Modeling Intestinal Glucose Absorption from D-Xylose Data

D. Dursoniah, M. Folschette, R. Goutchtat, V. Raverdy, F. Pattou and Cedric Lhoussaine

University of Lille, France

February 21, 2024

Section 1

Introduction

• Type 2 Diabetes (T2D), a worldwide public health issue

- Type 2 Diabetes (T2D), a worldwide public health issue
- Well-characterized associated effects (or causes ?) :

- Type 2 Diabetes (T2D), a worldwide public health issue
- Well-characterized associated effects (or causes ?) :
 - hepatic insulin resistance

- Type 2 Diabetes (T2D), a worldwide public health issue
- Well-characterized associated effects (or causes ?) :
 - hepatic insulin resistance
 - insulin secretion deficiency

- Type 2 Diabetes (T2D), a worldwide public health issue
- Well-characterized associated effects (or causes ?) :
 - hepatic insulin resistance
 - insulin secretion deficiency
 - peripheral insulin resistance

- Type 2 Diabetes (T2D), a worldwide public health issue
- Well-characterized associated effects (or causes ?) :
 - hepatic insulin resistance
 - insulin secretion deficiency
 - peripheral insulin resistance

- Type 2 Diabetes (T2D), a worldwide public health issue
- Well-characterized associated effects (or causes ?) :
 - hepatic insulin resistance
 - insulin secretion deficiency
 - peripheral insulin resistance

More recent observation: abnormal Intestinal Glucose Absorption (IGA)

Motivations

• bariatric surgery is primarily used to reduce stomac and intestinal size to manage obesity

Motivations

- bariatric surgery is primarily used to reduce stomac and intestinal size to manage obesity
- but is also has a strong (side) effect on metabolism

Postprandial glucose response

Motivations

- bariatric surgery is primarily used to reduce stomac and intestinal size to manage obesity
- but is also has a strong (side) effect on metabolism

 \Rightarrow RYGB reduces IGA which improves glucose homeostasis restoration

- (*long term*) model-based understanding of the role of IGA in postprandial glucose response
- (now) predict the rate of IGA from postprandial data

• many existing models of glucose homeostatis [Mari et al. 2020]

- many existing models of glucose homeostatis [Mari et al. 2020]
- State of the art model of postprandial glucose dynamics [Dalla Man et al., 2007]

- many existing models of glucose homeostatis [Mari et al. 2020]
- State of the art model of postprandial glucose dynamics [Dalla Man et al., 2007]
- complex ODE model (12 variables, 36 parameters)

Dalla Man's model can hardly predict bariatric surgery [Dursoniah et al. BIOTECHNO 2021] because of

- over simplified intestinal tract
- parameter identifiability issues

Dalla Man's model can hardly predict bariatric surgery [Dursoniah et al. BIOTECHNO 2021] because of

- over simplified intestinal tract
- parameter identifiability issues

Also, its calibration needs monitoring of IGA which either requires:

- access to portal vein (almost impossible), or
- use of tracer protocols (too complex to set up in a clinical context).

Instead, we propose:

- to use a molecular marker (D-Xylose) simple to use in the clinical setting
- to design a simple model that focusses on intestinal absorption
- solve identifiability issues based on minipig experimental data

• D-Xylose is a glucose analogue

- D-Xylose is a glucose analogue
- absorbed like glucose by the intestine

- D-Xylose is a glucose analogue
- absorbed like glucose by the intestine
- unlike glucose, it is not metabolized
 (⇒ no complex regulation)

- D-Xylose is a glucose analogue
- absorbed like glucose by the intestine
- unlike glucose, it is not metabolized
 (⇒ no complex regulation)
- ⇒ simple model with few variables and parameters

- D-Xylose is a glucose analogue
- absorbed like glucose by the intestine
- unlike glucose, it is not metabolized
 (⇒ no complex regulation)
- ⇒ simple model with few variables and parameters

9 / 20

Predicting IGA rate from D-Xylose data

- D-Xylose is a glucose analogue
- absorbed like glucose by the intestine
- unlike glucose, it is not metabolized
 (⇒ no complex regulation)
- ⇒ simple model with few variables and parameters

What can we learn about intestinal absorption from the observation of D-Xylose concentration in blood ?

