle$, a_1 is never observed in the next states.

$$a_1 \leftarrow a_0, c_2.$$
 $a_1 \leftarrow b_1.$

Results

Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue. Learning any memory-less discrete semantics for dynamical systems represented by logic programs. *Machine Learning* 111, Springer. November 2021. https://doi.org/10.1007/s10994-021-06105-4

- Allows to learn the network (structure of the model)
- Independent of the semantics (characterization of applicable memoryless semantics)

Nice in theory, but in practice?

- Exponential complexity → How to handle big datasets?
 (many transitions, many variables)
- Exact learning → How to handle noise?

Two Heuristic on LFIT

Weighted Likeliness/Unlikeliness Rules

- Use the algorithm twice to learn two logic programs:
 - ▶ likeliness rules: what is possible
 - unlikeliness rules: what is impossible
- Weight each rule by the number of observations it matches

Statistical overlay ⇒ usable on **noisy datasets**

Likeliness rules	Unlikeliness rules
$(3, a_0 \leftarrow b_1)$	$(30, a_0 \leftarrow c_1)$
$(15, a_1 \leftarrow b_0)$	$(5,a_1\leftarrow c_0)$
:	<u>:</u>

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights ⇒ probability P
- Rules with highest weights ⇒ explanation E

predict :
$$(atom, state) \mapsto (P, E)$$

Likeliness rules

$$(3, a_0 \leftarrow b_1)$$

 $(15, a_1 \leftarrow b_0)$

Unlikeliness rules

$$(30, a_0 \leftarrow c_1)$$

$$(5, a_1 \leftarrow c_0)$$

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights ⇒ probability P
- Rules with highest weights \Rightarrow explanation E

predict :
$$(atom, state) \mapsto (P, E)$$

Likeliness rules

$$(3, a_0 \leftarrow b_1)$$

 $(15, a_1 \leftarrow b_0)$

Unlikeliness rules

$$(30, a_0 \leftarrow c_1)$$

$$(5, a_1 \leftarrow c_0)$$

$$predict(a_1, \langle a_1, b_1, c_0 \rangle) = (0.75, ((15, a_1 \leftarrow b_0), (5, a_1 \leftarrow c_0))) \Rightarrow Likely$$

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:

- Compare weights of applicable likeliness/unlikeliness rules
- Ratio of highest weights ⇒ probability P
- Rules with highest weights ⇒ explanation E

predict :
$$(atom, state) \mapsto (P, E)$$

Likeliness rules

$$(3, a_0 \leftarrow b_1)$$

 $(15, a_1 \leftarrow b_0)$

Unlikeliness rules

$$(30, a_0 \leftarrow c_1)$$
$$(5, a_1 \leftarrow c_0)$$