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Context: Phytoplankton and Ecosystem Dynamics

• Phytoplankton form the base of marine trophic networks

• Influence key processes e.g. nutrient cycling and water quality

⇒ There is a strong interest in understanding phytoplankton dynamics
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Context: Abiotic vs. Biotic Factors

• Abiotic factors (temperature, nutrients, ...) have well-known effects on
phytoplankton growth

• Biotic interactions (between species) have only been suggested1

⇒We want to understand biotic interactions

1Karasiewicz, S., Dolédec, S., Lefebvre, S.: Within outlying mean indexes: refining the omi analysis for the
realized niche decomposition. PeerJ 5(e3364) (2017)
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Context: Modeling Approaches in Marine Ecosystems

• ODE

• Statistical models

• Machine learning

⇒We need explainable models

Symbolic Network Inference

• CASPO5

• MIIC6

• Bonesis7

5Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively
characterizing feasible logic models of a signaling network using answer set programming. Bioinformatics 30 (2013)
6Verny, L., Sella, N., Affeldt, S., Singh, P., Isambert, H.: Learning causal networks with latent variables from
multivariate information in genomic data. PLOS Computational Biology 13, e1005662 (2017)
7Chevalier, S., Froidevaux, C., Paulevé, L., Zinovyev, A.: Synthesis of boolean networks from biological dynamical
constraints using answer-set programming. In: 2019 IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI). pp. 34–41 (2019)
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Problem & Contributions

Goal: Infer interpretable species interactions from long-term field data.

Key ideas:

• Species-specific, ecology-informed discretization
• Apply Learning From Interpretation Transition (LFIT)
• Mapping rules ⇒ signed, weighted interaction graph

Overview:

Continuous data

Discrete data

Logic program

Interaction graph

(discretisation)

(LFIT)

(???)
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Dataset (SRN, Eastern English Channel)2

location date phaeocystis ditylum temperature nitrate

001-P-015 1992-05-18 0.0 20.0 13 33

006-P-001 1992-06-12 6.0 100.0 14 30

... ... ... ... ... ...

• 1992–2020; sampling every 15–30 days

• 12 species; 11 abiotic factors

• 10 stations on the french coast of the English Channel

2SRN dataset - Regional Observation and Monitoring Program for Phytoplankton and Hydrology in the eastern
English Channel (2025)
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Method: Species-specific discretization

Goal: translate continuous ecology into discrete states usable by LFIT—without
losing species traits.

Growth rate per species depending on
temperature T:

ftemp(T ) = exp

(
− (T −Topt)2

2σ2

)

• Favorable band: Topt ±σ ⇒ state = 1

• Outside band ⇒ state = 0

0 5 10 15 20 25 30 35 40
Temperature (°C)

0.0

0.2

0.4

0.6

0.8

1.0 ftemp for Phaeocystis
Discretization thresholds
Phaeocystis Presence Rate

0 1 0

Temperature: theoretical response vs. observed

presence.
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Method: Species-specific discretization

Goal: translate continuous ecology into discrete states usable by LFIT—without
losing species traits.

Growth rate per species depending on
nutrient X:

fX ([X ]) = [X ]

[X ]+KX

• Above ⇒ 1 (sufficient)

• Below ⇒ 0 (limiting)

0 2 4 6 8 10
Nitrate Concen ra ion (μmol/Lμ

0.0

0.2

0.4

0.6

0.8

1.0
fNO3 for Phaeocys is
Discre iza ion  hresholds
Phaeocys is Presence Ra e

0 1

Nitrate: theoretical response vs. observed

presence.

⇒ Species “see” the environment through their own physiological lenses.
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Method: Apply LFIT3

INPUT: set of state transitions
phae= 0

dit= 1

temp= 0

nit= 0

 →


phae= 1

dit= 1

temp= 1

nit= 0


(
...

)
→

(
...

) (
...

)
→

(
...

) (
...

)
→

(
...

)

time: t → t+1

yLFIT

OUTPUT: logic program

phae= 1 ← phae= 0 ∧ nit= 0

dit= 1 ← phae= 0 ∧ dit= 1 ∧ temp= 0

...

time: t+1 ← t

3Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine Learning 94 (2014) 9 / 18
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Method: Apply LFIT

LFIT algorithms

• GULA10: complete but has exponential complexity — not scalable to our
dataset.