Section 2

D-Xylose Mechanistic Model and Calibration

Chemical Reaction Network

3 main parts:

• simple gastric emptying

Chemical Reaction Network

- simple gastric emptying
- multi-compartmental intestine (similar to [Salinari et al. 2011])

Chemical Reaction Network

- simple gastric emptying
- multi-compartmental intestine (similar to [Salinari et al. 2011])
 - uniform intestinal transit

Chemical Reaction Network

- simple gastric emptying
- multi-compartmental intestine (similar to [Salinari et al. 2011])
 - uniform intestinal transit
 - non-uniform intestinal absorption

Chemical Reaction Network

- simple gastric emptying
- multi-compartmental intestine (similar to [Salinari et al. 2011])
 - uniform intestinal transit
 - non-uniform intestinal absorption
- simple D-Xylose elimination

Chemical Reaction Network

- simple gastric emptying
- multi-compartmental intestine (similar to [Salinari et al. 2011])
 - uniform intestinal transit
 - non-uniform intestinal absorption
- simple D-Xylose elimination
- 3 parameters of interest: k_{empt}, k_{abs} and k_{elim}

Intravenous administration of 30g D-Xylose

Used to estimate the rate k_{elim} of D-Xylose elimination

Admnistration of mixed meal + 30g D-Xylose

Admnistration of mixed meal + 30g D-Xylose

Admnistration of mixed meal + 30g D-Xylose

Admnistration of mixed meal + 30g D-Xylose

Used to estimate the rates k_{empt} of gastric emptying and k_{abs} of intestinal absorption.

Parameter Estimation

Very good fitting of (mean) intravenous, oral and jejunal datasets

Profil likelihood method was applied to study parameter identifiability

Parameters	C.I. lower bounds	C.I. upper bounds
k _{empt}	0.03737	0.09202
k _{abs}	0.22197	0.32798
k _{elim}	0.00622	0.00708

Our 3 parameters of interest are identifiable

Section 3

Gastric Emptying vs. Intestinal Absorption

• Is our model accurate to study IXA from the observation of the DXylose concentration in plasma ?

- Is our model accurate to study IXA from the observation of the DXylose concentration in plasma ?
- What observational variable would be mainly sensitive to intestinal absorption ?

- Is our model accurate to study IXA from the observation of the DXylose concentration in plasma ?
- What observational variable would be mainly sensitive to intestinal absorption ?
- AUC_{Ra_X} : total quantity of DXylose absorbed after 3h

- Is our model accurate to study IXA from the observation of the DXylose concentration in plasma ?
- What observational variable would be mainly sensitive to intestinal absorption ?
- AUC_{Ra_X} : total quantity of DXylose absorbed after 3h
- Sensitivity analysis of $AUC_{Ra_{\chi}}$ w.r.t. k_{empt} and k_{abs}

 AUC_{Ra_X} is more sensitive to intestinal absorption than to gastric emptying

Model with complex gastric emptying

Alternative model focusing on gastric emptying [Dalla Man et al. 2006]

Model with complex gastric emptying

Alternative model focusing on gastric emptying [Dalla Man et al. 2006]

Much less satisfying fitting

Contributions

• Simple model of D-Xylose with multiple intestinal compartments

- Simple model of D-Xylose with multiple intestinal compartments
- Fits the minipig datasets in various experimental conditions

- Simple model of D-Xylose with multiple intestinal compartments
- Fits the minipig datasets in various experimental conditions
- Parameters of interest are identifiable

- Simple model of D-Xylose with multiple intestinal compartments
- Fits the minipig datasets in various experimental conditions
- Parameters of interest are identifiable
- It allows to discriminate the effect of gastric emptying from the intestinal absorption on the dynamics of appearance of D-Xylose

- Simple model of D-Xylose with multiple intestinal compartments
- Fits the minipig datasets in various experimental conditions
- Parameters of interest are identifiable
- It allows to discriminate the effect of gastric emptying from the intestinal absorption on the dynamics of appearance of D-Xylose

Contributions

- Simple model of D-Xylose with multiple intestinal compartments
- Fits the minipig datasets in various experimental conditions
- Parameters of interest are identifiable
- It allows to discriminate the effect of gastric emptying from the intestinal absorption on the dynamics of appearance of D-Xylose

Future work

• Investigate this model with clinical datasets (ie. without jejunal experiments)

Contributions

- Simple model of D-Xylose with multiple intestinal compartments
- Fits the minipig datasets in various experimental conditions
- Parameters of interest are identifiable
- It allows to discriminate the effect of gastric emptying from the intestinal absorption on the dynamics of appearance of D-Xylose

Future work

- Investigate this model with clinical datasets (ie. without jejunal experiments)
- Use DXylose model to predict glucose dynamics

Thank you for you attention

Any question ?

D-Xylose variables and parameters

Variables:

- X_s : stomach
- $X_{g1} \dots X_{g_n}$: *n* gut compartments
- X_p : plasma

Parameters of interest:

- *k_{empt}* : rate of gastric emptying
- k_{abs} : rate of intestinal absorption
- *k_{elim}* : rate of xylose elimination

Other parameters:

- $\alpha_1 \dots \alpha_n$: distribution of absorption
- *k*_{trans} : rate of intestinal transit

From reaction network to ODEs

$$Ra_X(t) = k_{abs} \cdot \left(\sum_{i=1}^n \alpha_i \cdot X_{gi}(t)\right)$$