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Context: Phytoplankton and Ecosystem D

e Phytoplankton form the base of marine trophic networks

e Influence key processes e.g. nutrient cycling and water quality

= There is a strong interest in understanding phytoplankton dynamics
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Context: Abiotic vs. Biotic Factors

e Abiotic factors (temperature, nutrients, ...) have well-known effects on
phytoplankton growth

1Karasiewicz, S., Dolédec, S., Lefebvre, S.: Within outlying mean indexes: refining the omi analysis for the
realized niche decomposition. Peer) 5(e3364) (2017)

3/18



Context: Abiotic vs. Biotic Factors

e Abiotic factors (temperature, nutrients, ...) have well-known effects on
phytoplankton growth

e Biotic interactions (between species) have only been suggested1

: environment

: realized environment
: fundamental niche

: potential niche

: realized niche

=We want to understand biotic interactions

Karasiewicz, S., Dolédec, S., Lefebvre, S.: Within outlying mean indexes: refining the omi analysis for the
realized niche decomposition. Peer) 5(e3364) (2017)
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Context: Modeling Approaches in Marine Ecosystems

e ODE
e Statistical models

e Machine learning

5cuziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively
characterizing feasible logic models of a signaling network using answer set programming. Biocinformatics 30 (2013)
GVerny, L., Sella, N., Affeldt, S., Singh, P., Isambert, H.: Learning causal networks with latent variables from
multivariate information in genomic data. PLOS Computational Biology 13, €1005662 (2017)

7Cheva|ier, S., Froidevaux, C., Paulevé, L., Zinovyev, A.: Synthesis of bool networks from biological dynamical

constraints using answer-set programming. In: 2019 IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI). pp. 34-41 (2019)
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Context: Modeling Approaches in Marine Ecosystems

e ODE
e Statistical models

e Machine learning

=We need explainable models

5cuziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively
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Context: Modeling Approaches in Marine Ecosystems

e ODE
e Statistical models

e Machine learning

=We need explainable models

Symbolic Network Inference

e CASPO®

o MIICS

e Bonesis’

5cuziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively
characterizing feasible logic models of a signaling network using answer set programming. Biocinformatics 30 (2013)
GVerny, L., Sella, N., Affeldt, S., Singh, P., Isambert, H.: Learning causal networks with latent variables from
multivariate information in genomic data. PLOS Computational Biology 13, €1005662 (2017)

7Cheva|ier, S., Froidevaux, C., Paulevé, L., Zinovyev, A.: Synthesis of bool networks from biological dynamical
constraints using answer-set programming. In: 2019 IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI). pp. 34-41 (2019)
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Problem & Contributions

Goal: Infer interpretable species interactions from long-term field data.
Key ideas:

e Species-specific, ecology-informed discretization
e Apply Learning From Interpretation Transition (LFIT)
e Mapping rules = signed, weighted interaction graph

Overview:

Continuous data

*(discretisation)

Discrete data

»&(LHT)

Logic program

*(7??)

Interaction graph
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location date phaeocystis ditylum temperature nitrate
001-P-015 1992-05-18 0.0 20.0 13 33
006-P-001 1992-06-12 6.0 100.0 14 30

e 1992-2020; sampling every 15-30 days

e 12 species; 11 abiotic factors

e 10 stations on the french coast of the English Channel

2SRN dataset - Regional Observation and Monitoring Program for Phytoplankton and Hydrology in the eastern

English Channel (2025)

Dataset (SRN, Eastern English Channel)?
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Method: Species-specific discretization

Goal: translate continuous ecology into discrete states usable by LFIT—without
losing species traits.
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Method: Species-specific discretization

Goal: translate continuous ecology into discrete states usable by LFIT—without
losing species traits.

1.0 i fremp for Phaeocystis
] ——- Discretization thresholds
: mmm Phaeocystis Presence Rate
1
. . 0.8
Growth rate per species depending on o g 1
|/
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Temperature (°C)

Temperature: theoretical response vs. observed

presence.
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Method: Species-specific discretization

Goal: translate continuous ecology into discrete states usable by LFIT—without
losing species traits.

1.0 "
! —— fos for Phaeocystis
: === Discretization thresholds
08 : mmm Phaeocystis Presence Rate
Growth rate per species depending on 0 i 1
nutrient X: |
[X] 0.6 :
fxUXD) = ———+r /
X1+ Kx i
0.4 !
1
e Above = 1 (sufficient)
. o 0.2
e Below = 0 (limiting) ‘ ‘
0.0
0 2 4 6 8 10

Nitrate Concentration (umol/L)

Nitrate: theoretical response vs. observed

presence.