• PRIDE11: polynomial-time but incomplete — prioritizes variables early in
the input order.

Multiple runs & aggregation

• 5 runs with different variable orders (abiotic first to reduce spurious biotic
links).

• Aggregate = union of minimal rules ⇒ improve coverage.

• Aggregated model accuracy: 0.86, higher than any single run (0.67–0.68).

10Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Learning any memory-less discrete semantics for dynamical
systems represented by logic programs. Machine Learning 111, 1–78 (2021)
11Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Polynomial algorithm for learning from interpretation
transition. 1st International Joint Conference on Learning & Reasoning (2021).
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Method: From Rules to Influence Graph

Motivation:

• The logic program is explainable — but can contain thousands of rules.

• We propose to extract a directed, weighted interaction graph that
summerize the rules.

• This graph provides a compact, readable view of the system’s dynamics.

For each rule r :

• coverage(r ) = # transitions with body true;
support(r ) = # transitions with body at t and head at t+1.

• Confidence P (head|body) = support/coverage.

• Rule weight: w(r ) = support(r ) · P (head|body)
P (head)

.

phae= 1︸ ︷︷ ︸
head

← phae= 0 ∧ nit= 0︸ ︷︷ ︸
body
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Method: From Rules to Influence Graph

Dit Phae
?

Ri→ j is the set of all rules where Dit appears in the body and Phae in the head:

Phae1 ← Dit1 ∧
...

Edge Thickness:∑
r∈Ri→ j w(r ).

Edge Color:

δi→ j (r ) ∈ {±1} (alignment vs contrast)
and

∑
r δi→ j (r ) w(r ) maps to color.

12 / 18



Method: From Rules to Influence Graph

Dit Phae
?

Ri→ j is the set of all rules where Dit appears in the body and Phae in the head:

Phae1 ← Dit1 ∧
...

Edge Thickness:∑
r∈Ri→ j w(r ).

Edge Color:

δi→ j (r ) ∈ {±1} (alignment vs contrast)
and

∑
r δi→ j (r ) w(r ) maps to color.

12 / 18



Method: From Rules to Influence Graph

Dit Phae
?

Ri→ j is the set of all rules where Dit appears in the body and Phae in the head:

Phae1 ← Dit1 ∧
...

Edge Thickness:∑
r∈Ri→ j w(r ).

Edge Color:

δi→ j (r ) ∈ {±1} (alignment vs contrast)
and

∑
r δi→ j (r ) w(r ) maps to color.

12 / 18



Method: From Rules to Influence Graph

Dit Phae
?

Ri→ j is the set of all rules where Dit appears in the body and Phae in the head:

Phae1 ← Dit1 ∧
...

Edge Thickness:∑
r∈Ri→ j w(r ).

Edge Color:

δi→ j (r ) ∈ {±1} (alignment vs contrast)
and

∑
r δi→ j (r ) w(r ) maps to color.

12 / 18



Results: Phytoplankton Influence Graph

Chae. dan.

Phaeocystis

Dit.

Lep. dan.

Tha. gra.

Tha. nit.

Gui. str.

Nit. lon.

Par. sul.

Ske.

Pseudo-nit. ser.

Gui. del.

Influence Graph
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Results: Phaeocystis
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Results: Abiotic influences on Phaeocystis
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NO2 & PO4 positive; Si(OH)4 negative; salinity & NH4 negative — consistent with bloom phenology.
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Discussion

Contributions

• Pipeline for applying LFIT on ecological time series

• Influence graphs summarizing thousands of rules into readable interactions

Limits

• Graphs show influence patterns; they’re not direct interaction types
(competition, allelopathy, etc.)

• Memoryless learning; not causal; requires ecological interpretation

Resources

• Code (notebooks): https://zenodo.org/records/15389109
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Ongoing work: Combining abiotic factors into a single response

• Build a theoretical growth response Rs for each species s by combining
eco-physiological functions of abiotic drivers, then use it as a single feature

• Rs = f (s)
T ·min

(
f (s)
lum, f (s)

n1
, f (s)

n2
, . . .

)
⇒ Replace many abiotics with a single, species-specific theoritical response
capturing the eco-theory.

⇒ Reduce the number of variables, potentially the number of rules.
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Ongoing work: Rules analysis

Restrict to rules with same head atom: phae=1 ← phae= 0
∧

nit= 0

Calculate similarity index (Jaccard) between rules: J (ri ,r j ) = |body(ri )∩body(r j )|
|body(ri )∪body(r j )|

r1 r2

r3

J (r1,r2) > τ

J (r1,r3) > τ J (r2,r3) ≤ τ

G = (V ,E) with an edge (i , j ) ∈ E iff J (ri ,r j ) > τ

• Detect communities in G

• In each community, extract the most common body patterns

⇒ Clearer “typical contexts” per head species, and stable summaries
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Thank you!
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Learning From Interpretation Transition (LFIT)

Learning From Interpretation
Transition (LFIT)

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 8 / 36



Learning From Interpretation Transition (LFIT) Intuition

Learning Algorithm Intuition: Classification Problem
Learn applicable rules: conditions so that a variable can take a certain
value in next state.

Equivalent to a classification problem: What is a typical state where a
can take value 0 in the next state ? Here: when a0 or b1 is present.

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 9 / 36
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a0 ← a0. a0 ← b1.
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Learning From Interpretation Transition (LFIT) GULA

Presentation of GULA

GULA = General Usage LFIT Algorithm

Input: a set of transitions (s1 → s2)

Output: a logic program that respects:
Consistency: the program allows no negative examples
Realization: the program covers all positive examples
Completeness: the program covers all the state space
Minimality of the rules (most general conditions)

Method: start from most general rules and specialize iteratively.

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 10 / 36



Learning From Interpretation Transition (LFIT) GULA

Minimal refinements
Suppose: dom(a) = dom(b) = {0, 1} and dom(c) = {0, 1, 2}
and the current program contains the following rules regarding a1:

a1 ← c2. a1 ← b1.
From state ⟨a1, b0, c2⟩, a1 is never observed in the next states.

Minimal refinement to make the rules inapplicable in this state:

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 11 / 36
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Learning From Interpretation Transition (LFIT) GULA

Results
Tony Ribeiro, Maxime Folschette, Morgan Magnin and Katsumi Inoue.
Learning any memory-less discrete semantics for dynamical systems
represented by logic programs. Machine Learning 111, Springer.
November 2021. https://doi.org/10.1007/s10994-021-06105-4

Allows to learn the network (structure of the model)
Independent of the semantics
(characterization of applicable memoryless semantics)

Nice in theory, but in practice?
Exponential complexity → How to handle big datasets?
(many transitions, many variables)
Exact learning → How to handle noise?

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 12 / 36



Two Heuristic on LFIT

Two Heuristic on LFIT

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 13 / 36



Two Heuristic on LFIT Weighted Likeliness/Unlikeliness Rules

Weighted Likeliness/Unlikeliness Rules

Use the algorithm twice to learn two logic programs:
▶ likeliness rules: what is possible
▶ unlikeliness rules: what is impossible

Weight each rule by the number of observations it matches

Statistical overlay ⇒ usable on noisy datasets

Likeliness rules
(3, a0 ← b1)
(15, a1 ← b0)
...

Unlikeliness rules
(30, a0 ← c1)
(5, a1 ← c0)
...

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 14 / 36



Two Heuristic on LFIT Weighted Likeliness/Unlikeliness Rules

Using Weighted Likeliness/Unlikeliness Rules

Explainable predictions:
Compare weights of applicable likeliness/unlikeliness rules
Ratio of highest weights ⇒ probability P

Rules with highest weights ⇒ explanation E

predict : (atom, state) → (P ,E )

Likeliness rules
(3, a0 ← b1)
(15, a1 ← b0)

Unlikeliness rules
(30, a0 ← c1)
(5, a1 ← c0)

Maxime Folschette (CRIStAL) Phytopl. Interact. in SRN with LFIT 2024-12-09 15 / 36
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Rules with highest weights ⇒ explanation E

predict : (atom, state) → (P ,E )

Likeliness rules
(3, a0 ← b1)
(15, a1 ← b0)

Unlikeliness rules
(30, a0 ← c1)
(5, a1 ← c0)

predict(a1, ⟨a1, b1, c0⟩) = (0.75, ((15, a1 ← b0), (5, a1 ← c0))) ⇒ Likely
predict(a0, ⟨a1, b1, c0⟩) = (0.09, ((3, a0 ← b1), (30, a0 ← c1))) ⇒ Unlikely
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