= Species “see” the environment through their own physiological lenses.
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Method: Apply LFIT3

INPUT: set of state transitions

phae=0 phae=1

dit=1 dit=1 : . . . . ]
temp=0 - temp=1 () - () () - () () - ()
nit=0 nit=0

time: t — t+1

3inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine Learning 94 (2014) 9/18




Method: Apply LFIT3

INPUT: set of state transitions

phae=0 phae=1

dit=1 dit=1 : . . . . ]
temp=0 - temp=1 () - () () - () () - ()
nit=0 nit=0

time: t — t+1

OUTPUT: logic program
phae=1<— phae=0 A nit=0
dit=1< phae=0 A dit=1 A temp=0

time: t+1 — t

3inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine Learning 94 (2014) 9/18




Method: Apply LFIT

LFIT algorithms
e GULAIO: complete but has exponential complexity — not scalable to our
dataset.

e PRIDE!L: polynomial-time but incomplete — prioritizes variables early in
the input order.

1Qibeiro, T., Folachette, M., Magnin, M., Inoue, K.: Learning any mamory-less discrete semantics for dynamical
systems represented by logic programs. Machine Learning 111, 1-78 (2021)

1Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Polynomial algorithm for learning from interpretation
transition. 1st International Joint Conference on Learning & Reasoning (2021).
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Method: Apply LFIT

LFIT algorithms
e GULAIO: complete but has exponential complexity — not scalable to our
dataset.

e PRIDE!L: polynomial-time but incomplete — prioritizes variables early in
the input order.

Multiple runs & aggregation

e 5 runs with different variable orders (abiotic first to reduce spurious biotic
links).
e Aggregate = union of minimal rules = improve coverage.

e Aggregated model accuracy: 0.86, higher than any single run (0.67-0.68).

1Qibeiro, T., Folachette, M., Magnin, M., Inoue, K.: Learning any mamory-less discrete semantics for dynamical
systems represented by logic programs. Machine Learning 111, 1-78 (2021)

1Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Polynomial algorithm for learning from interpretation
transition. 1st International Joint Conference on Learning & Reasoning (2021).
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Method: From Rules to Influence Graph

Motivation:
e The logic program is explainable — but can contain thousands of rules.

e We propose to extract a directed, weighted interaction graph that
summerize the rules.

e This graph provides a compact, readable view of the system’s dynamics.
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Method: From Rules to Influence Graph

Motivation:
e The logic program is explainable — but can contain thousands of rules.

e We propose to extract a directed, weighted interaction graph that

summerize the rules.

e This graph provides a compact, readable view of the system’s dynamics.

For each rule r:

e coverage(r) = # transitions with body true;
support(r) = # transitions with body at t and head at t+1.

e Confidence P(head|body) = support/coverage.

e Rule weight: w(r) =support(r)-%.

phae=1 — phae=0 A nit=0
——— [ —
head body
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Method: From Rules to Influence Graph
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Method: From Rules to Influence Graph

R;_.j is the set of all rules where Dit appears in the body and Phae in the head:

Phae! — Dit! A ...
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Method: From Rules to Influence Graph

R;_.j is the set of all rules where Dit appears in the body and Phae in the head:
Phae! — Dit' A ...

Edge Thickness:

ZI’ERL'_.]‘ W(r)
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Method: From Rules to Influence Graph

R;_.j is the set of all rules where Dit appears in the body and Phae in the head:
Phae! — Dit' A ...

Edge Thickness:
ZI’ERL'_.]‘ w(r)
Edge Color:

8;—j(r) € {x1} (alignment vs contrast)
and ¥, 6;—.j(r) w(r) maps to color.

12 /18



Results: Phytoplankton Influence Graph
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Results: Phaeocystis
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on Phaeocystis

Results: Abiotic influences
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NO, & POy positive; Si(OH)4 negative; salinity & NH,4 negative — consistent with bloom phenology.
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Discussion

Contributions
e Pipeline for applying LFIT on ecological time series

e Influence graphs summarizing thousands of rules into readable interactions
Limits

e Graphs show influence patterns; they're not direct interaction types
(competition, allelopathy, etc.)

e Memoryless learning; not causal; requires ecological interpretation

Resources

e Code (notebooks): https://zenodo.org/records/15389109
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https://zenodo.org/records/15389109

Ongoing work: Combining abiotic factors into a single response

e Build a theoretical growth response R for each species s by combining
eco-physiological functions of abiotic drivers, then use it as a single feature

o Ry=f" min(f £, £7,...)

= Replace many abiotics with a single, species-specific theoritical response
capturing the eco-theory.

= Reduce the number of variables, potentially the number of rules.
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Ongoing work: Rules analysis

Restrict to rules with same head atom: phae=1 — phae=0 A nit=0
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Ongoing work: Rules analysis

Restrict to rules with same head atom: phae=1 — phae=0 A nit=0

Ibody(r,-)mbody(rj)l

Calculate similarity index (Jaccard) between rules: J(r;,r;) = Tbody(r1Ubody(r, )l
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Ongoing work: Rules analysis

Restrict to rules with same head atom: phae=1 — phae=0 A nit=0

[body(r;)nbody(r;)|

Calculate similarity index (Jaccard) between rules: J(r;,r;) = Tbody(r1Ubody(r, )l

G=(V,E) with an edge (i, /) € E iff J(rj,rj)>7

e Detect communities in G

e In each community, extract the most common body patterns

= Clearer “typical contexts” per head species, and stable summaries
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Thank youl
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Learning From Interpretation

Transition (LFIT)

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT




Learning From Interpretation Transition (LFIT) MLTET

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain
value in next state.

Observations a=0 a=1
Positive Negative Positive Negative
1 example example example example

10

01 11

11

01 01

11

Equivalent to a classification problem: What is a typical state where a
can take value 0 in the next state 7 Here: when ag or b; is present.

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 9/36



Learning From Interpretation Transition (LFIT) MLTET

Learning Algorithm Intuition: Classification Problem

Learn applicable rules: conditions so that a variable can take a certain
value in next state.

Observations a=0 a=1

Positive Negative Positive Negative
10 example example example example

11

01 11

11
[ )

Equivalent to a classification problem: What is a typical state where a
can take value 0 in the next state 7 Here: when ag or b; is present.

ap < ap- ap < by.

01 01

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 9/36



Learning From Interpretation Transition (LFIT) [elS]E.\

Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions (s1 — sp)

Output: a logic program that respects:
o Consistency: the program allows no negative examples
@ Realization: the program covers all positive examples
o Completeness: the program covers all the state space

@ Minimality of the rules (most general conditions)

Method: start from most general rules and specialize iteratively.

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 10/36



GuLA
Minimal refinements

Suppose: dom(a) = dom(b) = {0,1} and dom(c) = {0, 1,2}

and the current program contains the following rules regarding a:
a; < O. a; < by.

From state (a1, bo, ¢2), a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT

2024-12-09 11/36



Learning From Interpretation Transition (LFIT) BNe[VIE.N

Minimal refinements

Suppose: dom(a) = dom(b) = {0,1} and dom(c) = {0, 1,2}

and the current program contains the following rules regarding a:
a; < O. a; < by.

From state (a1, bo, ¢2), a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

a; <— 4o, 2. a] «— b1.
a; b17 . (No change)
a; < G, Q.
a; < G, Cy.

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 11/36



Learning From Interpretation Transition (LFIT) BNe[VIE.N

Minimal refinements

Suppose: dom(a) = dom(b) = {0,1} and dom(c) = {0, 1,2}

and the current program contains the following rules regarding a:
a; < O. a; < by.

From state (a1, bo, ¢2), a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:
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GuLA
Minimal refinements

Suppose: dom(a) = dom(b) = {0,1} and dom(c) = {0, 1,2}

and the current program contains the following rules regarding a:
a; < O. a; < by.

From state (a1, bo, ¢2), a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

a; <— dp, 2. a] «— bl.

More general

a) < bl, Co. ( & )
2024-12-09 11/36
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Minimal refinements
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Learning From Interpretation Transition (LFIT) [elS]E.\

Results

Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue.
Learning any memory-less discrete semantics for dynamical systems
represented by logic programs. Machine Learning 111, Springer.
November 2021. https://doi.org/10.1007/s10994-021-06105-4

@ Allows to learn the network (structure of the model)
@ Independent of the semantics
(characterization of applicable memoryless semantics)

Nice in theory, but in practice?

@ Exponential complexity — How to handle big datasets?
(many transitions, many variables)

o Exact learning — How to handle noise?

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT

2024-12-09 12/36



Two Heuristic on LFIT

Two Heuristic on LFIT

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT



e e e
Weighted Likeliness/Unlikeliness Rules

@ Use the algorithm twice to learn two logic programs:

> likeliness rules: what is possible
» unlikeliness rules: what is impossible

@ Weight each rule by the number of observations it matches

Statistical overlay = usable on noisy datasets

Likeliness rules Unlikeliness rules
(3,80 < b1) (30,40 + c1)

(15, al < bo) (5, a; <« Co)

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09
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Welghted Likellness/Unileliness Rules
Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
@ Compare weights of applicable likeliness/unlikeliness rules
@ Ratio of highest weights = probability P
@ Rules with highest weights = explanation E
predict : (atom, state) — (P, E)

Likeliness rules Unlikeliness rules
(3,0 < b1) (30, a0 + c1)
(15, a1 < bo) (5,81 + <o)

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09
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Welghted Likellness/Unileliness Rules
Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
@ Compare weights of applicable likeliness/unlikeliness rules
@ Ratio of highest weights = probability P
@ Rules with highest weights = explanation E
predict : (atom, state) — (P, E)

Likeliness rules Unlikeliness rules
(3,0 < b1) (30, a0 + c1)
(15, a1 < bo) (5,81 + <o)

predict(ay, (a1, b1, co)) = (0.75, ((15, a1 < bo), (5, a1 < cp))) = Likely
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Welghted Likellness/Unileliness Rules
Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
@ Compare weights of applicable likeliness/unlikeliness rules
@ Ratio of highest weights = probability P
@ Rules with highest weights = explanation E
predict : (atom, state) — (P, E)

Likeliness rules Unlikeliness rules
(3, ap < bl) (307 ap < C1)
(15, a1 < bo) (5,81 + <o)

predict(ay, (a1, b1, c)) = (0.75, ((15, a1 + bo), (5, a1 < cp))) = Likely
predict(ao, (a1, b1, co)) = (0.09, ((3, a0 < b1), (30, a0 + c1))) = Unlikely

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 15/36



